Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = bioengineered silk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3452 KiB  
Article
Silk Fibroin Microparticle/Carboxymethyl Cellulose Composite Gel for Wound Healing Applications
by Alexander Pashutin, Ekaterina Podbolotova, Luidmila Kirsanova, Onur Dosi, Anton E. Efimov, Olga Agapova and Igor Agapov
Biomimetics 2025, 10(7), 434; https://doi.org/10.3390/biomimetics10070434 - 2 Jul 2025
Viewed by 400
Abstract
Silk fibroin has recently gained considerable attention as a promising biomaterial for use in medical and bioengineering technologies due to its biocompatibility and favorable mechanical properties. In this study, composite gel based on silk fibroin microparticles and carboxymethyl cellulose was developed, characterized by [...] Read more.
Silk fibroin has recently gained considerable attention as a promising biomaterial for use in medical and bioengineering technologies due to its biocompatibility and favorable mechanical properties. In this study, composite gel based on silk fibroin microparticles and carboxymethyl cellulose was developed, characterized by a viscous, homogeneous white mass containing uniformly distributed fibroin microparticles ranging from 1 to 20 μm in size. The gel exhibited a kinematic viscosity of 36.5 × 10−6 St, allowing for convenient application to wounds using a syringe or spatula while preventing uncontrolled spreading. The cytocompatibility of the gel was confirmed using the methylthiazol tetrazolium (MTT) assay, which showed no cytotoxic effects on 3T3 fibroblast cells. Furthermore, the gel remained stable for over one year when stored at 10 °C, in contrast to conventional fibroin solutions, which typically lose stability within a month under similar conditions. In a full-thickness skin wound model in rats, the application of the gel significantly accelerated skin regeneration, with complete wound closure observed by day 15, compared with 30 days in the control group. Histological analysis confirmed the restoration of all skin layers. These findings demonstrate the high potential of the gel for applications in regenerative medicine and tissue engineering. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Wound Healing Application)
Show Figures

Figure 1

16 pages, 2283 KiB  
Article
ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications
by Mthabisi Talent George Moyo, Terin Adali and Oğuz Han Edebal
Gels 2024, 10(12), 824; https://doi.org/10.3390/gels10120824 - 13 Dec 2024
Cited by 1 | Viewed by 1465
Abstract
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels [...] Read more.
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.3%, 0.5%, 0.75%, and 1% gellan gum combined with 3% silk fibroin and 4.2% sodium alginate separately, using physical and ionic cross-linking. Swelling behavior was analyzed in phosphate (pH 7.4) and acetic (pH 1.2) buffers and surface morphology was examined by scanning electron microscopy (SEM). Hemocompatibility tests included complete blood count (CBC), coagulation assays, hemolysis index, erythrocyte morphology, and platelet adhesion analysis. Results showed that gellan gum–sodium alginate hydrogels exhibited faster swelling than gellan gum–silk fibroin formulations. SEM indicated smoother surfaces with sodium alginate, while silk fibroin increased roughness, further amplified by higher gellan-gum concentrations. Hemocompatibility assays confirmed normal profiles in formulations with 0.3%, 0.5%, and 0.75% gellan gum, while 1% gellan gum caused significant hemolytic and thrombogenic activity. These findings highlight the excellent hemocompatibility of gellan-gum-based hydrogels, especially the sodium alginate variants, supporting their potential in bioengineering, tissue engineering, and blood-contacting biomedical applications. Full article
(This article belongs to the Special Issue Recent Research on Alginate Hydrogels in Bioengineering Applications)
Show Figures

Graphical abstract

10 pages, 1697 KiB  
Article
Comparison of Chondrocyte Behaviors Between Silk Microfibers and Polycaprolactone Microfibers in Tissue Engineering and Regenerative Medicine Applications
by Guang-Zhen Jin
Bioengineering 2024, 11(12), 1209; https://doi.org/10.3390/bioengineering11121209 - 29 Nov 2024
Viewed by 883
Abstract
Silk and polycaprolactone (PCL), derived from natural and synthetic sources, respectively, are suture materials commonly used in surgery. Beyond their application in sutures, they are also compelling subjects in regenerative medicine and tissue engineering. This study evaluated the effects of degummed silk microfibers [...] Read more.
Silk and polycaprolactone (PCL), derived from natural and synthetic sources, respectively, are suture materials commonly used in surgery. Beyond their application in sutures, they are also compelling subjects in regenerative medicine and tissue engineering. This study evaluated the effects of degummed silk microfibers compared to electrospun PCL microfibers of a similar diameter on chondrocyte behavior. The two types of microfibers were analyzed using scanning electron microscopy (SEM), real-time PCR, Western blotting, and DMMB analysis. The results demonstrated that the silk microfibers exhibited a higher proliferative cell rate over time compared to the PCL microfibers. Additionally, the expression of chondrogenic phenotypes was significantly upregulated, while the marker for hypertrophic chondrocytes—type X collagen—was downregulated in cell-laden silk microfibers compared to cell-laden PCL microfibers. These findings suggest that natural degummed silk microfibers may be a viable option for repairing damaged cartilage in the future of orthopedic surgery and bioengineering. Full article
(This article belongs to the Special Issue Tissue Engineering and Regenerative Medicine in Bioengineering)
Show Figures

Figure 1

15 pages, 2933 KiB  
Article
Superfast Gelation of Spider Silk-Based Artificial Silk Protein
by Fan Wen, Yu Wang, Bowen Tu and Lun Cui
Gels 2024, 10(1), 69; https://doi.org/10.3390/gels10010069 - 17 Jan 2024
Cited by 7 | Viewed by 2917
Abstract
Spider silk proteins (spidroins) have garnered attention in biomaterials research due to their ability to self-assemble into hydrogels. However, reported spidroin hydrogels require high protein concentration and prolonged gelation time. Our study engineered an artificial spidroin that exhibits unprecedented rapid self-assembly into hydrogels [...] Read more.
Spider silk proteins (spidroins) have garnered attention in biomaterials research due to their ability to self-assemble into hydrogels. However, reported spidroin hydrogels require high protein concentration and prolonged gelation time. Our study engineered an artificial spidroin that exhibits unprecedented rapid self-assembly into hydrogels at physiologically relevant conditions, achieving gelation at a low concentration of 6 mg/mL at 37 °C without external additives. Remarkably, at a 30 mg/mL concentration, our engineered protein forms hydrogels within 30 s, a feature we termed “superfast gelation”. This rapid formation is modulated by ions, pH, and temperature, offering versatility in biomedical applications. The hydrogel’s capacity to encapsulate proteins and support E. coli growth while inducing RFP expression provides a novel platform for drug delivery and bioengineering applications. Our findings introduce a superfast, highly adaptable, and cytocompatible hydrogel that self-assembles under mild conditions, underscoring the practical implication of rapid gelation in biomedical research and clinical applications. Full article
(This article belongs to the Special Issue Synthetic, Natural and Hybrid Gels Intended for Various Applications)
Show Figures

Graphical abstract

16 pages, 5116 KiB  
Article
Mineralization of Bone Extracellular Matrix-like Scaffolds Fabricated as Silk Sericin-Functionalized Dense Collagen–Fibrin Hybrid Hydrogels
by Gabriele Griffanti, Marc D. McKee and Showan N. Nazhat
Pharmaceutics 2023, 15(4), 1087; https://doi.org/10.3390/pharmaceutics15041087 - 28 Mar 2023
Cited by 16 | Viewed by 3520
Abstract
The design of hydrogels that combine both the biochemical cues needed to direct seeded cellular functions and mineralization to provide the structural and mechanical properties approaching those of mineralized native bone extracellular matrix (ECM) represents a significant challenge in bone tissue engineering. While [...] Read more.
The design of hydrogels that combine both the biochemical cues needed to direct seeded cellular functions and mineralization to provide the structural and mechanical properties approaching those of mineralized native bone extracellular matrix (ECM) represents a significant challenge in bone tissue engineering. While fibrous hydrogels constituting of collagen or fibrin (and their hybrids) can be considered as scaffolds that mimic to some degree native bone ECM, their insufficient mechanical properties limit their application. In the present study, an automated gel aspiration–ejection (automated GAE) method was used to generate collagen–fibrin hybrid gel scaffolds with micro-architectures and mechanical properties approaching those of native bone ECM. Moreover, the functionalization of these hybrid scaffolds with negatively charged silk sericin accelerated their mineralization under acellular conditions in simulated body fluid and modulated the proliferation and osteoblastic differentiation of seeded MC3T3-E1 pre-osteoblastic cells. In the latter case, alkaline phosphatase activity measurements indicated that the hybrid gel scaffolds with seeded cells showed accelerated osteoblastic differentiation, which in turn led to increased matrix mineralization. In summary, the design of dense collagen–fibrin hybrid gels through an automated GAE process can provide a route to tailoring specific biochemical and mechanical properties to different types of bone ECM-like scaffolds, and can provide a model to better understand cell–matrix interactions in vitro for bioengineering purposes. Full article
Show Figures

Figure 1

23 pages, 7515 KiB  
Article
Detection of Limbal Stem Cells Adhered to Melt Electrospun Silk Fibroin and Gelatin-Modified Polylactic Acid Scaffolds
by Emilija Zdraveva, Krešo Bendelja, Luka Bočkor, Tamara Dolenec and Budimir Mijović
Polymers 2023, 15(3), 777; https://doi.org/10.3390/polym15030777 - 3 Feb 2023
Cited by 8 | Viewed by 2634
Abstract
Limbal stem cells (LSCs) are of paramount importance in corneal epithelial tissue repair. The cornea becomes opaque in case of limbal stem cell deficiency (LSCD), which may cause serious damage to the ocular visual function. There are many techniques to restore damaged epithelium, [...] Read more.
Limbal stem cells (LSCs) are of paramount importance in corneal epithelial tissue repair. The cornea becomes opaque in case of limbal stem cell deficiency (LSCD), which may cause serious damage to the ocular visual function. There are many techniques to restore damaged epithelium, one of which is the transplantation of healthy cultured LSCs, usually onto a human amniotic membrane or onto bio-based engineered scaffolds in recent years. In this study, melt electrospun polylactic acid (PLA) was modified by silk fibroin or gelatin and further cultured with LSCs originating from three different donors. In terms of physicochemical properties, both modifications slightly increased PLA scaffold porosity (with a significantly larger pore area for the PLA/gelatin) and improved the scaffolds’ swelling percentage, as well as their biodegradation rate. In terms of the scaffold application function, the aim was to detect/visualize whether LSCs adhered to the scaffolds and to further determine cell viability (total number), as well as to observe p63 and CK3 expressions in the LSCs. LSCs were attached to the surface of microfibers, showing flattened conformations or 3D spheres in the formation of colonies or agglomerations, respectively. All scaffolds showed the ability to bind the cells onto the surface of individual microfibers (PLA and PLA/gelatin), or in between the microfibers (PLA/silk fibroin), with the latter showing the most intense red fluorescence of the stained cells. All scaffolds proved to be biocompatible, while the PLA/silk fibroin scaffolds showed the highest 98% viability of 2.9 × 106 LSCs, with more than 98% of p63 and less than 20% of CK3 expressions in the LSCs, thus confirming the support of their growth, proliferation and corneal epithelial differentiation. The results show the potential of these bio-engineered scaffolds to be used as an alternative clinical approach. Full article
(This article belongs to the Special Issue Biopolymers for Regenerative Medicine Applications)
Show Figures

Figure 1

16 pages, 1244 KiB  
Review
Designing Silk-Based Cryogels for Biomedical Applications
by Turdimuhammad Abdullah, Esra Su and Adnan Memić
Biomimetics 2023, 8(1), 5; https://doi.org/10.3390/biomimetics8010005 - 22 Dec 2022
Cited by 7 | Viewed by 3699
Abstract
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under [...] Read more.
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under subzero or freezing temperatures, have great potential to address many current challenges. Unlike their hydrogel counterparts, which are also able to hold large amounts of biologically relevant fluids such as water, cryogels are often characterized by highly dense and crosslinked polymer walls, macroporous structures, and often improved properties. Recently, one biomaterial that has garnered a lot of interest for cryogel fabrication is silk and its derivatives. In this review, we provide a brief overview of silk-based biomaterials and how cryogelation can be used for novel scaffold design. We discuss how various parameters and fabrication strategies can be used to tune the properties of silk-based biomaterials. Finally, we discuss specific biomedical applications of silk-based biomaterials. Ultimately, we aim to demonstrate how the latest advances in silk-based cryogel scaffolds can be used to address challenges in numerous bioengineering disciplines. Full article
(This article belongs to the Special Issue Bioinspiration in Silk Biomaterial Designing)
Show Figures

Figure 1

12 pages, 3395 KiB  
Article
Eco-Friendly Bio-Hydrogels Based on Antheraea Pernyi Silk Gland Protein for Cell and Drug Delivery
by Jia Li, Bo-Xiang Wang, De-Hong Cheng and Yan-Hua Lu
Gels 2022, 8(7), 398; https://doi.org/10.3390/gels8070398 - 23 Jun 2022
Cited by 5 | Viewed by 1918
Abstract
The Antheraea Pernyi silk gland protein originates from natural organisms and synthesized by tussah silk glands and has widely potential biomaterial applications due to the superior biocompatibility. This study investigates the Antheraea Pernyi silk gland protein-based drug-loaded bio-hydrogels for bioengineered tissue fabricated by [...] Read more.
The Antheraea Pernyi silk gland protein originates from natural organisms and synthesized by tussah silk glands and has widely potential biomaterial applications due to the superior biocompatibility. This study investigates the Antheraea Pernyi silk gland protein-based drug-loaded bio-hydrogels for bioengineered tissue fabricated by using an eco-friendly method without the harsh extracting process and the usage of toxic chemicals. The drug-loaded bio-hydrogels exhibited a porous structure and interconnected pore walls. The swelling ratio and water absorption of drug-loaded bio-hydrogels were, respectively, above 95% and 1.5 × 103%. The cumulative release of drug loaded hydrogels all reached more than 90% within 4 h, and this indicates the potential of drug-loaded hydrogels as future drug-carrying biomaterials. RSC96 Schwann cells cultured on drug-loaded hydrogels for 72 h under cell culture medium show no toxic effects and more pro-proliferative effects. The results suggest the suitability of drug-loaded bio-hydrogels as natural biopolymer for the potential in vitro RSC96 cell culture platform and other biomaterial applications. Full article
Show Figures

Graphical abstract

10 pages, 2759 KiB  
Article
Development of Silk Fibroin Scaffolds by Using Indirect 3D-Bioprinting Technology
by Yeong-Jin Choi, Dong-Woo Cho and Hyungseok Lee
Micromachines 2022, 13(1), 43; https://doi.org/10.3390/mi13010043 - 28 Dec 2021
Cited by 17 | Viewed by 4400
Abstract
Due to the excellent biocompatibility of natural polymers, a variety of natural polymers have been widely used as biomaterials for manufacturing tissue engineered scaffolds. Despite the excellent biological activity of natural polymers, there have been obstacles in using them on their own to [...] Read more.
Due to the excellent biocompatibility of natural polymers, a variety of natural polymers have been widely used as biomaterials for manufacturing tissue engineered scaffolds. Despite the excellent biological activity of natural polymers, there have been obstacles in using them on their own to prepare 3D scaffolds with sufficient mechanical strength. Although multiple 3D-bioprinting technologies have recently emerged as effective manufacturing tools for scaffold preparation, scaffold preparation using only natural polymers with tunable mechanical properties is still difficult. Herein, we introduce novel scaffold fabrication methods using the natural polymer silk fibroin via indirect 3D-bioprinting technology. The developed silk fibroin scaffolds showed biocompatibility and tunable mechanical strength by changing the concentration of the silk fibroin. Furthermore, controlling the flexibility of the silk fibroin scaffolds was made possible by changing the solvent for the silk fibroin solution used to fabricate the scaffold. Consequently, silk fibroin scaffolds fabricated via our method can be considered for various applications in the bioengineering of either soft or musculoskeletal tissues. Full article
(This article belongs to the Special Issue Advanced Biofabrication Technologies)
Show Figures

Figure 1

33 pages, 3444 KiB  
Review
Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment
by Anna Florczak, Inga Grzechowiak, Tomasz Deptuch, Kamil Kucharczyk, Alicja Kaminska and Hanna Dams-Kozlowska
Materials 2020, 13(21), 4946; https://doi.org/10.3390/ma13214946 - 4 Nov 2020
Cited by 45 | Viewed by 5695
Abstract
Although progress is observed in cancer treatment, this disease continues to be the second leading cause of death worldwide. The current understanding of cancer indicates that treating cancer should not be limited to killing cancer cells alone, but that the target is the [...] Read more.
Although progress is observed in cancer treatment, this disease continues to be the second leading cause of death worldwide. The current understanding of cancer indicates that treating cancer should not be limited to killing cancer cells alone, but that the target is the complex tumor microenvironment (TME). The application of nanoparticle-based drug delivery systems (DDS) can not only target cancer cells and TME, but also simultaneously resolve the severe side effects of various cancer treatment approaches, leading to more effective, precise, and less invasive therapy. Nanoparticles based on proteins derived from silkworms’ cocoons (like silk fibroin and sericins) and silk proteins from spiders (spidroins) are intensively explored not only in the oncology field. This natural-derived material offer biocompatibility, biodegradability, and simplicity of preparation methods. The protein-based material can be tailored for size, stability, drug loading/release kinetics, and functionalized with targeting ligands. This review summarizes the current status of drug delivery systems’ development based on proteins derived from silk fibroin, sericins, and spidroins, which application is focused on systemic cancer treatment. The nanoparticles that deliver chemotherapeutics, nucleic acid-based therapeutics, natural-derived agents, therapeutic proteins or peptides, inorganic compounds, as well as photosensitive molecules, are introduced. Full article
(This article belongs to the Special Issue Silk-Based Biomaterials)
Show Figures

Figure 1

14 pages, 4090 KiB  
Article
Biofunctionalized Lysophosphatidic Acid/Silk Fibroin Film for Cornea Endothelial Cell Regeneration
by Joo Hee Choi, Hayan Jeon, Jeong Eun Song, Joaquim Miguel Oliveira, Rui Luis Reis and Gilson Khang
Nanomaterials 2018, 8(5), 290; https://doi.org/10.3390/nano8050290 - 30 Apr 2018
Cited by 32 | Viewed by 5940
Abstract
Cornea endothelial cells (CEnCs) tissue engineering is a great challenge to repair diseased or damaged CEnCs and require an appropriate biomaterial to support cell proliferation and differentiation. Biomaterials for CEnCs tissue engineering require biocompatibility, tunable biodegradability, transparency, and suitable mechanical properties. Silk fibroin-based [...] Read more.
Cornea endothelial cells (CEnCs) tissue engineering is a great challenge to repair diseased or damaged CEnCs and require an appropriate biomaterial to support cell proliferation and differentiation. Biomaterials for CEnCs tissue engineering require biocompatibility, tunable biodegradability, transparency, and suitable mechanical properties. Silk fibroin-based film (SF) is known to meet these factors, but construction of functionalized graft for bioengineering of cornea is still a challenge. Herein, lysophosphatidic acid (LPA) is used to maintain and increase the specific function of CEnCs. The LPA and SF composite film (LPA/SF) was fabricated in this study. Mechanical properties and in vitro studies were performed using a rabbit model to demonstrate the characters of LPA/SF. ATR-FTIR was characterized to identify chemical composition of the films. The morphological and physical properties were performed by SEM, AFM, transparency, and contact angle. Initial cell density and MTT were performed for adhesion and cell viability in the SF and LPA/SF film. Reverse transcription polymerase chain reactions (RT-PCR) and immunofluorescence were performed to examine gene and protein expression. The results showed that films were designed appropriately for CEnCs delivery. Compared to pristine SF, LPA/SF showed higher biocompatibility, cell viability, and expression of CEnCs specific genes and proteins. These indicate that LPA/SF, a new biomaterial, offers potential benefits for CEnCs tissue engineering for regeneration. Full article
(This article belongs to the Special Issue Tissue Engineering and Regenerative Nanomedicine)
Show Figures

Figure 1

21 pages, 595 KiB  
Review
Silk Materials Functionalized via Genetic Engineering for Biomedical Applications
by Tomasz Deptuch and Hanna Dams-Kozlowska
Materials 2017, 10(12), 1417; https://doi.org/10.3390/ma10121417 - 12 Dec 2017
Cited by 36 | Viewed by 7322
Abstract
The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design [...] Read more.
The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications. Full article
Show Figures

Graphical abstract

22 pages, 1125 KiB  
Review
Processing Techniques and Applications of Silk Hydrogels in Bioengineering
by Michael Floren, Claudio Migliaresi and Antonella Motta
J. Funct. Biomater. 2016, 7(3), 26; https://doi.org/10.3390/jfb7030026 - 14 Sep 2016
Cited by 104 | Viewed by 13808
Abstract
Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required [...] Read more.
Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications. Full article
(This article belongs to the Special Issue Silk Proteins for Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop