Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = biological soil loosening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5107 KiB  
Review
Shaping Soil Properties and Yield of Cereals Using Cover Crops under Conservation Soil Tillage
by Edward Wilczewski, Irena Jug, Ewa Szpunar-Krok, Mariola Staniak and Danijel Jug
Agronomy 2024, 14(9), 2104; https://doi.org/10.3390/agronomy14092104 - 15 Sep 2024
Viewed by 1794
Abstract
The aim of this review was to collect current results on the effect of different plants grown as winter and summer cover crops (CC) on the physical, chemical, and biological properties of soil and on the yield of cereal crops grown in a [...] Read more.
The aim of this review was to collect current results on the effect of different plants grown as winter and summer cover crops (CC) on the physical, chemical, and biological properties of soil and on the yield of cereal crops grown in a site with CC, using conservation soil tillage. The analyzed studies indicate that CC usually have a positive impact on the physical and biological properties of the soil. Regardless of the plant species used as CC, we can expect an increase in the number of soil microorganisms and an improvement in the activity of soil enzymes. This effect is particularly beneficial in the case of reduced tillage systems. Mixing CC biomass with the topsoil loosens compacted soils and, in the case of light, sandy soils, increasing the capacity of the sorption complex. The size and composition of CC biomass and weather conditions during the vegetation period and during the covering of the soil with plant biomass are of great importance for improving the chemical properties of the soil. A beneficial effect of CC, especially legumes, on the content of the mineral nitrogen in the topsoil is usually observed. Sometimes, an increase in the content of available forms of potassium (K) and/or phosphorus (P) is also achieved. The effect of CC on the content of soil organic carbon (C), total nitrogen (N), or soil pH is less common. CC used in reduced tillage systems can significantly improve the yield and quality of cereal grain, especially when legumes are used as CC in low-fertility soil conditions and at low fertilization levels. However, non-legumes can also play a very positive role in shaping soil properties and improving cereal yield. Full article
Show Figures

Figure 1

19 pages, 5761 KiB  
Article
Crop-Livestock Integration Improves Physical Soil, Agronomic and Environmental Aspects in Soybean Cultivation
by Jordaanny Danyelly Pereira Lima, Aline Borges Torino, Luciana Maria da Silva, Lucas Freitas do Nascimento Júnior, Marlete Ferreira de Brito, Kátia Aparecida de Pinho Costa, Bruno Montoani Silva and Eduardo da Costa Severiano
Plants 2023, 12(21), 3746; https://doi.org/10.3390/plants12213746 - 1 Nov 2023
Cited by 9 | Viewed by 2041
Abstract
Soybean is one of the most widely grown crops in the world and technologies are increasingly needed to increase productivity without impacting environmental degradation. In this context, the aim was to evaluate the action of forage plants of the genus Brachiaria sp. in [...] Read more.
Soybean is one of the most widely grown crops in the world and technologies are increasingly needed to increase productivity without impacting environmental degradation. In this context, the aim was to evaluate the action of forage plants of the genus Brachiaria sp. in crop–livestock integration on physical soil, agronomic and environmental aspects of soybean cultivation. The experiment was conducted in a subdivided plot design with seven integrated systems corresponding to the previous cultivation of Paiaguas palisadegrass, Xaraes palisadegrass and Ruziziensis grass in monocropping and intercropped with maize, as well as maize in monocropping. In the subplots, two grass management systems were evaluated: free growth and a grazing simulation cut. The bulk density and least limiting water range were assessed using soil samples and, after the pastures were desiccated when the soybean crop was planted, straw decomposition and plantability. A soil physics diagnosis by the bulk density and least limiting water range showed that the Paiaguas palisadegrass and Xaraes palisadegrass improved the soil environment due to biological soil loosening. The remaining mulch biomass did not affect soybean sowing and the adoption of Brachiaria sp. grass in the off-season, in addition to contributing to the provision of environmental services, and did not compromise grain productivity in succession. Full article
(This article belongs to the Special Issue Grassland Ecosystems and Their Management)
Show Figures

Graphical abstract

16 pages, 1221 KiB  
Article
Soil Properties after Eight Years of the Use of Strip-Till One-Pass Technology
by Iwona Jaskulska, Kestutis Romaneckas, Dariusz Jaskulski, Lech Gałęzewski, Barbara Breza-Boruta, Bożena Dębska and Joanna Lemanowicz
Agronomy 2020, 10(10), 1596; https://doi.org/10.3390/agronomy10101596 - 18 Oct 2020
Cited by 26 | Viewed by 4776
Abstract
Tillage is an agrotechnical practice that strongly affects the soil environment. Its effect on soil properties depends on the system and, more specifically, on the degree of soil inversion and loosening. Strip-till is a non-inversive method that loosens only narrow soil strips. In [...] Read more.
Tillage is an agrotechnical practice that strongly affects the soil environment. Its effect on soil properties depends on the system and, more specifically, on the degree of soil inversion and loosening. Strip-till is a non-inversive method that loosens only narrow soil strips. In strip-till one-pass (ST-OP) technology, tillage is combined with a simultaneous application of fertilizers and seed sowing. In a static multi-year field experiment, the soil properties after application of ST-OP for 8 years were compared to those of soil under conventional tillage with the use of a moldboard plough to a depth of 20 cm (CT), and equally deep loosened and mixed reduced tillage (RT). A field experiment of these three treatments was performed since 2012 in sandy loam soil, Luvisol. A total of 44 features were examined that described the physical, chemical, biological, and biochemical soil properties in the 0–20 cm layer, and penetration resistance (PR), bulk density (BD), and soil moisture (SM) in the 25–30 cm layer. The influence of the ST-OP technology on the yield of crops was also determined. Multivariate analysis shows that the ST-OP method, in terms of affecting the soil properties, differs considerably from RT and CT treatments. The soil after the ST-OP method contained two- to four-fold more earthworms (En), with a mass (Em) 2- to 5-fold higher, than those in the soil following RT and CT, respectively. In the ST-OP soil the content of available phosphorus (Pa) and available potassium (Ka); the total count of bacteria (Bt), cellulolytic microorganisms (Bc), and fungi (Ff); and the activity of phosphatases (AlP, AcP) were significantly higher. Compared with CT, the content of total organic carbon (Ct) and its content in the fractions of organic matter were also higher, with the exception of humins (CH). The yields of winter rapeseed and winter wheat using the ST-OP technology were marginally higher compared with those using the CT and RT technology. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Figure 1

16 pages, 1891 KiB  
Article
Cereal Response to Deep Tillage and Incorporated Organic Fertilizer
by Inga Jakobs, Oliver Schmittmann, Miriam Athmann, Timo Kautz and Peter Schulze Lammers
Agronomy 2019, 9(6), 296; https://doi.org/10.3390/agronomy9060296 - 6 Jun 2019
Cited by 13 | Viewed by 3617
Abstract
This study examined the effect of stripwise subsoiling and subsoiling combined with the incorporation of organic material on crop development in a two-year field trial with typical weather in the first year and hot, dry weather in the second. Subsoiling and its combination [...] Read more.
This study examined the effect of stripwise subsoiling and subsoiling combined with the incorporation of organic material on crop development in a two-year field trial with typical weather in the first year and hot, dry weather in the second. Subsoiling and its combination with incorporated organic materials had strong effects on plant development and crop yield of spring barley (2017) and winter wheat (2018). The subsoil was loosened in 30 cm wide furrows down to a depth of up to 60 cm with a tine (DL) or a spader machine (SM) and was compared with the same methods of subsoil loosening combined with the incorporation of compost from biological household wastes (DLB and SMB). Furthermore, green waste compost (SMG), chopped straw (SMCS) and sawdust (SMS) were incorporated with the spader machine only. DL successfully reduced penetration resistance underneath the furrow and enhanced root growth underneath and near the furrow over the whole experimental period. Grain protein content above the furrow was enhanced compared with the untreated control (C) in the first year, but grain yield did not increase. DLB also reduced penetration resistance and increased root growth, but furthermore caused considerable increases in soil mineral nitrogen underneath the furrow throughout the vegetation period. Consequently, both yield and grain protein content above the furrow were tendentially increased as compared with the C. In SMB, grain yield increased even more than in DLB, compared to C, in 2017 (84% for SMB vs. 19% for DLB) and nearly equally in 2018 (65.4% vs. 65.2%) while all other treatments tendentially decreased grain yield above the furrow as compared with C. The results indicate that subsoiling with the introduction of organic material can reduce mechanical impedance and increase soil nitrogen and thereby ensure stable yields during dry periods, which become more frequent under climate change. Full article
Show Figures

Figure 1

Back to TopTop