Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = biological material carrier for sustained drug

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7993 KiB  
Review
Mesoporous Materials Make Hydrogels More Powerful in Biomedicine
by Huangqin Chen, Xin Qiu, Tian Xia, Qing Li, Zhehan Wen, Bin Huang and Yuesheng Li
Gels 2023, 9(3), 207; https://doi.org/10.3390/gels9030207 - 9 Mar 2023
Cited by 19 | Viewed by 3432
Abstract
Scientists have been attempting to improve the properties of mesoporous materials and expand their application since the 1990s, and the combination with hydrogels, macromolecular biological materials, is one of the research focuses currently. Uniform mesoporous structure, high specific surface area, good biocompatibility, and [...] Read more.
Scientists have been attempting to improve the properties of mesoporous materials and expand their application since the 1990s, and the combination with hydrogels, macromolecular biological materials, is one of the research focuses currently. Uniform mesoporous structure, high specific surface area, good biocompatibility, and biodegradability make the combined use of mesoporous materials more suitable for the sustained release of loaded drugs than single hydrogels. As a joint result, they can achieve tumor targeting, tumor environment stimulation responsiveness, and multiple therapeutic platforms such as photothermal therapy and photodynamic therapy. Due to the photothermal conversion ability, mesoporous materials can significantly improve the antibacterial ability of hydrogels and offer a novel photocatalytic antibacterial mode. In bone repair systems, mesoporous materials remarkably strengthen the mineralization and mechanical properties of hydrogels, aside from being used as drug carriers to load and release various bioactivators to promote osteogenesis. In hemostasis, mesoporous materials greatly elevate the water absorption rate of hydrogels, enhance the mechanical strength of the blood clot, and dramatically shorten the bleeding time. As for wound healing and tissue regeneration, incorporating mesoporous materials can be promising for enhancing vessel formation and cell proliferation of hydrogels. In this paper, we introduce the classification and preparation methods of mesoporous material-loaded composite hydrogels and highlight the applications of composite hydrogels in drug delivery, tumor therapy, antibacterial treatment, osteogenesis, hemostasis, and wound healing. We also summarize the latest research progress and point out future research directions. After searching, no research reporting these contents was found. Full article
(This article belongs to the Special Issue Advance in Composite Gels (2nd Edition))
Show Figures

Figure 1

14 pages, 6446 KiB  
Article
Low Release Study of Cefotaxime by Functionalized Mesoporous Silica Nanomaterials
by Dan Eduard Mihaiescu, Daniela Istrati, Alina Moroșan, Maria Stanca, Bogdan Purcăreanu, Rodica Cristescu, Bogdan Ștefan Vasile and Roxana Doina Trușca
Gels 2022, 8(11), 711; https://doi.org/10.3390/gels8110711 - 3 Nov 2022
Cited by 6 | Viewed by 2259
Abstract
As a third-generation β-lactam antibiotic, cefotaxime shows a broad-spectrum with Gram-positive and Gram-negative bacteria activity and is included in WHO’s essential drug list. In order to obtain new materials with sustained release properties, the present research focuses on the study of cefotaxime absorption [...] Read more.
As a third-generation β-lactam antibiotic, cefotaxime shows a broad-spectrum with Gram-positive and Gram-negative bacteria activity and is included in WHO’s essential drug list. In order to obtain new materials with sustained release properties, the present research focuses on the study of cefotaxime absorption and desorption from different functionalized mesoporous silica supports. The MCM-41-type nanostructured mesoporous silica support was synthesized by sol–gel technique using a tetraethyl orthosilicate (TEOS) route and cetyltrimethylammonium bromide (CTAB) as a surfactant, at room temperature and normal pressure. The obtained mesoporous material (MCM-41 class) was characterized through nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), N2 absorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR), proving a good micro-structured homogeneity (SEM images), a high surface area (BET, 1029 m2/g) correlated with high silanolic activity (Q3/Q4 peak ratio from 29Si MAS-NMR), and an expected uniform hexagonal structure (2–3 nm, HRTEM). In order to non-destructively link the antibiotic compound on the solid phase, MCM-41 was further functionalized in two steps: with aminopropyl trimethoxysilane (APTMS) and glutaraldehyde (GA). Three cefotaxime-loaded materials were comparatively studied for low release capacity: the reference material with adsorbed cefotaxime on MCM-41, MCM-41/APS (aminopropyl silyl surface functionalization) adsorbed cefotaxime material, and APTMS–GA bounded MCM-41—cefotaxime material. The slow-release profiles were obtained by using an on-flow modified HPLC system. A significant improved release capacity was identified in the case of MCM-41/APS/GA—cefotaxime due to the covalent surface grafting of the biological active compound, recommending this class of materials as an effective carrier of bioactive compounds in wound dressing, anti-biofilm coatings, advanced drugs, and other related applications. Full article
Show Figures

Figure 1

14 pages, 4449 KiB  
Article
A Novel Gelatin-Based Sustained-Release Molluscicide for Control of the Invasive Agricultural Pest and Disease Vector Pomacea canaliculata
by Jie Wang, Yuntian Xing, Yang Dai, Yingnan Li, Wenyan Xiang, Jianrong Dai and Fei Xu
Molecules 2022, 27(13), 4268; https://doi.org/10.3390/molecules27134268 - 2 Jul 2022
Cited by 8 | Viewed by 2576
Abstract
Pomacea canaliculata, one of the 100 most destructive invasive species in the world, and it is an important intermediate host of Angiostrongylus cantonensis. The molluscicides in current use are an effective method for controlling snails. However, most molluscicides have no slow-release [...] Read more.
Pomacea canaliculata, one of the 100 most destructive invasive species in the world, and it is an important intermediate host of Angiostrongylus cantonensis. The molluscicides in current use are an effective method for controlling snails. However, most molluscicides have no slow-release effect and are toxic to nontarget organisms. Thus, these molluscicides cannot be used on a large scale to effectively act on snails. In this study, gelatin, a safe and nontoxic substance, was combined with sustained-release molluscicide and was found to reduce the toxicity of niclosamide to nontarget organisms. We assessed the effects of gelatin and molluscicide in controlling P. canaliculata snails and eggs. The results demonstrated that the niclosamide retention time with 1.0% and 1.5% gelatin sustained-release agents reached 20 days. Additionally, the mortality rate of P. canaliculata and their eggs increased as the concentration of the niclosamide sustained-release agents increased. The adult mortality rate of P. canaliculata reached 50% after the snails were exposed to gelatin with 0.1 mg/L niclosamide for 48 h. The hatching rate of P. canaliculata was only 28.5% of the normal group after the treatment was applied. The sustained-release molluscicide at this concentration was less toxic to zebrafish, which means that this molluscicide can increase the safety of niclosamide to control P. canaliculata in aquatic environments. In this study, we explored the safety of using niclosamide sustained-release agents with gelatin against P. canaliculata. The results suggest that gelatin is an ideal sustained-release agent that can provide a foundation for subsequent improvements in control of P. canaliculata. Full article
Show Figures

Figure 1

16 pages, 3434 KiB  
Article
Evaluation of Chitosan Derivatives Modified Mesoporous Silica Nanoparticles as Delivery Carrier
by Qi Li, Wenqian Wang, Gaowei Hu, Xianlan Cui, Dejun Sun, Zheng Jin and Kai Zhao
Molecules 2021, 26(9), 2490; https://doi.org/10.3390/molecules26092490 - 24 Apr 2021
Cited by 19 | Viewed by 4228
Abstract
Chitosan is a non-toxic biological material, but chitosan is insoluble in water, which hinders the development and utilization of chitosan. Chitosan derivatives N-2-Hydroxypropyl trimethyl ammonium chloride (N-2-HACC) and carboxymethyl chitosan (CMCS) with good water solubility were synthesized by our laboratory. [...] Read more.
Chitosan is a non-toxic biological material, but chitosan is insoluble in water, which hinders the development and utilization of chitosan. Chitosan derivatives N-2-Hydroxypropyl trimethyl ammonium chloride (N-2-HACC) and carboxymethyl chitosan (CMCS) with good water solubility were synthesized by our laboratory. In this study, we synthesized mesoporous SiO2 nanoparticles by the emulsion, and then the mesoporous SiO2 nanoparticles were modified with γ-aminopropyltriethoxysilane to synthesize aminated mesoporous SiO2 nanoparticles; CMCS and N-2-HACC was used to cross-link the aminated mesoporous SiO2 nanoparticles to construct SiO2@CMCS-N-2-HACC nanoparticles. Because the aminated mesoporous SiO2 nanoparticles with positively charged can react with the mucous membranes, the virus enters the body mainly through mucous membranes, so Newcastle disease virus (NDV) was selected as the model drug to evaluate the performance of the SiO2@CMCS-N-2-HACC nanoparticles. We prepared the SiO2@CMCS-N-2-HACC nanoparticles loaded with inactivated NDV (NDV/SiO2@CMCS-N-2-HACC). The SiO2@CMCS-N-2-HACC nanoparticles as delivery carrier had high loading capacity, low cytotoxicity, good acid resistance and bile resistance and enteric solubility, and the structure of NDV protein encapsulated in the nano vaccine was not destroyed. In addition, the SiO2@CMCS-N-2-HACC nanoparticles could sustain slowly released NDV. Therefore, the SiO2@CMCS-N-2-HACC nanoparticles have the potential to be served as delivery vehicle for vaccine and/or drug. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 3620 KiB  
Article
Mg,Si—Co-Substituted Hydroxyapatite/Alginate Composite Beads Loaded with Raloxifene for Potential Use in Bone Tissue Regeneration
by Katarzyna Szurkowska, Paulina Kazimierczak and Joanna Kolmas
Int. J. Mol. Sci. 2021, 22(6), 2933; https://doi.org/10.3390/ijms22062933 - 13 Mar 2021
Cited by 16 | Viewed by 3692
Abstract
Osteoporosis is a worldwide chronic disease characterized by increasing bone fragility and fracture likelihood. In the treatment of bone defects, materials based on calcium phosphates (CaPs) are used due to their high resemblance to bone mineral, their non-toxicity, and their affinity to ionic [...] Read more.
Osteoporosis is a worldwide chronic disease characterized by increasing bone fragility and fracture likelihood. In the treatment of bone defects, materials based on calcium phosphates (CaPs) are used due to their high resemblance to bone mineral, their non-toxicity, and their affinity to ionic modifications and increasing osteogenic properties. Moreover, CaPs, especially hydroxyapatite (HA), can be successfully used as a vehicle for local drug delivery. Therefore, the aim of this work was to fabricate hydroxyapatite-based composite beads for potential use as local carriers for raloxifene. HA powder, modified with magnesium and silicon ions (Mg,Si-HA) (both of which play beneficial roles in bone formation), was used to prepare composite beads. As an organic matrix, sodium alginate with chondroitin sulphate and/or keratin was applied. Cross-linking of beads containing raloxifene hydrochloride (RAL) was carried out with Mg ions in order to additionally increase the concentration of this element on the material surface. The morphology and porosity of three different types of beads obtained in this work were characterized by scanning electron microscopy (SEM) and mercury intrusion porosimetry, respectively. The Mg and Si released from the Mg,Si-HA powder and from the beads were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). In vitro RAL release profiles were investigated for 12 weeks and studied using UV/Vis spectroscopy. The beads were also subjected to in vitro biological tests on osteoblast and osteosarcoma cell lines. All the obtained beads revealed a spherical shape with a rough, porous surface. The beads based on chondroitin sulphate and keratin (CS/KER-RAL) with the lowest porosity resulted in the highest resistance to crushing. Results revealed that these beads possessed the most sustained drug release and no burst release effect. Based on the results, it was possible to select the optimal bead composition, consisting of a mixture of chondroitin sulphate and keratin. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

38 pages, 3626 KiB  
Review
Nanocellulose in Drug Delivery and Antimicrobially Active Materials
by Kaja Kupnik, Mateja Primožič, Vanja Kokol and Maja Leitgeb
Polymers 2020, 12(12), 2825; https://doi.org/10.3390/polym12122825 - 27 Nov 2020
Cited by 100 | Viewed by 9637
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting [...] Read more.
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity. Full article
(This article belongs to the Special Issue Polymers and Drug Delivery Systems)
Show Figures

Graphical abstract

15 pages, 3996 KiB  
Article
Molecularly Imprinting Polymers (MIP) Based on Nitrogen Doped Carbon Dots and MIL-101(Fe) for Doxorubicin Hydrochloride Delivery
by Yuqiong Shi, Yuxuan Wang, Jinhua Zhu, Wei Liu, Md. Zaved H. Khan and Xiuhua Liu
Nanomaterials 2020, 10(9), 1655; https://doi.org/10.3390/nano10091655 - 23 Aug 2020
Cited by 24 | Viewed by 4069
Abstract
MIL-based molecularly imprinted polymer (MIP) nanocomposites were successfully synthesized through a simple and versatile stirring auxiliary encapsulation method. MIP as a carrier has been applied to the highly efficient selective recognition and sustained release of doxorubicin hydrochloride (DOX). The adsorption mechanism and release [...] Read more.
MIL-based molecularly imprinted polymer (MIP) nanocomposites were successfully synthesized through a simple and versatile stirring auxiliary encapsulation method. MIP as a carrier has been applied to the highly efficient selective recognition and sustained release of doxorubicin hydrochloride (DOX). The adsorption mechanism and release behavior of MIP@DOX in vitro were also discussed. Adsorption studies showed that MIP using DOX as template had specific selectivity to DOX, and its optimal drug loading efficiency reached 97.99%. The adsorption isotherm accorded with Freundlich models. The cumulative release curve showed that at the conditions of pH 5.5 and 7.4, the nanomaterials have a slow-release effect on the release of DOX. In addition, the cytotoxicity and bioactivity of MIP nanoparticles on HepG2 and HL-7702 cell lines measured by MTT assay also proved their low toxicity and biological activity. The cell activity of HepG2 and HL-7702 incubated with MIP for 24 h was 69.9% and 76.07%, respectively. These results collectively illustrated that the MIP nano-materials synthesized in this study can be efficiently employed to the drug delivery systems. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

18 pages, 6859 KiB  
Article
Investigation of Metal-Organic Framework-5 (MOF-5) as an Antitumor Drug Oridonin Sustained Release Carrier
by Gongsen Chen, Juyuan Luo, Mengru Cai, Liuying Qin, Yibo Wang, Lili Gao, Pingqing Huang, Yingchao Yu, Yangming Ding, Xiaoxv Dong, Xingbin Yin and Jian Ni
Molecules 2019, 24(18), 3369; https://doi.org/10.3390/molecules24183369 - 16 Sep 2019
Cited by 102 | Viewed by 9346
Abstract
Oridonin (ORI) is a natural active ingredient with strong anticancer activity. But its clinical use is restricted due to its poor water solubility, short half-life, and low bioavailability. The aim of this study is to utilize the metal organic framework material MOF-5 to [...] Read more.
Oridonin (ORI) is a natural active ingredient with strong anticancer activity. But its clinical use is restricted due to its poor water solubility, short half-life, and low bioavailability. The aim of this study is to utilize the metal organic framework material MOF-5 to load ORI in order to improve its release characteristics and bioavailability. Herein, MOF-5 was synthesized by the solvothermal method and direct addition method, and characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), Thermogravimetric Analysis (TG), Brunauer–Emmett–Teller (BET), and Dynamic Light Scattering (DLS), respectively. MOF-5 prepared by the optimal synthesis method was selected for drug-loading and in vitro release experiments. HepG2 cells were model cells. MTT assay, 4′,6-diamidino-2-phenylindole (DAPI) staining and Annexin V/PI assay were used to detect the biological safety of blank carriers and the anticancer activity of drug-loaded materials. The results showed that nano-MOF-5 prepared by the direct addition method had complete structure, uniform size and good biocompatibility, and was suitable as an ORI carrier. The drug loading of ORI@MOF-5 was 52.86% ± 0.59%. The sustained release effect was reliable, and the cumulative release rate was about 87% in 60 h. ORI@MOF-5 had significant cytotoxicity (IC50:22.99 μg/mL) and apoptosis effect on HepG2 cells. ORI@MOF-5 is hopeful to become a new anticancer sustained release preparation. MOF-5 has significant potential as a drug carrier material. Full article
Show Figures

Figure 1

21 pages, 1854 KiB  
Review
A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers
by Faisal Raza, Hajra Zafar, Ying Zhu, Yuan Ren, Aftab -Ullah, Asif Ullah Khan, Xinyi He, Han Han, Md Aquib, Kofi Oti Boakye-Yiadom and Liang Ge
Pharmaceutics 2018, 10(1), 16; https://doi.org/10.3390/pharmaceutics10010016 - 18 Jan 2018
Cited by 111 | Viewed by 11059
Abstract
Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels [...] Read more.
Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today’s world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, “release mechanisms” their physical and chemical characteristics and diverse applications. Full article
(This article belongs to the Special Issue Protein Therapeutics)
Show Figures

Graphical abstract

25 pages, 4090 KiB  
Review
Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery
by Jayachandran Venkatesan, Sukumaran Anil, Se-Kwon Kim and Min Suk Shim
Polymers 2016, 8(2), 30; https://doi.org/10.3390/polym8020030 - 26 Jan 2016
Cited by 168 | Viewed by 20133
Abstract
In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, [...] Read more.
In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs) by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics). Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery. Full article
(This article belongs to the Collection Polysaccharides)
Show Figures

Graphical abstract

Back to TopTop