Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = biogenic gases emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 406 KiB  
Article
The Effect of Dietary Protein Restriction in Phase Feeding Systems on Nitrogen Metabolism and Excretion in Pig Production
by Wiesław Sobotka and Aleksandra Drażbo
Animals 2025, 15(11), 1521; https://doi.org/10.3390/ani15111521 - 23 May 2025
Viewed by 423
Abstract
In recent years, much attention has been paid to environmental protection, not only by reducing emissions of harmful gases from industry, but also by reducing the excretion of biogenic compounds or ammonia emissions from agriculture, including animal production. The aim of this study [...] Read more.
In recent years, much attention has been paid to environmental protection, not only by reducing emissions of harmful gases from industry, but also by reducing the excretion of biogenic compounds or ammonia emissions from agriculture, including animal production. The aim of this study was to determine the effects of complete diets with reduced inclusion levels of crude protein and limiting essential amino acids, fed to pigs in two- and three-phase feeding systems, and the feeding system on crude protein digestibility, nitrogen retention and utilization, fecal and urinary pH, fecal and urinary nitrogen and ammonia levels, and nitrogen excretion. Digestibility-balance trials were performed on 24 growing–finishing pigs housed in individual metabolism crates, in three groups, in two- and three-phase feeding systems. The pigs were fed the following diets: C-control diet; L-low-protein diet where the levels of crude protein and essential amino acids (lysine, methionine + cystine, threonine, and tryptophan) were reduced by 15% relative to diet C; L+AA-low-protein diet supplemented with crystalline lysine, methionine, threonine, and tryptophan to the standard levels (as in diet C). Diets L fed to pigs in two- and three-phase feeding systems significantly decreased crude protein digestibility and nitrogen retention, particularly in the three-phase system. The supplementation of diets L+AA with crystalline essential amino acids improved crude protein digestibility and nitrogen retention and utilization, especially in the two-phase system. Reduced concentrations of crude protein and essential amino acids in diets L contributed to a significant increase in feces and urine acidity in both two- and three-phase feeding systems. The supplementation of diets L+AA with essential amino acids resulted in a significant increase in urinary pH and a non-significant increase in fecal pH. This experimental factor had no effect on fecal ammonia concentration in group L+AA. The values of pH and total fecal nitrogen were somewhat higher in the two-phase system than in the three-phase system. Fecal ammonia concentration was similar in both systems. The three-phase feeding system contributed to a decrease in urinary pH and total urinary nitrogen. The analyzed feeding systems had no significant effect on urinary ammonia concentration. It was estimated that a reduction in crude protein (by 20–25 g/kg) and essential amino acid levels in pig diets, relative to the standard levels, reduced nitrogen excretion by 18.7% and 15.6% in two- and three-phase feeding systems, respectively. The supplementation of low-protein diets (L) with lysine, methionine, threonine, and tryptophan induced a further reduction in nitrogen excretion. A comparison of the effects of feeding systems (two-phase system vs. three-phase system) on crude protein digestibility and nitrogen retention and utilization revealed that better results were obtained in the two-phase feeding system. Full article
(This article belongs to the Section Animal Nutrition)
14 pages, 4223 KiB  
Article
Urban–Rural Comparisons of Biogenic Volatile Organic Compounds and Ground-Level Ozone in Beijing
by Peipei Guo, Yuebo Su, Xu Sun, Chengtang Liu, Bowen Cui, Xiangyu Xu, Zhiyun Ouyang and Xiaoke Wang
Forests 2024, 15(3), 508; https://doi.org/10.3390/f15030508 - 8 Mar 2024
Cited by 6 | Viewed by 2189
Abstract
Ground-level ozone (O3) pollution has been a severe environmental and health problem for decades. The importance of biogenic volatile organic compounds (BVOCs) in the formation of tropospheric photochemistry O3 has been highlighted, especially in areas of rapid urbanization. We conducted [...] Read more.
Ground-level ozone (O3) pollution has been a severe environmental and health problem for decades. The importance of biogenic volatile organic compounds (BVOCs) in the formation of tropospheric photochemistry O3 has been highlighted, especially in areas of rapid urbanization. We conducted simultaneous measurements of trace gases, including NO, NOX, O3, and BVOCs (i.e., isoprene and α-pinene), in the urban and rural forest areas of Beijing to determine the relationships between them. The results highlight the differences between the urban and rural forest areas of Beijing in terms of ambient air concentrations of BVOCs and O3, and the interrelationships between BVOCs, NOX, and ozone were quantified. Moreover, the isoprene concentration was found to be higher in the atmosphere of the urban site than of the rural site, which had higher α-pinene concentrations and higher O3 concentrations. The NOX concentration was higher at the urban site than at the rural site, and there was a significant exponential relationship between NOX and O3 at the urban site, indicating that the impact of NOx on O3 at the urban site was greater than that at the rural site. The O3 concentration increased with rising isoprene and α-pinene in both sites. In the case of substantially increased BVOC concentrations, declining NOX concentrations strongly promote the formation of O3. Consideration should be given to planting tree species with low-BVOC emissions, as they are crucial for mitigating O3 pollution in urban areas. Additionally, the relationships between BVOCs, NOX, and O3 should be considered in policymaking related to O3 control. Full article
(This article belongs to the Special Issue Advances in Plant VOCs and Their Ecological Functions)
Show Figures

Figure 1

23 pages, 5510 KiB  
Article
Comparative Exergy and Environmental Assessment of the Residual Biomass Gasification Routes for Hydrogen and Ammonia Production
by Gabriel Gomes Vargas, Daniel Alexander Flórez-Orrego and Silvio de Oliveira Junior
Entropy 2023, 25(7), 1098; https://doi.org/10.3390/e25071098 - 22 Jul 2023
Cited by 8 | Viewed by 3449
Abstract
The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition, due to a growing population, the treatment and disposition of residual biomass from agricultural processes, such as sugar cane [...] Read more.
The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition, due to a growing population, the treatment and disposition of residual biomass from agricultural processes, such as sugar cane and orange bagasse, or even from human waste, such as sewage sludge, will be a challenge for the next generation. These residual biomasses can be an attractive alternative for the production of environmentally friendly fuels and make the economy more circular and efficient. However, these raw materials have been hitherto widely used as fuel for boilers or disposed of in sanitary landfills, losing their capacity to generate other by-products in addition to contributing to the emissions of gases that promote global warming. For this reason, this work analyzes and optimizes the biomass-based routes of biochemical production (namely, hydrogen and ammonia) using the gasification of residual biomasses. Moreover, the capture of biogenic CO2 aims to reduce the environmental burden, leading to negative emissions in the overall energy system. In this context, the chemical plants were designed, modeled, and simulated using Aspen plus™ software. The energy integration and optimization were performed using the OSMOSE Lua Platform. The exergy destruction, exergy efficiency, and general balance of the CO2 emissions were evaluated. As a result, the irreversibility generated by the gasification unit has a relevant influence on the exergy efficiency of the entire plant. On the other hand, an overall negative emission balance of −5.95 kgCO2/kgH2 in the hydrogen production route and −1.615 kgCO2/kgNH3 in the ammonia production route can be achieved, thus removing from the atmosphere 0.901 tCO2/tbiomass and 1.096 tCO2/tbiomass, respectively. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Industrial Energy Systems)
Show Figures

Figure 1

29 pages, 12577 KiB  
Review
The Fuel Flexibility of Gas Turbines: A Review and Retrospective Outlook
by Michel Molière
Energies 2023, 16(9), 3962; https://doi.org/10.3390/en16093962 - 8 May 2023
Cited by 23 | Viewed by 9368
Abstract
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure, temperature, and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space [...] Read more.
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure, temperature, and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular, as heavy-duty gas turbines have moderate compression ratios and ample stall margins, they can burn not only high- and medium-BTU fuels but also low-BTU ones. As a result, these machines have gained remarkable fuel flexibility. Dry Low Emissions combustors, which were initially confined to burning standard natural gas, have been gradually adapted to an increasing number of alternative gaseous fuels. The paper first delivers essential technical considerations that underlie this important fuel portfolio. It then reviews the spectrum of alternative GT fuels which currently extends from lean gases (coal bed, coke oven, blast furnace gases…) to rich refinery streams (LPG, olefins) and from volatile liquids (naphtha) to heavy hydrocarbons. This “fuel diet” also includes biogenic products (biogas, biodiesel, and ethanol) and especially blended and pure hydrogen, the fuel of the future. The paper also outlines how, historically, land-based GTs have gradually gained new fuel territories thanks to continuous engineering work, lab testing, experience extrapolation, and validation on the field. Full article
(This article belongs to the Topic Evolution of Land-Based Gas Turbines)
Show Figures

Figure 1

20 pages, 1197 KiB  
Review
Microorganisms as New Sources of Energy
by Jasminka Talapko, Domagoj Talapko, Anita Matić and Ivana Škrlec
Energies 2022, 15(17), 6365; https://doi.org/10.3390/en15176365 - 31 Aug 2022
Cited by 7 | Viewed by 11962
Abstract
The use of fossil energy sources has a negative impact on the economic and socio-political stability of specific regions and countries, causing environmental changes due to the emission of greenhouse gases. Moreover, the stocks of mineral energy are limited, causing the demand for [...] Read more.
The use of fossil energy sources has a negative impact on the economic and socio-political stability of specific regions and countries, causing environmental changes due to the emission of greenhouse gases. Moreover, the stocks of mineral energy are limited, causing the demand for new types and forms of energy. Biomass is a renewable energy source and represents an alternative to fossil energy sources. Microorganisms produce energy from the substrate and biomass, i.e., from substances in the microenvironment, to maintain their metabolism and life. However, specialized microorganisms also produce specific metabolites under almost abiotic circumstances that often do not have the immediate task of sustaining their own lives. This paper presents the action of biogenic and biogenic–thermogenic microorganisms, which produce methane, alcohols, lipids, triglycerides, and hydrogen, thus often creating renewable energy from waste biomass. Furthermore, some microorganisms acquire new or improved properties through genetic interventions for producing significant amounts of energy. In this way, they clean the environment and can consume greenhouse gases. Particularly suitable are blue-green algae or cyanobacteria but also some otherwise pathogenic microorganisms (E. coli, Klebsiella, and others), as well as many other specialized microorganisms that show an incredible ability to adapt. Microorganisms can change the current paradigm, energy–environment, and open up countless opportunities for producing new energy sources, especially hydrogen, which is an ideal energy source for all systems (biological, physical, technological). Developing such energy production technologies can significantly change the already achieved critical level of greenhouse gases that significantly affect the climate. Full article
(This article belongs to the Special Issue Sustainable Production and Environmentally Responsible Consumption)
Show Figures

Graphical abstract

19 pages, 4607 KiB  
Article
Seasonal Investigation of MAX-DOAS and In Situ Measurements of Aerosols and Trace Gases over Suburban Site of Megacity Shanghai, China
by Aimon Tanvir, Muhammad Bilal, Sanbao Zhang, Osama Sandhu, Ruibin Xue, Md. Arfan Ali, Jian Zhu, Zhongfeng Qiu, Shanshan Wang and Bin Zhou
Remote Sens. 2022, 14(15), 3676; https://doi.org/10.3390/rs14153676 - 1 Aug 2022
Cited by 4 | Viewed by 3831
Abstract
Shanghai has gained much attention in terms of air quality research owing to its importance to economic capital and its huge population. This study utilizes ground-based remote sensing instrument observations, namely by Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), and in situ measurements [...] Read more.
Shanghai has gained much attention in terms of air quality research owing to its importance to economic capital and its huge population. This study utilizes ground-based remote sensing instrument observations, namely by Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), and in situ measurements from the national air quality monitoring platform for various atmospheric trace gases including Nitrogen dioxide (NO2), Sulfur dioxide (SO2), Ozone (O3), Formaldehyde (HCHO), and Particulate Matter (PM; PM10: diameter ≤ 10 µm, and PM2.5: diameter ≤ 2.5 µm) over Shanghai from June 2020 to May 2021. The results depict definite diurnal patterns and strong seasonality in HCHO, NO2, and SO2 concentrations with maximum concentrations during winter for NO2 and SO2 and in summer for HCHO. The impact of meteorology and biogenic emissions on pollutant concentrations was also studied. HCHO emissions are positively correlated with temperature, relative humidity, and the enhanced vegetation index (EVI), while both NO2 and SO2 depicted a negative correlation to all these parameters. The results from diurnal to seasonal cycles consistently suggest the mainly anthropogenic origin of NO2 and SO2, while the secondary formation from the photo-oxidation of volatile organic compounds (VOCs) and substantial contribution of biogenic emissions for HCHO. Further, the sensitivity of O3 formation to its precursor species (NOx and VOCs) was also determined by employing HCHO and NO2 as tracers. The sensitivity analysis depicted that O3 formation in Shanghai is predominantly VOC-limited except for summer, where a significant percentage of O3 formation lies in the transition regime. It is worth mentioning that seasonal variation of O3 is also categorized by maxima in summer. The interdependence of criteria pollutants (O3, SO2, NO2, and PM) was studied by employing the Pearson’s correlation coefficient, and the results suggested complex interdependence among the pollutant species in different seasons. Lastly, potential source contribution function (PSCF) analysis was performed to have an understanding of the contribution of different source areas towards atmospheric pollution. PSCF analysis indicated a strong contribution of local sources on Shanghai’s air quality compared to regional sources. This study will help policymakers and stakeholders understand the complex interactions among the atmospheric pollutants and provide a baseline for designing effective control strategies to combat air pollution in Shanghai. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosols and Gases in Cities II)
Show Figures

Figure 1

5 pages, 211 KiB  
Editorial
Recent Trends in Biogenic Gas, Waste and Wastewater Fermentation
by Eldon R. Rene, María C. Veiga and Christian Kennes
Fermentation 2022, 8(8), 347; https://doi.org/10.3390/fermentation8080347 - 23 Jul 2022
Cited by 3 | Viewed by 2170
Abstract
In recent years, the optimization of bioprocesses for the removal of pollutants from industrial biogenic gas emissions, waste and wastewater has been the focus of intensive research. Recently developed technologies not only aim to remove such pollutants, but also to valorize them, whenever [...] Read more.
In recent years, the optimization of bioprocesses for the removal of pollutants from industrial biogenic gas emissions, waste and wastewater has been the focus of intensive research. Recently developed technologies not only aim to remove such pollutants, but also to valorize them, whenever possible, through their bioconversion into useful added-value products. In this domain of progressive research, lab-, pilot-, and demonstration-scale studies are dealing with the fermentation of biogenic gases (e.g., CO2, CO, and CH4), waste or wastewater to produce a range of biofuels and valuable products, based on the activity of pure or mixed cultures of native or recombinant aerobic and anaerobic bacteria, algae, or yeasts as biocatalysts. Waste can also be converted to syngas, which can subsequently be fermented as well. A broad range of bioproducts can be obtained, e.g., biofuels and several other platform chemicals and products. This environmentally-friendly biorefinery approach addresses the need to build modern societies according to the concept of a circular economy, and yields products of commercial interest. Different examples of such approaches are described in this collection of scientific reports. Full article
(This article belongs to the Special Issue Recent Trends in Biogenic Gas, Waste and Wastewater Fermentation)
19 pages, 9308 KiB  
Article
A Modeling Approach for Quantifying Human-Beneficial Terpene Emission in the Forest: A Pilot Study Applying to a Recreational Forest in South Korea
by Kwanghun Choi, Dongwook W. Ko, Ki Weon Kim and Man Yong Shin
Int. J. Environ. Res. Public Health 2022, 19(14), 8278; https://doi.org/10.3390/ijerph19148278 - 6 Jul 2022
Cited by 4 | Viewed by 2035
Abstract
(1) Background: Recent economic developments in South Korea have shifted people’s interest in forests from provisioning to cultural services such as forest healing. Although policymakers have attempted to designate more forests for healing purposes, there are few established standards for carrying out such [...] Read more.
(1) Background: Recent economic developments in South Korea have shifted people’s interest in forests from provisioning to cultural services such as forest healing. Although policymakers have attempted to designate more forests for healing purposes, there are few established standards for carrying out such designations based on the quantified estimation. (2) Methods: We suggest a modeling approach to estimate and analyze the emission rate of human-beneficial terpenes. For this purpose, we adopted and modified the Model of Emissions of Gases and Aerosols from Nature (MEGAN), a commonly used biogenic volatile organic compounds (BVOCs) estimation model which was suitable for estimating the study site’s terpene emissions. We estimated the terpene emission rate for the whole year and analyzed the diurnal and seasonal patterns. (3) Results: The results from our model correspond well with other studies upon comparing temporal patterns and ranges of values. According to our study, the emission rate of terpenes varies significantly temporally and spatially. The model effectively predicted spatiotemporal patterns of terpene emission in the study site. (4) Conclusions: The modeling approach in our study is suitable for quantifying human-beneficial terpene emission and helping policymakers and forest managers plan the efficient therapeutic use of forests. Full article
(This article belongs to the Special Issue 2nd Edition of Forest for Human Health and Welfare)
Show Figures

Figure 1

23 pages, 3069 KiB  
Article
Impact of Drought on Isoprene Fluxes Assessed Using Field Data, Satellite-Based GLEAM Soil Moisture and HCHO Observations from OMI
by Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Diego G. Miralles, Akash Koppa, Brianna Rita Pagán, Mark J. Potosnak, Roger Seco, Isabelle De Smedt and Alex B. Guenther
Remote Sens. 2022, 14(9), 2021; https://doi.org/10.3390/rs14092021 - 22 Apr 2022
Cited by 11 | Viewed by 4004
Abstract
Biogenic volatile organic compounds (BVOCs), primarily emitted by terrestrial vegetation, are highly reactive and have large effects on the oxidizing potential of the troposphere, air quality and climate. In terms of global emissions, isoprene is the most important BVOC. Droughts bring about changes [...] Read more.
Biogenic volatile organic compounds (BVOCs), primarily emitted by terrestrial vegetation, are highly reactive and have large effects on the oxidizing potential of the troposphere, air quality and climate. In terms of global emissions, isoprene is the most important BVOC. Droughts bring about changes in the surface emission of biogenic hydrocarbons mainly because plants suffer water stress. Past studies report that the current parameterization in the state-of-the-art Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1, which is a function of the soil water content and the permanent wilting point, fails at representing the strong reduction in isoprene emissions observed in field measurements conducted during a severe drought. Since the current algorithm was originally developed based on potted plants, in this study, we update the parameterization in the light of recent ecosystem-scale measurements of isoprene conducted during natural droughts in the central U.S. at the Missouri Ozarks AmeriFlux (MOFLUX) site. The updated parameterization results in stronger reductions in isoprene emissions. Evaluation using satellite formaldehyde (HCHO), a proxy for BVOC emissions, and a chemical-transport model, shows that the adjusted parameterization provides a better agreement between the modelled and observed HCHO temporal variability at local and regional scales in 2011–2012, even if it worsens the model agreement in a global, long-term evaluation. We discuss the limitations of the current parameterization, a function of highly uncertain soil properties such as porosity. Full article
(This article belongs to the Special Issue Innovative Belgian Earth Observation Research for the Environment)
Show Figures

Figure 1

22 pages, 12142 KiB  
Article
Simulation of Isoprene Emission with Satellite Microwave Emissivity Difference Vegetation Index as Water Stress Factor in Southeastern China during 2008
by Yuxiang Zhang, Jiheng Hu, Dasa Gu, Haixu Bo, Yuyun Fu, Yipu Wang and Rui Li
Remote Sens. 2022, 14(7), 1740; https://doi.org/10.3390/rs14071740 - 4 Apr 2022
Cited by 4 | Viewed by 3267
Abstract
Isoprene is one of the most important biogenic volatile organic compounds (BVOCs) emitted by vegetation. The biogenic isoprene emissions are widely estimated by the Model of Emission of Gases and Aerosols from Nature (MEGAN) considering different environmental stresses. The response of isoprene emission [...] Read more.
Isoprene is one of the most important biogenic volatile organic compounds (BVOCs) emitted by vegetation. The biogenic isoprene emissions are widely estimated by the Model of Emission of Gases and Aerosols from Nature (MEGAN) considering different environmental stresses. The response of isoprene emission to the water stress is usually parameterized using soil moisture in previous studies. In this study, we designed a new parameterization scheme of water stress in MEGAN as a function of a novel, satellite, passive microwave-based vegetation index, Emissivity Difference Vegetation Index (EDVI), which indicates the vegetation inner water content. The isoprene emission rates in southeastern China were simulated with different water stress indicators including soil moisture, EDVI, Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Then the simulated isoprene emission rates were compared to associated satellite top-down estimations. The results showed that in southeastern China, the spatiotemporal correlations between those simulations and top-down retrieval are all high with different biases. The simulated isoprene emission rates with EDVI-based water stress factor are most consistent with top-down estimation with higher temporal correlation, lower bias and lower RMSE, while soil moisture alters the emission rates little, and optical vegetation indices (NDVI and EVI) slightly increase the correlation with top-down. The temporal correlation coefficients are increased after applied with EDVI water stress factor in most areas; especially in the Yunnan-Guizhou Plateau and Yangtze River Delta (>0.12). Overall, higher consistency of simulation and top-down estimation is shown when EDVI is applied, which indicates the possibility of estimating the effect of vegetation water stress on biogenic isoprene emission using microwave observations. Full article
Show Figures

Figure 1

14 pages, 3351 KiB  
Article
Carbon Isotopic Evidence for Gas Hydrate Release and Its Significance on Seasonal Wetland Methane Emission in the Muli Permafrost of the Qinghai-Tibet Plateau
by Xiaoqian Li, Jianwei Xing, Shouji Pang, Youhai Zhu, Shuai Zhang, Rui Xiao and Cheng Lu
Int. J. Environ. Res. Public Health 2022, 19(4), 2437; https://doi.org/10.3390/ijerph19042437 - 20 Feb 2022
Cited by 2 | Viewed by 2424
Abstract
In order to determine the significant role of gas hydrate in seasonal wetland methane emission at the drilling-affected permafrost, the carbon isotopic monthly field monitoring of methane (CH4), as well as carbon dioxide (CO2), emitted from near-surface soil and [...] Read more.
In order to determine the significant role of gas hydrate in seasonal wetland methane emission at the drilling-affected permafrost, the carbon isotopic monthly field monitoring of methane (CH4), as well as carbon dioxide (CO2), emitted from near-surface soil and a gas hydrate drilling well (DK-8) was conducted in the Muli permafrost of the Qinghai-Tibet Plateau. The methane source effused from the well DK-8 was calculated as −25.9 ± 1.4‰ and −26.5 ± 0.5‰, respectively, by the Keeling and Miller Tans plots, with the carbon isotope fractionation (εC) between CO2 and CH4 from −25.3‰ to −32.1‰. The carbon isotopic signatures are indicative of thermogenic origin associated with gas hydrate dissociation. The near-surface soil-emitted methane has δ13CCH4 values between −52.0 ± 1.2‰ and −43.2 ± 1.8‰ with the heaviest in December and the lightest in July. Further, the εC values of near-surface soil-emitted gases were between 28.6‰ and 47.9‰, significantly correlated with the δ13CCH4 values. The linear correlation between εC and δ13CCH4 values indicated binary end-member of microbial and thermogenic sources control the seasonal variation of wetland methane emission. The thermogenically derived methane was identified as the dominant methane source in autumn and winter, compared with the increasing contribution of microbially derived methane in spring and summer. The finding provides reliable evidence for gas hydrate release on the seasonal wetland methane emission in the Muli permafrost affected by drilling activities. The combined application of εC and δ13CCH4 to distinguish thermogenic from biogenic methane is well established and powerful in complex environments, which can provide an improved constraint on source apportionment for wetland emitted methane in the permafrost of the Qinghai-Tibet Plateau. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

10 pages, 1066 KiB  
Article
Leaf Fluxes of Carbon Dioxide, Methane and Biogenic Volatile Organic Compounds of the Urban Trees Platanus × acerifolia and Schinus molle in Santiago, Chile
by Iván Farías, Margarita Préndez and Horacio E. Bown
Atmosphere 2022, 13(2), 298; https://doi.org/10.3390/atmos13020298 - 10 Feb 2022
Cited by 4 | Viewed by 2744
Abstract
This study assessed leaf fluxes of CO2, CH4 and biogenic volatile organic compounds (BVOC) for two common urban tree species, Platanus × acerifolia (exotic) and Schinus molle (native), widely distributed in Santiago, Chile. The emission factors (EF) and the Photochemical [...] Read more.
This study assessed leaf fluxes of CO2, CH4 and biogenic volatile organic compounds (BVOC) for two common urban tree species, Platanus × acerifolia (exotic) and Schinus molle (native), widely distributed in Santiago, Chile. The emission factors (EF) and the Photochemical Ozone Creation Index (POCI) for S. molle and P. × acerifolia were estimated. The global EF was 6.4 times higher for P. × acerifolia compared with S. molle, with similar rates of photosynthesis for both species. Isoprene represented more than 86% of the total BVOCs leaf fluxes being 7.6 times greater for P. × acerifolia than S. molle. For P. × acerifolia, BVOCs represented 2% of total carbon fixation while representing 0.24% for S. molle. These results may suggest that plant species growing outside their ecological range may exhibit greater BVOCs leaf fluxes, proportional to photosynthesis, compared to well-adapted ones. The results found may contribute to better urban forest planning. Full article
(This article belongs to the Special Issue VOC Sensing and Measurements)
Show Figures

Graphical abstract

14 pages, 1079 KiB  
Article
Interannual Variability of Atmospheric CH4 and Its Driver Over South Korea Captured by Integrated Data in 2019
by Samuel Takele Kenea, Haeyoung Lee, Sangwon Joo, Shanlan Li, Lev D. Labzovskii, Chu-Yong Chung and Yeon-Hee Kim
Remote Sens. 2021, 13(12), 2266; https://doi.org/10.3390/rs13122266 - 9 Jun 2021
Cited by 12 | Viewed by 3101
Abstract
Understanding the temporal variability of atmospheric methane (CH4) and its potential drivers can advance the progress toward mitigating changes to the climate. To comprehend interannual variability and spatial characteristics of anomalous CH4 mole fractions and its drivers, we used integrated [...] Read more.
Understanding the temporal variability of atmospheric methane (CH4) and its potential drivers can advance the progress toward mitigating changes to the climate. To comprehend interannual variability and spatial characteristics of anomalous CH4 mole fractions and its drivers, we used integrated data from different platforms such as in situ measurements and satellites (TROPOspheric Monitoring Instrument (TROPOMI) and Greenhouse Gases Observing SATellite (GOSAT)) retrievals. A pronounced change of annual growth rate was detected at Anmyeondo (AMY), Republic of Korea, ranging from −16.8 to 31.3 ppb yr−1 as captured in situ through 2015–2020 and 3.9 to 16.4 ppb yr−1 detected by GOSAT through 2014–2019, respectively. High growth rates were discerned in 2016 (31.3 ppb yr−1 and 13.4 ppb yr−1 from in situ and GOSAT, respectively) and 2019 (27.4 ppb yr−1 and 16.4 ppb yr−1 from in situ and GOSAT, respectively). The high growth in 2016 was essentially explained by the strong El Niño event in 2015–2016, whereas the large growth rate in 2019 was not related to ENSO. We suggest that the growth rate that appeared in 2019 was related to soil temperature according to the Noah Land Surface Model. The stable isotopic composition of 13C/12C in CH4 (δ13-CH4) collected by flask-air sampling at AMY during 2014–2019 supported the soil methane hypothesis. The intercept of the Keeling plot for summer and autumn were found to be −53.3‰ and −52.9‰, respectively, which suggested isotopic signature of biogenic emissions. The isotopic values in 2019 exhibited the strongest depletion compared to other periods, which suggests even a stronger biogenic signal. Such changes in the biogenic signal were affected by the variations of soil temperature and soil moisture. We looked more closely at the variability of XCH4 and the relationship with soil properties. The result indicated a spatial distribution of interannual variability, as well as the captured elevated anomaly over the southwest of the domain in autumn 2019, up to 70 ppb, which was largely explained by the combined effect of soil temperature and soil moisture changes, indicating a pixel-wise correlation of XCH4 anomaly with those parameters in the range of 0.5–0.8 with a statistical significance (p < 0.05). This implies that the soil-associated drivers are able to exert a large-scale influence on the regional distribution of CH4 in Korea. Full article
(This article belongs to the Special Issue Remote Sensing for Greenhouse Gases from Natural Sources)
Show Figures

Figure 1

26 pages, 3020 KiB  
Article
O3 Concentration and Its Relation with BVOC Emissions in a Subtropical Plantation
by Jianhui Bai
Atmosphere 2021, 12(6), 711; https://doi.org/10.3390/atmos12060711 - 31 May 2021
Cited by 11 | Viewed by 3832
Abstract
An empirical model of O3 is developed using the measurements of emissions of biogenic volatile organic compounds (BVOCs), O3 concentration, global solar radiation, photosynthetically active radiation (PAR) and meteorological variables in a subtropical Pinus plantation, China, during 2013–2016. In view of [...] Read more.
An empirical model of O3 is developed using the measurements of emissions of biogenic volatile organic compounds (BVOCs), O3 concentration, global solar radiation, photosynthetically active radiation (PAR) and meteorological variables in a subtropical Pinus plantation, China, during 2013–2016. In view of the different structures of isoprene and monoterpenes, two empirical models of O3 concentration are developed, considering PAR absorption and scattering due to gases, liquids and particles (GLPs), as well as PAR attenuation caused by O3 and BVOCs. The estimated O3 is in agreement with the observations, and validation of the O3 empirical model is conducted. O3 concentrations are more sensitive to changes in PAR and water vapor than S/Q (horizontal diffuse to global solar radiation) and BVOC emissions. O3 is positive to changes in isoprene emission at low light and high GLPs, or negative at high light and low GLPs; O3 is negative to changes in monoterpene emissions. O3 are positive with the changes of PAR, water vapor and S/Q. It is suggested to control human-induced high BVOC emissions, regulate plant cutting, and reduce NOx and SO2 emissions more strictly than ever before. There are inverted U-shape interactions between O3 and its driving factors, and S/Q controls their turning points. Full article
(This article belongs to the Special Issue Theoretical Chemistry of Atmospheric Processes)
Show Figures

Figure 1

32 pages, 45787 KiB  
Article
Sub-Daily Natural CO2 Flux Simulation Based on Satellite Data: Diurnal and Seasonal Pattern Comparisons to Anthropogenic CO2 Emissions in the Greater Tokyo Area
by Qiao Wang, Ryoichi Imasu, Yutaka Arai, Satoshi Ito, Yasuko Mizoguchi, Hiroaki Kondo and Jingfeng Xiao
Remote Sens. 2021, 13(11), 2037; https://doi.org/10.3390/rs13112037 - 21 May 2021
Cited by 7 | Viewed by 4919
Abstract
During the last decade, advances in the remote sensing of greenhouse gas (GHG) concentrations by the Greenhouse Gases Observing SATellite-1 (GOSAT-1), GOSAT-2, and Orbiting Carbon Observatory-2 (OCO-2) have produced finer-resolution atmospheric carbon dioxide (CO2) datasets. These data are applicable for a [...] Read more.
During the last decade, advances in the remote sensing of greenhouse gas (GHG) concentrations by the Greenhouse Gases Observing SATellite-1 (GOSAT-1), GOSAT-2, and Orbiting Carbon Observatory-2 (OCO-2) have produced finer-resolution atmospheric carbon dioxide (CO2) datasets. These data are applicable for a top-down approach towards the verification of anthropogenic CO2 emissions from megacities and updating of the inventory. However, great uncertainties regarding natural CO2 flux estimates remain when back-casting CO2 emissions from concentration data, making accurate disaggregation of urban CO2 sources difficult. For this study, we used Moderate Resolution Imaging Spectroradiometer (MODIS) land products, meso-scale meteorological data, SoilGrids250 m soil profile data, and sub-daily soil moisture datasets to calculate hourly photosynthetic CO2 uptake and biogenic CO2 emissions with 500 m resolution for the Kantō Plain, Japan, at the center of which is the Tokyo metropolis. Our hourly integrated modeling results obtained for the period 2010–2018 suggest that, collectively, the vegetated land within the Greater Tokyo Area served as a daytime carbon sink year-round, where the hourly integrated net atmospheric CO2 removal was up to 14.15 ± 4.24% of hourly integrated anthropogenic emissions in winter and up to 55.42 ± 10.39% in summer. At night, plants and soil in the Greater Tokyo Area were natural carbon sources, with hourly integrated biogenic CO2 emissions equivalent to 2.27 ± 0.11%–4.97 ± 1.17% of the anthropogenic emissions in winter and 13.71 ± 2.44%–23.62 ± 3.13% in summer. Between January and July, the hourly integrated biogenic CO2 emissions of the Greater Tokyo Area increased sixfold, whereas the amplitude of the midday hourly integrated photosynthetic CO2 uptake was enhanced by nearly five times and could offset up to 79.04 ± 12.31% of the hourly integrated anthropogenic CO2 emissions in summer. The gridded hourly photosynthetic CO2 uptake and biogenic respiration estimates not only provide reference data for the estimation of total natural CO2 removal in our study area, but also supply prior input values for the disaggregation of anthropogenic CO2 emissions and biogenic CO2 fluxes when applying top-down approaches to update the megacity’s CO2 emissions inventory. The latter contribution allows unprecedented amounts of GOSAT and ground measurement data regarding CO2 concentration to be analyzed in inverse modeling of anthropogenic CO2 emissions from Tokyo and the Kantō Plain. Full article
Show Figures

Graphical abstract

Back to TopTop