Interannual Variability of Atmospheric CH4 and Its Driver Over South Korea Captured by Integrated Data in 2019
Abstract
:1. Introduction
2. Data and Methods
2.1. AMY Near-Surface In Situ Data
2.2. TROPOMI Retrievals
2.3. GOSAT Retrievals
2.4. Ancillary Parameters
2.5. Data Analysis Method
3. Results and Discussion
3.1. Seasonal Variability of CH4 in Korea
3.2. Interannual Variability of CH4 Growth Rate in Korea
3.3. CH4 Growth Rate Related to Isotopic Ratios in 2019
3.4. CH4 Growth Rate Related to Soil Temperature and Moisture in 2019
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Zhang, X.; Chuai, X.; Huang, X.; Wang, Z. Long-Term Trends of Atmospheric CH4 Concentration across China from 2002 to 2016. Remote Sens. 2019, 11, 538. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Whalen, S.C.; Reeburgh, W.S.; Sandbeck, K.A. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 1990, 56, 3405–3411. [Google Scholar] [CrossRef] [PubMed]
- Sundh, I.; Mikkela, C.; Nilsson, M.; Svenson, H. Potential aerobic methane oxydation in a sphagnum dominated peatland-controlling factors and relation to methane emission. Soil Biol. Biochem. 1995, 27, 829–837. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Prather, M.J.; Holmes, C.D.; Hsu, J. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 2012, 39, L09803. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very strong atmospheric methane growth in the 4 year 2014-2017: Implications for the Paris agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Wang, F.; Maksyutov, S.; Janardanan, R.; Tsuruta, A.; Ito, A.; Morino, I.; Yoshida, Y.; Tohjima, Y.; Kaiser, J.W.; Maenhout, G.J.; et al. Interannual variability on methane emissions in monsoon Asia derived from GOSAT and surface observations. Environ. Res. Lett. 2021, 16, 024040. [Google Scholar] [CrossRef]
- Ghosh, A.; Patra, P.; Ishijima, K.; Umezawa, T.; Ito, A.; Etheridge, D.; Sugawara, S.; Kawamura, K.; Miller, J.; Dlugokencky, E.J.; et al. Variations in global methane sources and sinks during 1910–2010. Atmos. Chem. Phys. 2015, 15, 2595–2612. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Bruhwiler, L.; White, J.W.C.; Emmons, L.K.; Novelli, P.C.; Montzka, S.A.; Masarie, K.A.; Lang, P.M.; Crotwell, A.M.; Miller, J.B.; et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 2009, 36, L18803. [Google Scholar] [CrossRef]
- Schaefer, H.; Smale, D.; Nichol, S.E.; Bromley, T.M.; Brailsford, G.W.; Martin, R.J.; Moss, R.; Englund Michel, S.; White, J.W.C. Limited impact of El Niño–Southern Oscillation on variability and growth rate of atmospheric methane. Biogeosciences 2018, 15, 6371–6386. [Google Scholar] [CrossRef]
- Labzovskii, L.D.; Mak, H.W.L.; Kenea, S.T.; Rhee, J.-S.; Lashkari, A.; Li, S.; Goo, T.-Y.; Oh, Y.-S.; Byun, Y.-H. What can we learn about effectiveness of carbon reduction policies from interannual variability of fossil fuel CO2 emissions in East Asia? Environ. Sci. Policy 2019, 96, 132–140. [Google Scholar] [CrossRef]
- Ishizawa, M.; Uchino, O.; Morino, I.; Inoue, M.; Yoshida, Y.; Mabuchi, K.; Shirai, T.; Tohjima, Y.; Maksyutov, S.; Ohyama, H.; et al. Large XCH4 anomaly in summer 2013 over northeast Asia observed by GOSAT. Atmos. Chem. Phys. 2016, 16, 9149–9161. [Google Scholar] [CrossRef]
- Ji, E.S.; Park, K.-H. Methane and Nitrous Oxide Emissions from Livestock Agriculture in 16 Local Administrative Districts of Korea. Asian-Australas. J. Anim. Sci. 2012, 25, 1768–1774. [Google Scholar] [CrossRef]
- Ha, S.; Tae, S.; Kim, R. A Study on the Limitations of South Korea’s National Roadmap for Greenhouse Gas Reduction by 2030 and Suggestions for Improvement. Sustainability 2019, 11, 3969. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kikuchi, N.; Morino, I.; Uchino, O.; Oshchepkov, S.; Bril, A.; Saeki, T.; Schutgens, N.; Toon, G.C.; Wunch, D.; et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmos. Meas. Tech. 2013, 6, 1533–1547. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Amy McNally NASA/GSFC/HSL (2018), FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 Degree (MERRA-2 and Climate CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001 (accessed on 25 January 2021). [CrossRef]
- Dlugokencky, E.J.; Nisbet, E.G.; Fisher, R.; Lowry, D. Global atmospheric methane: Budget, changes and dangers. Philos. Trans. R. Soc. A 2011, 369, 2058–2072. [Google Scholar] [CrossRef]
- JCGM: International Vocabulary of Metrology-Basic and General Concepts and Associated Terms (VIM, 3rd Edition, 2008 Version with Minor Corrections). 2012. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf (accessed on 25 May 2021).
- Lee, H.; Han, S.-O.; Ryoo, S.-B.; Lee, J.-S.; Lee, G.-W. The measurement of atmospheric CO2 at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites. Atmos. Chem. Phys. 2019, 19, 2149–2163. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Haris, J.M.; Chung, Y.S.; Tans, P.P.; Fung, I. The relationship between the methane seasonal cycle and regional sources and sinks at Tae-ahn peninsula, Korea. Atmos. Environ. Part A 1993, 27, 2015–2120. [Google Scholar] [CrossRef]
- Sha, M.K.; Langerock, B.; Blavier, J.-F.L.; Blumenstock, T.; Borsdorff, T.; Buschmann, M.; Dehn, A.; De Mazière, M.; Deutscher, N.M.; Feist, D.G.; et al. Validation of Methane and Carbon Monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmos. Meas. Tech. Discuss. 2021. In review. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.J.; Boesch, H.; Byckling, K.; Webb, A.J.; Palmer, P.I.; Feng, L.; Bergamaschi, P.; Chevallier, F.; Notholt, J.; Deutscher, N.; et al. Assessing 5 years of GOSAT Proxy XCH4 data and associated uncertainties. Atmos. Meas. Tech. 2015, 8, 4785–4801. [Google Scholar] [CrossRef]
- Parker, R.J.; Webb, A.; Boesch, H.; Somkuti, P.; Barrio Guillo, R.; Di Noia, A.; Kalaitzi, N.; Anand, J.; Bergamaschi, P.; Chevallier, F.; et al. Decade of GOSAT Proxy Satellite CH4 Observations. Earth Syst. Sci. Data 2020, 12, 3383–3412. [Google Scholar] [CrossRef]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; James, P.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4. [Google Scholar] [CrossRef]
- Trenberth, K.; Branstator, G.; Karoly, D.; Kumar, A.; Lau, N.; Ropelewski, C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Thoning, K.W.; Tans, P.P.; Komhyr, W.D. Atmospheric carbon dioxide at Mauna Loa observatory 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res. Atmos. 1989, 94, 8549–8565. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Steele, L.O.; Lang, P.M.; Masarie, K.A. The growth rate and distribution of atmospheric methane. J. Geophys. Res. 1994, 99, 1702117044. [Google Scholar] [CrossRef]
- Liu, S.; Fang, S.; Liu, P.; Liang, M.; Guo, M.; Feng, Z. Measurement report: Changing characteristics of atmospheric CH4 in the Tibetan Plateau: Records from 1994 to 2019 at the Mount Waliguan station. Atmos. Chem. Phys. 2021, 21, 393–413. [Google Scholar] [CrossRef]
- Barns, E.; Screen, J. The impact of Arctic warming on the mid-latitude jet-stream: Can it? Has it? Will it? WIRES. Clim. Chang. 2015, 6, 277–286. [Google Scholar]
- Abnormal Climate Report in 2019, South Korea (2019), The Office for Government Policy Coordination and Korea Meteorological Administration (In Korean). pp. 76–77. Available online: https://www.gihoo.or.kr/portal/kr/community/data_view.do?p=1&idx=21061&column=&groupname=data&groupid=&f=1&q= (accessed on 28 May 2021).
- Sun, H.; Zhou, S.; Zhang, J.; Zhang, X.; Wang, C. Year-to-year climate variability affects methane emission from paddy fields under irrigated conditions. Environ. Sci. Pollut. Res. 2020, 27, 14780–14789. [Google Scholar] [CrossRef] [PubMed]
- Broucek, J. Methane yield from cattle, sheep, and goats housing with emphasis on emission factors: A review. Slovak J. Anim. Sci. 2015, 48, 122–139. [Google Scholar]
- Lee, M.; Davis, A.; Chagunda, M.; Manning, P. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 2017, 14, 1403–1417. [Google Scholar] [CrossRef]
- Gettelman, A.; Lamboll, R.; Bardeen, C.G.; Forster, P.M.; Watson-Parris, D. Climate impacts of COVID-19 induced emission changes. Geophys. Res. Lett. 2021, 48, e2020GL091805. [Google Scholar] [CrossRef]
- Chung, Y.S.; Kim, H.S. Observations on changes in Korean Changma rain associated with climate warming in 2017 and 2018. Air Qual. Atmos. Health 2019, 12, 197–215. [Google Scholar] [CrossRef]
- Li, S.; Kim, Y.; Kim, J.; Kenea, S.T.; Goo, T.-Y.; Labzovskii, L.D.; Byun, Y.-H. In Situ Aircraft Measurements of CO2 and CH4; Mapping Spatio-Temporal Variations over western Korea in High resolutions. Remote Sens. 2020, 12, 3093. [Google Scholar] [CrossRef]
In Situ CH4 | GOSAT XCH4 | |||
---|---|---|---|---|
Year | Mean | GR (RI%) | Mean | GR(RI%) |
2014 | 1989.5 | - | 1836.1 | 7.3 (0.4) |
2015 | 1998.6 | 9.1 (0.5) | 1841.1 | 5.0 (0.3) |
2016 | 2029.9 | 31.3 (1.6) | 1854.5 | 13.4 (0.7) |
2017 | 2013.1 | −16.8 (−0.8) | 1858.4 | 3.9 (0.2) |
2018 | 2001.6 | −11.5 (−0.6) | 1864.2 | 5.8 (0.3) |
2019 | 2029.0 | 27.4 (1.4) | 1880.6 | 16.4 (0.9) |
2020 | 2031.5 | 2.5 (0.1) | - | - |
Average | 2013.3 ± 17.2 | 7.0 ± 19.7 | 1855.8 ± 16.1 | 8.6 ± 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenea, S.T.; Lee, H.; Joo, S.; Li, S.; Labzovskii, L.D.; Chung, C.-Y.; Kim, Y.-H. Interannual Variability of Atmospheric CH4 and Its Driver Over South Korea Captured by Integrated Data in 2019. Remote Sens. 2021, 13, 2266. https://doi.org/10.3390/rs13122266
Kenea ST, Lee H, Joo S, Li S, Labzovskii LD, Chung C-Y, Kim Y-H. Interannual Variability of Atmospheric CH4 and Its Driver Over South Korea Captured by Integrated Data in 2019. Remote Sensing. 2021; 13(12):2266. https://doi.org/10.3390/rs13122266
Chicago/Turabian StyleKenea, Samuel Takele, Haeyoung Lee, Sangwon Joo, Shanlan Li, Lev D. Labzovskii, Chu-Yong Chung, and Yeon-Hee Kim. 2021. "Interannual Variability of Atmospheric CH4 and Its Driver Over South Korea Captured by Integrated Data in 2019" Remote Sensing 13, no. 12: 2266. https://doi.org/10.3390/rs13122266
APA StyleKenea, S. T., Lee, H., Joo, S., Li, S., Labzovskii, L. D., Chung, C. -Y., & Kim, Y. -H. (2021). Interannual Variability of Atmospheric CH4 and Its Driver Over South Korea Captured by Integrated Data in 2019. Remote Sensing, 13(12), 2266. https://doi.org/10.3390/rs13122266