Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = bioabsorbable polymer stents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 15577 KB  
Article
Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material
by Seán Mulkerins, Guangming Yan, Declan Mary Colbert, Declan M. Devine, Patrick Doran, Shane Connolly and Noel Gately
Polymers 2025, 17(14), 1948; https://doi.org/10.3390/polym17141948 - 16 Jul 2025
Cited by 1 | Viewed by 661
Abstract
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical [...] Read more.
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical properties than metals, often requiring larger struts to provide the necessary structural support. These larger struts have been linked to delayed endothelialisation and an increased risk of stent thrombosis. To address this limitation, this study investigated the incorporation of high-strength basalt fibres into PLA to enhance its mechanical performance, with an emphasis on optimising the processing conditions to achieve notable improvements at minimal fibre loadings. In this regard, PLA/basalt fibre composites were prepared via twin-screw extrusion at screw speeds of 50, 200, and 350 RPM. The effects were assessed through ash content testing, tensile testing, SEM, and rheometry. The results showed that lower screw speeds achieved adequate fibre dispersion while minimising the molecular weight reduction, leading to the most substantial improvement in the mechanical properties. To examine whether a second extrusion run could enhance the fibre dispersion, improving the composite’s uniformity and, therefore, mechanical enhancement, all the batches underwent a second extrusion run. This run improved the dispersion, leading to increased strength and an increased modulus; however, it also reduced the fibre–matrix adhesion and resulted in a notable reduction in the molecular weight. The highest mechanical performance was observed at 10% fibre loading and 50 RPM following a second extrusion run, with the tensile strength increasing by 20.23% and the modulus by 27.52%. This study demonstrates that the processing conditions can influence the fibres’ effectiveness, impacting dispersion, adhesion, and molecular weight retention, all of which affect this composite’s mechanical performance. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

13 pages, 2992 KB  
Article
Bioabsorbable Polymeric Stent for the Treatment of Coarctation of the Aorta (CoA) in Children: A Methodology to Evaluate the Design and Mechanical Properties of PLA Polymer
by Flávio José dos Santos, Bruno Agostinho Hernandez, Rosana Santos, Marcel Machado, Mateus Souza, Edson A. Capello Sousa and Aron Andrade
Materials 2023, 16(12), 4403; https://doi.org/10.3390/ma16124403 - 15 Jun 2023
Cited by 9 | Viewed by 2266
Abstract
This study presents a methodology that combines experimental tests and the finite element method, which is able to analyse the influence of the geometry on the mechanical behaviour of stents made of bioabsorbable polymer PLA (PolyLactic Acid) during their expansion in the treatment [...] Read more.
This study presents a methodology that combines experimental tests and the finite element method, which is able to analyse the influence of the geometry on the mechanical behaviour of stents made of bioabsorbable polymer PLA (PolyLactic Acid) during their expansion in the treatment of coarctation of the aorta (CoA). Tensile tests with standardized specimen samples were conducted to determine the properties of a 3D-printed PLA. A finite element model of a new stent prototype was generated from CAD files. A rigid cylinder simulating the expansion balloon was also created to simulate the stent opening performance. A tensile test with 3D-printed customized stent specimens was performed to validate the FE stent model. Stent performance was evaluated in terms of elastic return, recoil, and stress levels. The 3D-printed PLA presented an elastic modulus of 1.5 GPa and a yield strength of 30.6 MPa, lower than non-3D-printed PLA. It can also be inferred that crimping had little effect on stent circular recoil performance, as the difference between the two scenarios was on average 1.81%. For an expansion of diameters ranging from 12 mm to 15 mm, as the maximum opening diameter increases, the recoil levels decrease, ranging from 10 to 16.75% within the reported range. These results point out the importance of testing the 3D-printed PLA under the conditions of using it to access its material properties; the results also indicate that the crimping process could be disregarded in simulations to obtain fast results with lower computational cost and that new proposed stent geometry made of PLA might be suitable for use in CoA treatments—the approach that has not been applied before. The next steps will be to simulate the opening of an aorta vessel using this geometry. Full article
(This article belongs to the Topic Computational Materials Science for Polymers)
Show Figures

Figure 1

16 pages, 10244 KB  
Article
Characterization of a Sandwich PLGA-Gallic Acid-PLGA Coating on Mg Alloy ZK60 for Bioresorbable Coronary Artery Stents
by Li-Han Lin, Hung-Pang Lee and Ming-Long Yeh
Materials 2020, 13(23), 5538; https://doi.org/10.3390/ma13235538 - 4 Dec 2020
Cited by 30 | Viewed by 3635
Abstract
Absorbable magnesium stents have become alternatives for treating restenosis owing to their better mechanical properties than those of bioabsorbable polymer stents. However, without modification, magnesium alloys cannot provide the proper degradation rate required to match the vascular reform speed. Gallic acid is a [...] Read more.
Absorbable magnesium stents have become alternatives for treating restenosis owing to their better mechanical properties than those of bioabsorbable polymer stents. However, without modification, magnesium alloys cannot provide the proper degradation rate required to match the vascular reform speed. Gallic acid is a phenolic acid with attractive biological functions, including anti-inflammation, promotion of endothelial cell proliferation, and inhibition of smooth muscle cell growth. Thus, in the present work, a small-molecule eluting coating is designed using a sandwich-like configuration with a gallic acid layer enclosed between poly (d,l-lactide-co-glycolide) layers. This coating was deposited on ZK60 substrate, a magnesium alloy that is used to fabricate bioresorbable coronary artery stents. Electrochemical analysis showed that the corrosion rate of the specimen was ~2000 times lower than that of the bare counterpart. The released gallic acid molecules from sandwich coating inhibit oxidation by capturing free radicals, selectively promote the proliferation of endothelial cells, and inhibit smooth muscle cell growth. In a cell migration assay, sandwich coating delayed wound closure in smooth muscle cells. The sandwich coating not only improved the corrosion resistance but also promoted endothelialization, and it thus has great potential for the development of functional vascular stents that prevent late-stent restenosis. Full article
(This article belongs to the Special Issue Modification and Processing of Biodegradable Polymers)
Show Figures

Figure 1

9 pages, 1909 KB  
Review
40 Years of Percutaneous Coronary Intervention: History and Future Directions
by John Canfield and Hana Totary-Jain
J. Pers. Med. 2018, 8(4), 33; https://doi.org/10.3390/jpm8040033 - 1 Oct 2018
Cited by 93 | Viewed by 12664
Abstract
The field of interventional cardiology has evolved significantly since the first percutaneous transluminal coronary angioplasty was performed 40 years ago. This evolution began with a balloon catheter mounted on a fixed wire and has progressed into bare-metal stents (BMS), first-generation drug-eluting stents (DES), [...] Read more.
The field of interventional cardiology has evolved significantly since the first percutaneous transluminal coronary angioplasty was performed 40 years ago. This evolution began with a balloon catheter mounted on a fixed wire and has progressed into bare-metal stents (BMS), first-generation drug-eluting stents (DES), second- and third-generation biodegradable polymer-based DES, and culminates with the advent of bioabsorbable stents, which are currently under development. Each step in technological advancement has improved outcomes, while new persisting challenges arise, caused by the stent scaffolds, the polymers employed, and the non-selective cytostatic and cytotoxic drugs eluted from the stents. Despite the promising technological advances made in stent technology, managing the balance between reductions in target lesion revascularization, stent thrombosis, and bleeding remain highly complex issues. This review summarizes the evolution of percutaneous coronary intervention with a focus on vascular dysfunction triggered by the non-selective drugs eluted from various stents. It also provides an overview of the mechanism of action of the drugs currently used in DES. We also discuss the efforts made in developing novel cell-selective drugs capable of inhibiting vascular smooth muscle cell (VSMC) proliferation, migration, and infiltration of inflammatory cells while allowing for complete reendothelialization. Lastly, in the era of precision medicine, considerations of patients’ genetic variance associated with myocardial infarction and in-stent restenosis are discussed. The combination of personalized medicine and improved stent platform with cell-selective drugs has the potential to solve the remaining challenges and improve the care of coronary artery disease patients. Full article
(This article belongs to the Special Issue Personalized and Targeted Atherosclerosis Treatments)
Show Figures

Figure 1

13 pages, 3867 KB  
Article
3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems
by Antonio J. Guerra, Paula Cano, Marc Rabionet, Teresa Puig and Joaquim Ciurana
Materials 2018, 11(9), 1679; https://doi.org/10.3390/ma11091679 - 11 Sep 2018
Cited by 163 | Viewed by 15727
Abstract
Biodegradable stents (BRS) offer enormous potential but first they must meet five specific requirements: (i) their manufacturing process must be precise; (ii) degradation should have minimal toxicity; (iii) the rate of degradation should match the recovery rate of vascular tissue; (iv) ideally, they [...] Read more.
Biodegradable stents (BRS) offer enormous potential but first they must meet five specific requirements: (i) their manufacturing process must be precise; (ii) degradation should have minimal toxicity; (iii) the rate of degradation should match the recovery rate of vascular tissue; (iv) ideally, they should induce rapid endothelialization to restore the functions of vascular tissue, but at the same time reduce the risk of restenosis; and (v) their mechanical behavior should comply with medical requirements, namely, the flexibility required to facilitate placement but also sufficient radial rigidity to support the vessel. Although the first three requirements have been comprehensively studied, the last two have been overlooked. One possible way of addressing these issues would be to fabricate composite stents using materials that have different mechanical, biological, or medical properties, for instance, Polylactide Acid (PLA) or Polycaprolactone (PCL). However, fashioning such stents using the traditional stent manufacturing process known as laser cutting would be impossible. Our work, therefore, aims to produce PCL/PLA composite stents using a novel 3D tubular printer based on Fused Deposition Modelling (FDM). The cell geometry (shape and area) and the materials (PCL and PLA) of the stents were analyzed and correlated with 3T3 cell proliferation, degradation rates, dynamic mechanical and radial expansion tests to determine the best parameters for a stent that will satisfy the five strict BRS requirements. Results proved that the 3D-printing process was highly suitable for producing composite stents (approximately 85–95% accuracy). Both PCL and PLA demonstrated their biocompatibility with PCL stents presenting an average cell proliferation of 12.46% and PLA 8.28% after only 3 days. Furthermore, the PCL/PLA composite stents demonstrated their potential in degradation, dynamic mechanical and expansion tests. Moreover, and regardless of the order of the layers, the composite stents showed (virtually) medium levels of degradation rates and mechanical modulus. Radially, they exhibited the virtues of PCL in the expansion step (elasticity) and those of PLA in the recoil step (rigidity). Results have clearly demonstrated that composite PCL/PLA stents are a highly promising solution to fulfilling the rigorous BRS requirements. Full article
Show Figures

Figure 1

19 pages, 2842 KB  
Review
Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View
by Atsushi Sakamoto, Hiroyuki Jinnouchi, Sho Torii, Renu Virmani and Aloke V. Finn
Bioengineering 2018, 5(3), 71; https://doi.org/10.3390/bioengineering5030071 - 4 Sep 2018
Cited by 89 | Viewed by 14765
Abstract
The technology of percutaneous coronary intervention (PCI) is constantly being refined in order to overcome the shortcomings of present day technologies. Even though current generation metallic drug-eluting stents (DES) perform very well in the short-term, concerns still exist about their long-term efficacy. Late [...] Read more.
The technology of percutaneous coronary intervention (PCI) is constantly being refined in order to overcome the shortcomings of present day technologies. Even though current generation metallic drug-eluting stents (DES) perform very well in the short-term, concerns still exist about their long-term efficacy. Late clinical complications including late stent thrombosis (ST), restenosis, and neoatherosclerosis still exist and many of these events may be attributed to either the metallic platform and/or the drug and polymer left behind in the arterial wall. To overcome this limitation, the concept of totally bioresorbable vascular scaffolds (BRS) was invented with the idea that by eliminating long-term exposure of the vessel wall to the metal backbone, drug, and polymer, late outcomes would improve. The Absorb-bioabsorbable vascular scaffold (Absorb-BVS) represented the most advanced attempt to make such a device, with thicker struts, greater vessel surface area coverage and less radial force versus contemporary DES. Unfortunately, almost one year after its initial approval by the U.S. Food and Drug Administration, this scaffold was withdrawn from the market due to declining devise utilization driven by the concerns about scaffold thrombosis (ScT) seen in both early and late time points. Additionally, the specific causes of ScT have not yet been fully elucidated. In this review, we discuss the platform, vascular response, and clinical data of past and current metallic coronary stents with the Absorb-BVS and newer generation BRS, concentrating on their material/design and the mechanisms of thrombotic complications from the pre-clinical, pathologic, and clinical viewpoints. Full article
Show Figures

Figure 1

Back to TopTop