The Effect of Dietary Protein Restriction in Phase Feeding Systems on Nitrogen Metabolism and Excretion in Pig Production
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Protocols in Digestibility-Balance Trials
2.2. Selected Serum Biochemical Parameters
2.3. Environmental Impact of Diets Fed to Pigs in Two- and Three-Phase Feeding Systems
2.4. Chemical Analyses
2.5. Statistical Analysis
3. Results
3.1. Crude Protein Digestibility, and Nitrogen Retention and Utilization
3.2. Feces and Urine Characteristics
3.3. Fecal and Urinary Nitrogen Excretion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; CEMA; Towards a New Strategic Agenda for the Common Agricultural Policy (CAP) after 2020; CEMA’s contribution to the Mid-term Review of the CAP; Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- EPRS. Precision Agriculture and the Future of Farming in Europe Scientific Foresight. Study. 2016. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2016/581892/EPRS_STU(2016)581892_EN.pdf (accessed on 10 January 2025).
- EUROSTA. Agricultural Production—Livestock and Meat. 2017. Available online: https://ec.europa.eu/eurostat/statistics-explained/ (accessed on 10 January 2025.).
- Walczak, J. Precyzyjny chów zwierząt a środowisko naturalne. Przegląd Hod. 2019, 5, 1–6. [Google Scholar]
- Sobotka, W.; Drażbo, A. Environmental impacts of diets containing different levels of crude protein and limiting amino acids fed to pigs in a phase feeding system. J. Elem. 2020, 25, 645–655. [Google Scholar] [CrossRef]
- Bednarek, A.; Szklarek, S.; Zalewski, M. Nitrogen pollution removal from areas of intensive farming—Comparison of various denitrification biotechnologies. Ecohydrol. Hydrobiol. 2014, 14, 132–141. [Google Scholar] [CrossRef]
- Kaleem Abbasi, M.; Khaliq, A. Nitrogen mineralization of a loam soil supplemented with organic-inorganic amendments under laboratory incubation. Front. Plant Sci. 2016, 7, 1038. [Google Scholar] [CrossRef]
- Gaj, R. Gospodarowanie Obornikiem, Gnojówką i Gnojowicą. Jej Przechowywanie i Stosowanie BAT. W: Ograniczenie Zanieczyszczenia Azotem Pochodzenia Rolniczego Metodą Poprawy Jakości Wód; Red. Walczak J Copyright by Fundacja na rzecz Rozwoju Polskiego Rolnictwa (FDPA): Warszawa, Poland, 2018; pp. 109–117. ISBN 978-83-952011-0-3.120s. [Google Scholar]
- Bobrecka-Jamro, D.; Janowska-Miąsik, E. Environmental gas pollution from agriculture and strategies to reduce it. Fragm. Agron. 2014, 31, 30–40. [Google Scholar]
- Smurzyńska, A.; Dach, J.; Dworecki, Z.; Czekała, W. Emisje gazowe podczas gospodarki gnojowicą. Inż. Ochrona Środ. 2016, 19, 109–125. [Google Scholar] [CrossRef]
- Oenema, O.; Velthof, G.; Klimont, Z.; Winiwarter, W. Emissions from Agriculture and Their Control Potentials; TSAP Report #3 Version, 2.1; Amann, M., Ed.; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2012; pp. 1–45. [Google Scholar]
- United Nations Economic Commission for Europe (UNECE). Framework Code for Good Agricultural Practice for Reducing Ammonia Emissions; Document nr ECE/EB.AIR/129; UNECE: Geneva, Switzerland, 2015. [Google Scholar]
- Le Dinh, P.; Aarnink, A. Nutritional Strategies to Reduce Emissions from Waste in Pig production. In Achieving Sustainable Production of Pig Meat; Mathew, A., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 227–242. ISBN 978 1 78676 0883. [Google Scholar]
- Hayes, E.T.; Leek, A.B.G.; Currant, T.P.; Dodd, V.A.; Carton, O.T.; Beattie, V.E.; O’Doherty, J.V. The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresour. Technol. 2024, 91, 309–315. [Google Scholar] [CrossRef]
- Reidy, B.; Webb, J.; Misselbrook, T.H.; Menzi, H.; Luesink, H.H.; Hutchings, N.J.; Eurich-Menden, B.; Doher, H.; Dammgen, U. Comparison of models used for national agricultural ammonia emission inventories in Europe: Litter-based manure systems. Atmos. Environ. 2009, 43, 1632–1640. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). European Union Emission Inventory, Report 1990–2021 under the UNECE Convention on Long-Range Transboundary Air Pollution; European Environment Agency: Copenhagen, Denmark, 2022. [Google Scholar]
- Zhang, Z.; Liu, D.; Qiao, Y.; Li, S.; Chen, Y.; Hu, C. Mitigation of carbon and nitrogen losses during pig manure composting: A meta-analysis. Sci. Total Environ. 2021, 783, 147103. [Google Scholar] [CrossRef]
- Nascimento, D.B.D.; Lopes, M.L.S.; Izidro, J.L.P.S.; Bezerra, R.C.A.; Gois, G.C.; Amaral, T.N.E.D.; Dias, W.D.S.; Barros, M.M.L.D.; Oliveira, A.R.D.S.; Farias, J.L.D.; et al. Nitrogen, phosphorus, and potassium cycling in pasture ecosystems. Braz. Anim. Sci. 2024, 25. [Google Scholar] [CrossRef]
- Al Rharad, A.; El Aayadi, S.; Avril, C.; Souradjou, A.; Sow, F.; Camara, Y.; Hornick, J.L.; Boukrouh, S. Meta-Analysis of Dietary Tannins in Small Ruminant Diets: Effects on Growth Performance, Serum Metabolites, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Fatty Acid Profile. Animals 2025, 15, 596. [Google Scholar] [CrossRef] [PubMed]
- Mshary, G.S.; Castillo, C.; Hernandez, J.; Muiño, R. Mini Review: The Strategic Approach of Saponin to Reducing Methane Emissions. Kufa J. Vet. Med. Sci. 2024, 15. [Google Scholar] [CrossRef]
- Portejoie, S.; Dourmad, J.Y.; Martinez, J.; Lebreton, Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci. 2004, 91, 45–55. [Google Scholar] [CrossRef]
- Niemi, J.K.; Sevoń-Aimonen, M.-L.; Pietola, K.; Stadler, K.J. The value of precision feeding technologies for grow-finish swine. Livest. Sci. 2010, 129, 13–23. [Google Scholar] [CrossRef]
- Hauschild, L.; Lovatto, P.A.; Pomar, J.; Pomar, C. Development of sustainable precision farming systems for swine: Estimating real-time individual amino acid requirements in growing-finishing pigs. J. Anim. Sci. 2012, 90, 2255–2263. [Google Scholar] [CrossRef]
- Hartung, J.; Banhazi, T.; Vranken, E.; Guarino, M. European farmers’ experiences with precision livestock farming systems. Anim. Front. 2017, 7, 38–44. [Google Scholar] [CrossRef]
- Semeniuk, W.; Grela, E.R. The effect of reduced protein level in pigs feeding in a dosing system or ad libitum on the level of nitrogen indicators in blood and urine. Med. Wet. 2011, 67, 339–342. [Google Scholar]
- Andretta, I.; Pomar, C.; Rivest, J.; Pomar, J. Precision feeding can significantly reduce lysine intake and nitrogen excretion without compromising the performance of growing pigs. Animal 2016, 10, 1137–1147. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wang, G.; Cai, S.; Zeng, X.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 19, 9–60. [Google Scholar] [CrossRef]
- Le Dinh, P.; van der Peet-Schwering, C.M.C.; Ogink, N.W.M.; Aarnink, A.J.A. Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs. Animals 2022, 12, 229. [Google Scholar] [CrossRef]
- Official Journal of the European Union (OJEU). Directive 2010/63/EU of the European Parialment and of the Council on the Protection of Animals Used for Scientific Purposes; OJEU 20.10.2010. Series L 276; OJEU: Brussels, Belgium, 2010; pp. 33–79. [Google Scholar]
- Nutrient Requirements of Pigs 2014. J. Feeding Guidelines and Nutritional Value of Feed Mixtures for Pigs. In Feeding Guidelines for Pigs, 2nd ed.; The Kielanowski Institute of Animal Physiology and Nutrition; PAS: Jabłonna, Poland, 2014; p. 64. (In Polish) [Google Scholar]
- AOAC International. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2007. [Google Scholar]
- PN-77/R-64820:1997; Feeds. Tryptophan Determination. Polish Committee for Standardization: Warsaw, Poland, 1997. Available online: https://sklep.pkn.pl/pn-r-64820-1977p.html (accessed on 28 February 2021).
- BN-74/9162-01:1974; Metody Oceny Jakości i Wartości Pokarmowej Kiszonek (Methods for Assessing the Quality and Nutritional Value of Silage). Polski Komitet Normalizacyjny: Warszawa, Poland, 1974.
- Winnicka, A. Wartości Referencyjne Podstawowych Badań Laboratoryjnych w Weterynarii (The Reference Values of Basic Laboratory Analyses in Veterinary Medicine); Wydawnictwo SGGW: Warszawa, Poland, 2015. [Google Scholar]
- StatSoft Inc. Statistica (Data Analysis Software System); Version 13; StataSoft Inc.: Tulusa, OK, USA, 2018. [Google Scholar]
- Kirchgessner, M.; Market, W.; Roth, F.X. Einfluβ der lysin- und energieversorgung auf die n-bilanz von mastschweinen 4. Mitteilung ΰber bilanzstudien zur reduzierung der n-ausscheidung. J. Anim. Physiol. Anim. Nutr. 1994, 71, 147–155. [Google Scholar] [CrossRef]
- Grela, E.R.; Pastuszak, J.; Czech, A. Wpływ ograniczenia poziomu białka w dawce przy zróżnicowanej zawartości aminokwasów na efekty tuczu świń. Ann. UMCS 2004, XXII, 129–135. [Google Scholar]
- Więcek, J.; Skomiał, J.; Rekiel, A.; Śliwiński, M. Wpływ poziomu białka i AA w mieszankach dla tuczników na strawność składników pokarmowych. Przegl. Hodowl. 2006, 2, 1–3. [Google Scholar]
- Kerr, B.J.; Easter, R.A. Effect of feeding reduced protein, amino acid-supplemented diets on nitrogen and energy balance in grower pigs. J. Anim. Sci. 1995, 73, 3000–3008. [Google Scholar] [CrossRef]
- Vonderohe, C.E.; Mills, K.M.; Liu, S.; Asmus, M.D.; Otto-Tico, E.R.; Richert, B.T.; Ni, J.-Q.; Radcliffe, J.S. The effect of reduced CP, synthetic amino acid supplemented diets on growth performance and nutrient excretion in wean to Finish swine. J Anim Sci. 2022, 100, skac075. [Google Scholar] [CrossRef]
- Shriver, J.A.; Carter, S.D.; Sutton, A.I.; Richert, B.T.; Senne, B.W.; Pettey, L.A. Effects of adding fiber sources to reduced crude protein, amino acids suplemented diets on nitrogen excretion, growth performance and carcass traits of finishing pigs. J. Anim. Sci. 2003, 81, 492–502. [Google Scholar] [CrossRef]
- Figueroa, J.L.; Lewis, A.J.; Miller, P.S.; Fisher, R.L.; Gomez, R.S.; Diedrichsen, R.M. Nitrogen metabolism and growth performance of gilts fed standard corn-soybean meal diets or low-crude protein, amino acid-supplemented diets. J. Anim. Sci. 2002, 80, 2911–2919. [Google Scholar] [CrossRef]
- Canh, T.T.; Aarnink, A.J.A.; Schutte, J.B.; Sutton, A.; Langhout, D.J.; Verstegen, M.W.A. Dietary protein affects nitrogen excretion and amonia emissioin from slurry of growing-finishing pigs. Livest. Prod. Sci. 1998, 56, 181–191. [Google Scholar] [CrossRef]
- Kerr, B.J.; Southern, L.L.; Bidner, T.D.; Friesen, K.G.; Easter, R.A. Influence of dietary protein level. Amino acid supplementation and dietary energy levels on growing-finishing pig performance and carcass composition. J. Anim. Sci. 2003, 81, 3075–3087. [Google Scholar] [CrossRef]
- Leek, A.B.G.; Callan, J.J.; Henry, R.W.; O’Doherty, J.V. The application of low crude protein wheat-soybean diets to growing and finishing pigs: The effects on nutrient digestibility, nitrogen excretion faecal volatile fatty acid concentration and ammonia emission from boars. Ir. J. Agric. Food Res. 2005, 44, 233–245. [Google Scholar]
- Otto, E.R.; Yokoyama, M.; Ku, P.K.; Ames, N.K.; Trottier, N.L. Nitrogen balance and ileal amino acid digestibility in growing pigs fed diets reduced in protein concentration. J. Anim. Sci. 2023, 81, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Patráš, P.; Nitrayová, S.; Brestenský, M.; Hege, J. Effect of dietary fiber and crude protein content in feed on nitrogen retention in pigs. J. Anim. Sci. 2012, 90, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Cappelaere, L.; Le Cour Grandmaison, J.; Martin, N.; Lambert, W. Amino acid supplementation to reduce environmental impacts of broiler and pig production: A Review. Front. Vet. Sci. 2021, 8, 689259. [Google Scholar] [CrossRef]
- Carpernter, A.A.; O’Mara, F.P.; O’Doherty, V.O. 2004. The effect of dietary crude protein concentration on growth performance, carcass, composition and nitrogen excreation in entire grower-finisher pigs. Ir. J. Agric. Food Res. 2004, 43, 227–236. [Google Scholar]
- Htoo, J.K.; Sauer, W.C.; Araiza, B.A.; Cervantes, M.; Liao, S.F.; Zhang, Y. The effect of feeding low-phytate hulless barley soybean meal diets differing in protein content to growing pigs. J. Anim. Sci. 2007, 16, 53–64. [Google Scholar] [CrossRef]
- Shurson, G.C.; Rylie, E.; Pelton, O.; Yang, Z.; Urriola, P.E.; Schmitt, J. Environmental impacts of eco-nutrition swine feeding programs in spatially explicit geographic regions of the United States. J. Anim. Sci. 2022, 100, skac356. [Google Scholar] [CrossRef]
- Prince, T.J.; Sutton, A.L.; Von Bernuth, R.D.; Verstegen, M.W.A. Application of nutritional knowledge for developing econutrition feeding programs on commercial swine farms. J. Anim. Sci. 2000, 77, 1–10. [Google Scholar] [CrossRef]
- Pomar, C.; Andretta, J.; Remus, A. Feeding Strategies to Reduce Nutrient Losses and Improve the Sustainability of Growing Pigs. Front. Vet. Sci. 2021, 8, 742220. [Google Scholar] [CrossRef]
Experimental Factor | Pig Feeding System | |||||
---|---|---|---|---|---|---|
Two-Phase System | Three-Phase System | |||||
Diet 1 | ||||||
C | L | L+AA | C | L | L+AA | |
Reduced levels of crude protein and amino acids (%) | 0 | 15 | 15+AA | 0 | 15 | 15+AA |
Dietary levels of crude protein (%) and essential amino acid (%) during the entire fattening period 2 | ||||||
Crude protein | 16.60 | 14.20 | 14.30 | 15.90 | 13.50 | 13.50 |
Lysine | 0.91 | 0.78 | 0.91 | 0.84 | 0.72 | 0.84 |
Methionine + cystine | 0.69 | 0.59 | 0.69 | 0.64 | 0.55 | 0.64 |
Threonine | 0.59 | 0.50 | 0.59 | 0.56 | 0.46 | 0.56 |
Tryptophan | 0.21 | 0.18 | 0.21 | 0.19 | 0.16 | 0.19 |
Number of pigs (head) | 8 | 8 | 8 | 8 | 8 | 8 |
Item | Two-Phase Feeding System | Three-Phase Feeding System | ||||
---|---|---|---|---|---|---|
Diet 1 | ||||||
Grower/Finisher Fed to Pigs with a Body Weight of 30–70 kg (Experiment 1)/70–110 kg (Experiment 2) | Grower 1/Grower 2/Finisher Fed to Pigs with a Body Weight of 30–55 kg (Experiment 1A)/55–80 kg (Experiment 1B)/80–110 kg (Experiment 2A) | |||||
C | L | L+AA | C | L | L+AA | |
Reduced levels of crude protein and amino acids | 0 | 15 | 15 +AA | 0 | 15 | 15 +AA |
Feed components (%) | ||||||
Ground grain (wheat + barley) | 76.8/83.6 | 81.9/89.2 | 81.7/88.8 | 76.8/83.3/87.8 | 82.4/89.2/95.4 | 81.5/88.8 /95.5 |
SBM 2 | 15/6 | 9/0 | 9/- | 15/9/- | 9/3/- | 9/3/- |
RSM “00” 3 | 5/8 | 5/8 | 5/8 | 5/5/10 | 5/5/2 | 5/5/2 |
Rapeseed oil | - | 0.8/0.4 | 0.8/0.4 | -/0.3/- | 0.8/0.4 | 0.8/0.4 |
Mineral–vitamin premix 4 | 3.0/2.2 | 3.0/2.2 | 3.0/2.2 | 3.0/2.2/2.0 | 3.0/2.2/2.0 | 3.0/2.2/2.0 |
Supplementation with crystalline amino acids (%): | ||||||
L-lysine HCL (78%) | 0.20/0.23 | 0.25/0.23 | 0.41/0.42 | 0.20/ 0.23/0.2 | 0.25/0.28 /0.2 | 0.41/0.42 /0.35 |
DL-methionine (99%) | - | - | 0.15/0.05 | - | - | 0.15/0.09/ 0.06 |
L-threonine (98%) | - | - | 0.09/0.09 | - | - | 0.09/0.09 /0.11 |
DL-tryptophan (98%) | - | - | 0.03/0.04 | - | - | 0.03/03.03 |
Average nutritional value of diets during the entire fattening period (g/kg−1): | ||||||
Crude protein | 165 | 140 | 141 | 158 | 135 | 136 |
Digestible protein | 135 | 111 | 116 | 130 | 109 | 111 |
Lysine | 6.9 | 5.9 | 6.9 | 6.6 | 6.0 | 6.6 |
Methionine + cystine | 6.9 | 5.9 | 6.9 | 6.6 | 6.0 | 6.6 |
Threonine | 5.9 | 5.0 | 5.9 | 5.6 | 4.7 | 5.6 |
Tryptophan | 2.0 | 1.7 | 2.0 | 1.9 | 1.7 | 1.9 |
Crude fiber | 40.1 | 39.6 | 39.4 | 42.1 | 41.3 | 43.0 |
Metabolizable energy (MJ kg−1) 5 | 13.11 | 13.04 | 13.11 | 13.16 | 13.12 | 13.10 |
Item | Two-Phase Feeding System | Three-Phase Feeding System | ||||||
---|---|---|---|---|---|---|---|---|
Group 1 | ||||||||
C | L | L+AA | p-Value | C | L | L+AA | p-Value | |
Reduced levels of crude protein and amino acids (%) | 0 | 15 | 15 +AA | 0 | 15 | 15 +AA | ||
different inclusion levels of crude protein and limiting essential amino acids | ||||||||
N digestibility × 6.25 (%) | 82.1 B | 79.4 A | 82.4 B | 0.000 | 82.2 b | 80.6 a | 81.6 ab | 0.042 |
Daily nitrogen balance (g kg−1): | ||||||||
N intake | 70.6 B | 60.9 A | 60.5 A | 0.000 | 67.9 B | 58.9 A | 58.3 A | 0.000 |
Fecal N excretion | 12.6 B | 12.5 B | 10.8 A | 0.002 | 12.1 B | 11.4 b | 10.7 Aa | 0.011 |
N digested | 58.0 B | 48.4 A | 49.7 A | 0.000 | 55.8 B | 47.5 A | 47.6 A | 0.000 |
Urinary N excretion | 29.8 B | 21.2 A | 22.0 A | 0.000 | 28.3 B | 22.7 A | 22.9 A | 0.000 |
N retention | 28.2 | 27.2 | 27.7 | 0.805 | 27.5 | 24.8 | 24.7 | 0.066 |
Nitrogen utilization (%): | ||||||||
N retention/N intake | 39.9 a | 44.7 b | 45.8 b | 0.033 | 40.5 | 42.1 | 42.4 | 0.597 |
N retention/N digested | 48.6 A | 56.2 B | 55.7 B | 0.014 | 49.3 | 52.2 | 51.9 | 0.433 |
different feeding systems | ||||||||
N digestibility × 6.25 (%) | 81.3 | 81.5 | 0.857 | |||||
Daily nitrogen balance (g kg−1): | ||||||||
N intake | 64.0 | 61.7 | 0.061 | |||||
Fecal N excretion | 12.0 | 11.4 | 0.064 | |||||
N digested | 52.0 | 50.3 | 0.121 | |||||
Urinary N excretion | 24.3 | 24.6 | 0.947 | |||||
N retention | 27.5 b | 25.7 a | 0.021 | |||||
Nitrogen utilization (%): | ||||||||
N retention/N intake | 42.9 | 41.6 | 0.179 | |||||
N retention/N digested (PBV) 2 | 53.7 | 51.1 | 0.176 |
Item | Two-Phase Feeding System | Three-Phase Feeding System | ||||||
---|---|---|---|---|---|---|---|---|
Group 1 | ||||||||
C | L | L+AA | p-Value | C | L | L+AA | p-Value | |
Reduced levels of crude protein and amino acids (%) | 0 | 15 | 15 +AA | 0 | 15 | 15+ AA | ||
different inclusion levels of crude protein and limiting essential amino acids | ||||||||
Crude protein (g/L) | 65.9 | 65.1 | 67.5 | 0.093 | 6.69 B | 6.60 B | 6.39 A | 0.007 |
Urea (g/dL) | 29.02 a | 27.01 b | 24.73 c | 0.042 | 25.44 | 23.00 | 24.64 | 0.198 |
AST (U/L) | 37.75 a | 32.88 b | 35.38 c | 0.036 | 32.96 a | 35.21 ab | 37.71 b | 0.058 |
ALT (U/L) | 46.20 a | 47.75 a | 43.31 b | 0.051 | 46.10 a | 49.00 b | 47.08 ac | 0.029 |
different feeding systems | ||||||||
Crude Protein (g/dL) | 6.62 | 6.57 | 0.052 | |||||
Urea (g/dL) | 27.01 | 24.63 | 0.333 | |||||
AST (U/L) | 35.34 | 35.29 | 0.307 | |||||
ALT (U/L) | 45.75 | 47.39 | 0.395 |
Item | Two-Phase Feeding System | Three-Phase Feeding System | ||||||
---|---|---|---|---|---|---|---|---|
Group 1 | ||||||||
C | L | L+AA | p-Value | C | L | L+AA | p-Value | |
Reduced levels of crude protein and amino acids (%) | 0 | 15 | 15 +AA | 0 | 15 | 15+ AA | ||
different inclusion levels of crude protein and limiting essential amino acids | ||||||||
Fecal pH | 6.40 b | 6.16 a | 6.29 ab | 0.031 | 6.32 | 6.17 | 6.23 | 0.244 |
Total fecal N (%) | 0.75 | 0.81 | 0.73 | 0.082 | 0.74 | 0.74 | 0.71 | 0.257 |
Fecal ammonia (%) | 0.04 | 0.05 | 0.04 | 0.857 | 0.04 | 0.04 | 0.05 | 0.254 |
different feeding systems | ||||||||
Fecal pH | 6.28 | 6.24 | 0.487 | |||||
Total fecal N (%) | 0.77 | 0.73 | 0.058 | |||||
Fecal ammonia (%) | 0.04 | 0.05 | 0.379 |
Item | Two-Phase Feeding System | Three-Phase Feeding System | ||||||
---|---|---|---|---|---|---|---|---|
Group 1 | ||||||||
C | L | L+AA | p-Value | C | L | L+AA | p-Value | |
Reduced levels of crude protein and amino acids (%) | 0 | 15 | 15 +AA | 0 | 15 | 15 +AA | ||
different inclusion levels of crude protein and limiting essential amino acids | ||||||||
Urinary pH | 6.59 | 6.31 | 6.46 | 0.320 | 6.66 B,a | 6.14 A,a | 6.41 b | 0.005 |
Total urinary N (%) | 0.57 | 0.58 | 0.59 | 0.957 | 0.52 | 0.53 | 0.52 | 0.761 |
Urinary ammonia (%) | 0.40 | 0.37 | 0.40 | 0.664 | 0.37 | 0.40 | 0.41 | 0.993 |
different feeding systems | ||||||||
Urinary pH | 6.45 | 6.40 | 0.496 | |||||
Total urinary N (%) | 0.58 | 0.52 | 0.125 | |||||
Urinary ammonia (%) | 0.38 | 0.39 | 0.868 |
Item | Two-Phase Feeding System | Three-Phase Feeding System | ||||
---|---|---|---|---|---|---|
Group 1 | ||||||
C | L | L+AA | C | L | L+AA | |
Reduced levels of crude protein and amino acids (%) | 0 | 15 | 15 +AA | 0 | 15 | 15 +AA |
N intake (g kg−1) | 987.7 | 852.6 | 847.0 | 950.1 | 824.1 | 816.7 |
Fecal N excretion (g kg−1) | 176.4 | 175.0 | 150.5 | 168.9 | 159.6 | 149.8 |
Urinary N excretion (g kg−1) | 416.5 | 307.3 | 308.7 | 396.7 | 317.8 | 320.6 |
Fecal and urinary N excretion (g kg−1) | 592.9 | 482.3 | 459.2 | 565.6 | 477.4 | 471.4 |
Reduction in nitrogen excretion depending on: | ||||||
| ||||||
(g kg−1) | 0.0 | −110.6 | n/a | 0.0 | −88.2 | n/a |
(%) | 100 | 81.3 | n/a | 100 | 84.4 | n/a |
| ||||||
(g kg−1) | n/a | 0.0 | −23.1 | n/a | 0.0 | −7.0 |
(%) | n/a | 100 | 95.2 | n/a | 100 | 98.3 |
Fecal and urinary N excretion in different feeding systems | ||||||
two-phase feeding system | three-phase feeding system | |||||
(g kg−1) | 511.5 | 504.5 | ||||
Reduction in nitrogen excretion in different feeding systems | ||||||
(g kg−1) (%) | 0.0 100 | −7.0 98.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobotka, W.; Drażbo, A. The Effect of Dietary Protein Restriction in Phase Feeding Systems on Nitrogen Metabolism and Excretion in Pig Production. Animals 2025, 15, 1521. https://doi.org/10.3390/ani15111521
Sobotka W, Drażbo A. The Effect of Dietary Protein Restriction in Phase Feeding Systems on Nitrogen Metabolism and Excretion in Pig Production. Animals. 2025; 15(11):1521. https://doi.org/10.3390/ani15111521
Chicago/Turabian StyleSobotka, Wiesław, and Aleksandra Drażbo. 2025. "The Effect of Dietary Protein Restriction in Phase Feeding Systems on Nitrogen Metabolism and Excretion in Pig Production" Animals 15, no. 11: 1521. https://doi.org/10.3390/ani15111521
APA StyleSobotka, W., & Drażbo, A. (2025). The Effect of Dietary Protein Restriction in Phase Feeding Systems on Nitrogen Metabolism and Excretion in Pig Production. Animals, 15(11), 1521. https://doi.org/10.3390/ani15111521