Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = biological nanonetworks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1117 KiB  
Article
A Learning Automaton-Based Algorithm for Maximizing the Transfer Data Rate in a Biological Nanonetwork
by Konstantinos F. Kantelis
Appl. Sci. 2022, 12(19), 9499; https://doi.org/10.3390/app12199499 - 22 Sep 2022
Cited by 1 | Viewed by 1810
Abstract
Biological nanonetworks have been envisaged to be the most appropriate alternatives to classical electromagnetic nanonetworks for applications in biological environments. Due to the diffusional method of the message exchange process, transfer data rates are not proportional to their electromagnetic counterparts. In addition, the [...] Read more.
Biological nanonetworks have been envisaged to be the most appropriate alternatives to classical electromagnetic nanonetworks for applications in biological environments. Due to the diffusional method of the message exchange process, transfer data rates are not proportional to their electromagnetic counterparts. In addition, the molecular channel has memory affecting the reception of a message, as the molecules from previously transmitted messages remain in the channel, affecting the number of information molecules that are required from a node to perceive a transmitted message. As a result, the ability of a node to receive a message is directly connected to the transmission rate from the transmitter. In this work, a learning automaton approach has been followed as a way to provide the receiver nodes with an algorithm that could firstly enhance their reception capability and secondly boost the performance of the transfer data rate between the biological communication parties. To this end, a complete set of simulation scenarios has been devised, simulating different distances between nodes and various input signal distributions. Most of the operational parameters, such as the speed of convergence for different numbers of ascension and descension steps and the number of information molecules per message, have been tested pertaining to the performance characteristics of the biological nanonetwork. The applied analysis revealed that the proposed protocol manages to adapt to the communication channel changes, such as the number of remaining information molecules, and can be successfully employed at nanoscale dimensions as a tool for pursuing an increased transfer data rate, even with time-variant channel characteristics. Full article
(This article belongs to the Topic Next Generation Intelligent Communications and Networks)
Show Figures

Figure 1

13 pages, 2984 KiB  
Article
Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex
by Sung-Min Park, Woo-Rim Rhee, Kyu-Min Park, Yu-Jin Kim, Junyong Ahn, Jonathan C. Knowles, Jongbin Kim, Jisun Shin, Tae-Su Jang, Soo-Kyung Jun, Hae-Hyoung Lee and Jung-Hwan Lee
Nanomaterials 2021, 11(3), 596; https://doi.org/10.3390/nano11030596 - 27 Feb 2021
Cited by 6 | Viewed by 3765
Abstract
Dental caries causes tooth defects and clinical treatment is essential. To prevent further damage and protect healthy teeth, appropriate dental material is a need. However, the biocompatibility of dental material is needed to secure the oral environment. For this purpose, biocompatible materials were [...] Read more.
Dental caries causes tooth defects and clinical treatment is essential. To prevent further damage and protect healthy teeth, appropriate dental material is a need. However, the biocompatibility of dental material is needed to secure the oral environment. For this purpose, biocompatible materials were investigated for incorporated with dental capping material. Among them, nanomaterials are applied to dental materials to enhance their chemical, mechanical, and biological properties. This research aimed to study the physicochemical and mechanical properties and biocompatibility of a recently introduced light-curable mineral trioxide aggregate (MTA)-like material without bisphenol A-glycidyl methacrylate (Bis-GMA). To overcome the compromised mechanical properties in the absence of Bis-GMA, silica nanoparticles were synthesized and blended with a dental polymer for the formation of a nano-network. This material was compared with a conventional light-curable MTA-like material that contains Bis-GMA. Investigation of the physiochemical properties followed ISO 4049. Hydroxyl and calcium ion release from the materials was measured over 21 days. The Vickers hardness test and three-point flexural strength test were used to assess the mechanical properties. Specimens were immersed in solutions that mimicked human body plasma for seven days, and surface characteristics were analyzed. Biological properties were assessed by cytotoxicity and biomineralization tests. There was no significant difference between the tested materials with respect to overall physicochemical properties and released calcium ions. The newly produced material released more calcium ions on the third day, but 14 days later, the other material containing Bis-GMA released higher levels of calcium ions. The microhardness was reduced in a low pH environment, and differences between the specimens were observed. The flexural strength of the newly developed material was significantly higher, and different surface morphologies were detected. The recently produced extract showed higher cell viability at an extract concentration of 100%, while mineralization was clear at the conventional concentration of 25%. No significant changes in the physical properties between Bis-GMA incorporate material and nanoparticle incorporate materials. Full article
(This article belongs to the Special Issue Nanomaterials for Oral Medicine)
Show Figures

Figure 1

10 pages, 1389 KiB  
Article
Genetically Modified M13 Bacteriophage Nanonets for Enzyme Catalysis and Recovery
by Vincent Mauricio Kadiri, Mariana Alarcón-Correa, Jacqueline Ruppert, Jan-Philipp Günther, Joachim Bill, Dirk Rothenstein and Peer Fischer
Catalysts 2019, 9(9), 723; https://doi.org/10.3390/catal9090723 - 27 Aug 2019
Cited by 6 | Viewed by 5508
Abstract
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. [...] Read more.
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages, ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes. The bacteriophages have been genetically engineered to express AviTags at their ends, which permit biotinylation and their specific end-to-end self-assembly while allowing space on the major coat protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that these so-called nanonets remain highly active even after re-using the nanonets multiple times in a flow-through reactor. Full article
(This article belongs to the Special Issue State of the Art and Future Trends in Nanostructured Biocatalysis)
Show Figures

Graphical abstract

30 pages, 16767 KiB  
Review
Biological Oscillators in Nanonetworks—Opportunities and Challenges
by Ethungshan Shitiri, Athanasios V. Vasilakos and Ho-Shin Cho
Sensors 2018, 18(5), 1544; https://doi.org/10.3390/s18051544 - 13 May 2018
Cited by 14 | Viewed by 5725
Abstract
One of the major issues in molecular communication-based nanonetworks is the provision and maintenance of a common time knowledge. To stay true to the definition of molecular communication, biological oscillators are the potential solutions to achieve that goal as they generate oscillations through [...] Read more.
One of the major issues in molecular communication-based nanonetworks is the provision and maintenance of a common time knowledge. To stay true to the definition of molecular communication, biological oscillators are the potential solutions to achieve that goal as they generate oscillations through periodic fluctuations in the concentrations of molecules. Through the lens of a communication systems engineer, the scope of this survey is to explicitly classify, for the first time, existing biological oscillators based on whether they are found in nature or not, to discuss, in a tutorial fashion, the main principles that govern the oscillations in each oscillator, and to analyze oscillator parameters that are most relevant to communication engineer researchers. In addition, the survey highlights and addresses the key open research issues pertaining to several physical aspects of the oscillators and the adoption and implementation of the oscillators to nanonetworks. Moreover, key research directions are discussed. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

Back to TopTop