Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = bicycle-sharing system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4660 KB  
Article
Effects of Multidimensional Factors on the Distance Decay of Bike-Sharing Access to Metro Stations
by Tingzhao Chen, Yuting Wang, Yanyan Chen, Haodong Sun and Xiqi Wang
Appl. Sci. 2025, 15(24), 13228; https://doi.org/10.3390/app152413228 - 17 Dec 2025
Abstract
The last kilometer connection problem of metro transit stations is the core factor to measure the connection efficiency and service quality. Establishing the spatiotemporal distribution pattern of the connection distance is conducive to clarifying the interaction mechanism between bike-sharing connections and urban space. [...] Read more.
The last kilometer connection problem of metro transit stations is the core factor to measure the connection efficiency and service quality. Establishing the spatiotemporal distribution pattern of the connection distance is conducive to clarifying the interaction mechanism between bike-sharing connections and urban space. This study focuses on the travel behavior of shared bicycle users accessing metro stations, aiming to reveal the access distance decay patterns and their relationship with influence factors. Finally, the random forest algorithm was used to explore the nonlinear relationship between the influencing factors and the connection decay distance, and to clarify the importance of the factors. Multiple linear regression was applied to examine the linear correlation between the distance decay coefficient and the factors influence. The geographically weighted regression was further employed to explore spatial variations in their effects. Finally, the random forest algorithm was used to rank the importance of the impact factors. The results indicate that proximity distance to metro stations, proximity distance to bus stops, and the number of bus routes serving the station area have significant negative correlations with the distance decay coefficient. Significant spatial heterogeneity was observed in the influence of each factor on the distance decay coefficient, based on the geographically weighted regression analysis. With a high goodness-of-fit (R2 = 0.8032), the Random Forest regression model furthermore quantified the relative importance of each factor influencing the distance decay coefficient. The findings can be directly applied to optimize the layout of shared bicycle parking, metro access facilities planning, and multi-modal transportation system design. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

18 pages, 3065 KB  
Article
A Multidimensional Approach to Bike Usage in Barcelona: Influence of Infrastructure Design, Safety, and Climatic Conditions
by Margarita Martínez-Díaz and Raúl José Verenzuela Gómez
Sustainability 2025, 17(22), 10336; https://doi.org/10.3390/su172210336 - 19 Nov 2025
Viewed by 396
Abstract
Promoting cycling as a sustainable mode of transport is a pressing priority in contemporary urban mobility planning. This study examines the infrastructure characteristics that most strongly influence bicycle use in dense metropolitan contexts. A mixed-methods approach was adopted, combining a systematic review of [...] Read more.
Promoting cycling as a sustainable mode of transport is a pressing priority in contemporary urban mobility planning. This study examines the infrastructure characteristics that most strongly influence bicycle use in dense metropolitan contexts. A mixed-methods approach was adopted, combining a systematic review of current design guidelines with a large-scale empirical analysis of Barcelona’s Bicing bike-sharing system. The dataset comprised more than 54 million recorded trips, enabling the identification of the most and least frequented routes and the subsequent assessment of their infrastructural attributes. The results indicate that network configuration, continuity, and adaptation to topographic conditions have the greatest influence on cycling uptake. By contrast, factors frequently emphasized in design recommendations, such as lane width, were not decisive, as several of the city’s most intensively used corridors did not conform to these standards. These findings suggest that the expansion of network coverage and the improvement of route connectivity are more effective strategies for increasing cycling adoption than isolated design optimizations. This study contributes evidence-based guidance for urban planners and policy-makers seeking to advance cycling as a principal component of sustainable urban mobility in Barcelona and other comparable urban environments. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

26 pages, 9496 KB  
Article
An Integrated Approach to Identify Functional Areas for Bicycle Use with Spatial–Temporal Information: A Case Study of Seoul, Republic of Korea
by Jiwon Lee and Jiyoung Kim
Land 2025, 14(10), 2069; https://doi.org/10.3390/land14102069 - 16 Oct 2025
Viewed by 614
Abstract
Identifying urban functional areas increasingly relies on data-driven approaches that utilize multimodal spatial information. There is a growing focus on purpose-oriented functional area identification with greater policy relevance. This paper proposes a data-driven methodology to identify functional areas from the perspective of bicycle [...] Read more.
Identifying urban functional areas increasingly relies on data-driven approaches that utilize multimodal spatial information. There is a growing focus on purpose-oriented functional area identification with greater policy relevance. This paper proposes a data-driven methodology to identify functional areas from the perspective of bicycle users. To achieve this, line-based road network units were defined around bicycle stations, and spatial–temporal data such as Origin–Destination flows and Point of Interest information were semantically integrated to delineate functional areas. An experiment was conducted on 2628 public bicycle stations in Seoul, Republic of Korea, for May 2022, and a total of five functional areas were identified via a Co-Matrix Factorization-based fusion approach. Additionally, the proposed method was validated through visual evaluation and comparison with actual bicycle usage data. The results demonstrate that by simultaneously incorporating spatial–temporal information and latent connectivity, this approach identifies bicycle-friendly areas, even with low observed usage, highlighting its potential for policy applications. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

15 pages, 645 KB  
Article
Drivers’ Risk and Emotional Intelligence in Safe Interactions with Vulnerable Road Users: Toward Sustainable Mobility
by Shiva Pourfalatoun, Erika E. Gallegos and Jubaer Ahmed
Sustainability 2025, 17(20), 9185; https://doi.org/10.3390/su17209185 - 16 Oct 2025
Viewed by 700
Abstract
Sustainable urban transportation relies on safe interactions between motor vehicles and vulnerable road users (VRUs) such as bicyclists and pedestrians. This study evaluates how drivers’ risk-taking and emotional intelligence (EI) influence their interactions with VRUs in urban environments. A driving simulator study with [...] Read more.
Sustainable urban transportation relies on safe interactions between motor vehicles and vulnerable road users (VRUs) such as bicyclists and pedestrians. This study evaluates how drivers’ risk-taking and emotional intelligence (EI) influence their interactions with VRUs in urban environments. A driving simulator study with 40 participants examined nine bicycle-passing events and one pedestrian-crossing scenario. The results show that higher risk-taking is significantly associated with more hazardous behaviors: each unit increase in risk-taking predicted a 4.02 mph higher passing speed and a 60% lower likelihood of braking for pedestrians. Event context also shaped behavior: drivers reduced their speed by 2.52 mph when passing cyclists on the road and by 2.33 mph for groups of cyclists, compared to single cyclists in bike lanes. Across all risk categories, the participants expressed discomfort when sharing the road, preferring to pass bicyclists on sidewalks, although the ‘risk-avoidant’ group reported significant discomfort even in these scenarios. EI did not significantly predict driving outcomes, likely reflecting limited score variability rather than an absence of influence. These insights support sustainable urban mobility by informing risk-based driver training and safer infrastructure design. Improving driver–VRU interactions helps create safer streets for walking and cycling, an essential condition for reducing car dependence and advancing sustainable transportation systems. Full article
Show Figures

Figure 1

20 pages, 24177 KB  
Article
Network-Wide GIS Mapping of Cycling Vibration Comfort: From Methodology to Real-World Implementation
by Jie Gao, Xixian Wu, Zijie Xie, Liang Song and Shandong Fang
Sensors 2025, 25(19), 6185; https://doi.org/10.3390/s25196185 - 6 Oct 2025
Viewed by 638
Abstract
Cycling-induced vibration significantly affects riding comfort, with road surface conditions and vehicle type identified as primary contributing factors. This study developed a vibration measurement system based on ISO 2631-1, and proposed a method for generating cycling comfort maps grounded in vibration severity levels. [...] Read more.
Cycling-induced vibration significantly affects riding comfort, with road surface conditions and vehicle type identified as primary contributing factors. This study developed a vibration measurement system based on ISO 2631-1, and proposed a method for generating cycling comfort maps grounded in vibration severity levels. Field measurements on 30 campus roads in Nanchang, China, used a Mountain Bike, Shared E-bike, and Shared Bicycle. Triaxial acceleration data were collected to evaluate vibration exposure, and comfort levels were classified to produce spatially resolved maps. Results show the proposed system has strong stability and adaptability across urban environments. The maps effectively captured vibration intensity variations along road segments. Among the three vehicle types, Mountain Bikes showed the lowest vibration exposure, with approximately 90% of segments rated as comfortable. Shared E-bike exhibited moderate vibration levels, with 42% of segments deemed uncomfortable, while Shared Bicycles experienced the highest vibration, with 80% of routes potentially inducing discomfort and only 1% meeting comfort standards. This study offers a framework for objective acquisition and visualization of cycling vibration data. The developed system and mapping method provide tools for assessing vehicle vibration, guiding route selection, and offer potential value for road quality monitoring. Full article
Show Figures

Figure 1

29 pages, 1895 KB  
Article
How Does Sharing Economy Advance Sustainable Production and Consumption? Evidence from the Policies and Business Practices of Dockless Bike Sharing
by Shouheng Sun, Yiran Wang, Dafei Yang and Qi Wu
Sustainability 2025, 17(15), 7053; https://doi.org/10.3390/su17157053 - 4 Aug 2025
Viewed by 1576
Abstract
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It [...] Read more.
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It also dynamically quantifies the environmental and economic performance of DBS practices from a life cycle perspective. The findings indicate that effective SPC practices can be achieved through the collaborative efforts of multiple stakeholders, including the government, operators, manufacturers, consumers, recycling agencies, and other business partners, supported by regulatory systems and advanced technologies. The SPC practices markedly improved the sustainability of DBS promotion in Beijing. This is evidenced by the increase in greenhouse gas (GHG) emission reduction benefits, which have risen from approximately 35.81 g CO2-eq to 124.40 g CO2-eq per kilometer of DBS travel. Considering changes in private bicycle ownership, this value could reach approximately 150.60 g CO2-eq. Although the economic performance of DBS operators has also improved, it remains challenging to achieve profitability, even when considering the economic value of the emission reduction benefits. In certain scenarios, DBS can maximize profits by optimizing fleet size and efficiency, without compromising the benefits of emission reductions. The framework of stakeholder interaction proposed in this study and the results of empirical analysis not only assist regulators, businesses, and the public in better understanding and promoting sustainable production and consumption practices in the sharing economy but also provide valuable insights for achieving a win-win situation of platform profitability and environmental benefits in the SPC practice process. Full article
Show Figures

Figure 1

20 pages, 2883 KB  
Article
Sustainable Daily Mobility and Bike Security
by Sergej Gričar, Christian Stipanović and Tea Baldigara
Sustainability 2025, 17(14), 6262; https://doi.org/10.3390/su17146262 - 8 Jul 2025
Viewed by 888
Abstract
As climate change concerns, urban congestion, and environmental degradation intensify, cities prioritise cycling as a sustainable transport option to reduce CO2 emissions and improve quality of life. However, rampant bicycle theft and poor security infrastructure often deter daily commuters and tourists from [...] Read more.
As climate change concerns, urban congestion, and environmental degradation intensify, cities prioritise cycling as a sustainable transport option to reduce CO2 emissions and improve quality of life. However, rampant bicycle theft and poor security infrastructure often deter daily commuters and tourists from cycling. This study explores how advanced security measures can bolster sustainable urban mobility and tourism by addressing these challenges. A mixed-methods approach is utilised, incorporating primary survey data from Slovenia and secondary data on bicycle sales, imports and thefts from 2015 to 2024. Findings indicate that access to secure parking substantially enhances users’ sense of safety when commuting by bike. Regression analysis shows that for every 1000 additional bicycles sold, approximately 280 more thefts occur—equivalent to a 0.28 rise in reported thefts—highlighting a systemic vulnerability associated with sustainability-oriented behaviour. To bridge this gap, the study advocates for an innovative security framework that combines blockchain technology and Non-Fungible Tokens (NFTs) with encrypted Quick Response (QR) codes. Each bicycle would receive a tamper-proof QR code connected to a blockchain-verified NFT documenting ownership and usage data. This system facilitates real-time authentication, enhances traceability, deters theft, and builds trust in cycling as a dependable transport alternative. The proposed solution merges sustainable transport, digital identity, and urban security, presenting a scalable model for individual users and shared mobility systems. Full article
(This article belongs to the Collection Reshaping Sustainable Tourism in the Horizon 2050)
Show Figures

Figure 1

18 pages, 4805 KB  
Article
Re-Usable Workflow for Collecting and Analyzing Open Data of Valenbisi
by Áron Magura, Marianna Zichar and Róbert Tóth
Electronics 2025, 14(13), 2720; https://doi.org/10.3390/electronics14132720 - 5 Jul 2025
Viewed by 1244
Abstract
This paper proposes a general workflow for collecting and analyzing open data from Bicycle Sharing Systems (BSSs) that was developed using data from the Valenbisi system, operated in Valencia by the French company JCDecaux; however, the stages of the proposed workflow are service-independent [...] Read more.
This paper proposes a general workflow for collecting and analyzing open data from Bicycle Sharing Systems (BSSs) that was developed using data from the Valenbisi system, operated in Valencia by the French company JCDecaux; however, the stages of the proposed workflow are service-independent and can be applied broadly. Cycling has become an increasingly popular mode of transportation, leading to the emergence of BSSs in modern cities. Parallel to this, Smart City solutions have been implemented using Internet of Things (IoT) technologies, such as embedded sensors and GPS-based communication systems, which have become essential to everyday life. When public transportation services or bicycle sharing systems are used, real-time information about the services is provided to customers, including vehicle tracking based on GPS technology and the availability of bikes via sensors installed at bike rental stations. The bike stations were examined from two different perspectives: first, their daily usage, and second, the types of facilities located in their surroundings. Based on these two approaches, the overlap between the clustering results was analyzed—specifically, the similarity in how stations could be grouped and the correlation between their usage and locations. To enhance the raw data retrieved from the service provider’s official API, the stations were annotated based on OpenStreetMap and Overpass API data. Data visualization was created using Tableau from Salesforce. Based on the results, an agreement of 62% was found between the results of the two different clustering approaches. Full article
Show Figures

Figure 1

24 pages, 4071 KB  
Article
Urban Commuting Preferences in Italy: Employees’ Perceptions of Public Transport and Willingness to Adopt Active Transport Based on K-Modes Cluster Analysis
by Mahnaz Babapour, Maria Vittoria Corazza and Guido Gentile
Sustainability 2025, 17(11), 5149; https://doi.org/10.3390/su17115149 - 3 Jun 2025
Viewed by 1451
Abstract
Commuting plays a critical role in shaping sustainable transport systems, yet understanding the diverse preferences of commuter groups remains a challenge for policymakers. As cities aim to promote sustainable transport, it is essential to better understand the factors influencing travel behaviors. This study [...] Read more.
Commuting plays a critical role in shaping sustainable transport systems, yet understanding the diverse preferences of commuter groups remains a challenge for policymakers. As cities aim to promote sustainable transport, it is essential to better understand the factors influencing travel behaviors. This study investigates the commuting preferences and behaviors of urban employees in Italy, focusing on identifying distinct user profiles and their implications for policy development. Using a dataset of 2301 participants from Italian cities, the research analyzed transport mode choices, willingness to adopt sustainable transport options, and perceptions of public transport (PT) services, including factors such as travel time, proximity to PT stops, cost, and comfort, rated on a four-point Likert scale. K-modes clustering was employed to segment participants into three clusters based on their travel behaviors. The results revealed three distinct user profiles: (1) car-dependent users with negative perceptions of PT, driven by family obligations and dissatisfaction with PT services; (2) individuals who primarily use cars but are somewhat open to improvements in PT; (3) individuals willing to adopt alternative mobility options, including active and shared transport modes. Significant differences were found across clusters in terms of mode choices, willingness to use sustainable transport, and satisfaction with PT services. Notably, employees showed limited interest in alternative sustainable transport modes such as e-scooters and walking, with 73% and 66% of participants expressing little or no interest, respectively. Despite incentives such as company subsidies for purchasing bicycles or e-scooters, 58% of employees remained uninterested in adopting these alternatives. Additionally, employees’ perceptions of PT services revealed dissatisfaction with factors such as travel time, comfort, and punctuality, with over 70% rating these aspects as “Poor” or “Fair”. These findings suggest that improving the quality of PT services, particularly in terms of travel time, punctuality, comfort, and cost, should be a priority for enhancing user satisfaction. This research provides valuable insights for policymakers seeking to reduce car dependence and promote sustainable urban transport planning. Full article
Show Figures

Figure 1

22 pages, 5261 KB  
Article
The Spatial and Non-Spatial Analyses of the Bike-Sharing Service in Small Urban Areas in Slovakia: The Case Study
by Stanislav Kubaľák, Kristína Ovary Bulková and Martin Holienčík
Appl. Sci. 2025, 15(11), 6240; https://doi.org/10.3390/app15116240 - 1 Jun 2025
Viewed by 2118
Abstract
The aim of this paper is to develop a case study of the recent situation of a bike-sharing service in a chosen small urban area. Žilina is situated in northern Slovakia, with a population exceeding 80,000 and an area of 80.03 km2 [...] Read more.
The aim of this paper is to develop a case study of the recent situation of a bike-sharing service in a chosen small urban area. Žilina is situated in northern Slovakia, with a population exceeding 80,000 and an area of 80.03 km2. This study represents a complex analysis of the available data on a bike-sharing service, as well as data on bicycle rentals from a local provider. Both were processed by the QGIS software. First, the number of rentals and the attractiveness of the bicycle stations were evaluated, taking into account the seasons from 2019 to the end of the 2023 season. Spatial analysis, based on marking the availability of the isochrones of the 32 bike-sharing stations at the end of the season 2024, was conducted considering the map’s characteristics. The analysis was supplemented with a questionnaire survey of bike-sharing service users. This study provides an overall view of the recent situation of a bike-sharing service operating for five years in a small urban area with the intention of identifying deficiencies and improving the service for future system expansion. The originality of this paper lies in the processing of a wide dataset with an extensive set of control variables and the connection of spatial and non-spatial analyses. The approaches and results can serve as proposals for introducing or designing bike-sharing services in other small urban areas for researchers. Full article
Show Figures

Figure 1

33 pages, 7292 KB  
Article
Intelligent Optimization of Bike-Sharing Systems: Predictive Models and Algorithms for Equitable Bicycle Distribution in Barcelona
by Gerard Giner Fabregat, Pau Fonseca i Casas and Antonio Rivero Martínez
Sustainability 2025, 17(10), 4316; https://doi.org/10.3390/su17104316 - 9 May 2025
Viewed by 2521
Abstract
This paper aims to propose innovative solutions to improve the management of Barcelona’s bike-sharing system, known as Bicing. This study addresses one of the system’s main challenges: the unequal distribution of bicycles across the city and at different times of the day, which [...] Read more.
This paper aims to propose innovative solutions to improve the management of Barcelona’s bike-sharing system, known as Bicing. This study addresses one of the system’s main challenges: the unequal distribution of bicycles across the city and at different times of the day, which affects the users. The analysis combines advanced statistical techniques, predictive models and optimization algorithms to identify vulnerable areas in terms of accessibility and design strategies to balance bicycle distribution. Using methods such as clustering and predictive models based on machine learning, the system’s usage patterns are anticipated. These predictions feed optimization algorithms that enable the planning of more efficient routes for bicycle repositioning, reducing unnecessary vehicle movement and supporting a more environmentally friendly mobility network. The results highlight the importance of proactive system management, improving both user satisfaction and operational efficiency while fostering a more sustainable urban transport ecosystem. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

30 pages, 1030 KB  
Article
The Model of Relationships Between Benefits of Bike-Sharing and Infrastructure Assessment on Example of the Silesian Region in Poland
by Radosław Wolniak and Katarzyna Turoń
Appl. Syst. Innov. 2025, 8(2), 54; https://doi.org/10.3390/asi8020054 - 17 Apr 2025
Cited by 2 | Viewed by 3150
Abstract
Bike-sharing initiatives play a crucial role in sustainable urban transportation, addressing vehicular congestion, air quality issues, and sedentary lifestyles. However, the connection between bike-sharing facilities and the advantages perceived by users remains insufficiently explored particular in post-industrial regions, such as Silesia, Poland. This [...] Read more.
Bike-sharing initiatives play a crucial role in sustainable urban transportation, addressing vehicular congestion, air quality issues, and sedentary lifestyles. However, the connection between bike-sharing facilities and the advantages perceived by users remains insufficiently explored particular in post-industrial regions, such as Silesia, Poland. This study develops a multidimensional framework linking infrastructure elements—such as station density, bicycle accessibility, maintenance standards, and technological integration—to perceived benefits. Using a mixed-methods approach, a survey conducted in key Silesian cities combines quantitative analysis (descriptive statistics, factor analysis, and regression modelling) with qualitative insights from user feedback. The results indicate that the most valuable benefits are health improvements (e.g., improved physical fitness and mobility) and environmental sustainability. However, infrastructural deficiencies—disjointed bike path systems, uneven station placements, and irregular maintenance—substantially hinder system efficiency and accessibility. Inadequate bike maintenance adversely affects efficiency, safety, and sustainability, highlighting the necessity for predictive upkeep and optimised services. This research underscores innovation as a crucial factor for enhancing systems, promoting seamless integration across multiple modes, diversification of fleets (including e-bikes and cargo bikes), and the use of sophisticated digital solutions like real-time tracking, contactless payment systems, and IoT-based monitoring. Furthermore, the transformation of post-industrial areas into cycling-supportive environments presents strategic opportunities for sustainable regional revitalisation. These findings extend beyond the context of Silesia, offering actionable insights for policymakers, urban mobility planners, and Smart City stakeholders worldwide, aiming to foster inclusive, efficient, and technology-enabled bike-sharing systems. Full article
Show Figures

Figure 1

23 pages, 44800 KB  
Article
Revealing Spatial Patterns of Dockless Shared Micromobility: A Case Study of Košice, Slovakia
by Štefan Gábor, Ladislav Novotný and Loránt Pregi
Urban Sci. 2025, 9(4), 107; https://doi.org/10.3390/urbansci9040107 - 1 Apr 2025
Cited by 1 | Viewed by 2464
Abstract
Air pollution, largely driven by car traffic, poses significant challenges in many cities, including Košice, Slovakia. As the city explores micromobility as a part of its smart city initiatives and sustainable alternative to individual car use, understanding its spatial dynamics becomes essential. Despite [...] Read more.
Air pollution, largely driven by car traffic, poses significant challenges in many cities, including Košice, Slovakia. As the city explores micromobility as a part of its smart city initiatives and sustainable alternative to individual car use, understanding its spatial dynamics becomes essential. Despite the growing adoption of shared micromobility systems, research on their spatial patterns in Central Europe is still limited. This study analyzes over 900,000 trips made between 2019 and 2022 using bicycles, e-bikes, e-scooters, and e-mopeds in Košice’s dockless system. Using spatial analysis, we identified key hubs near public transport stops, pedestrian zones, and universities, highlighting how micromobility addresses the first/last mile transport challenge. A notable shift from bicycles to e-scooters was observed, enabling wider adoption in areas with fragmented terrain and neighborhoods farther from the city center. Our findings show a significant demand for shared micromobility, indicating its potential to reduce urban car dependency and support smart and sustainable urban transport. However, winter months remain a challenge, with high smog levels but near-zero demand for shared micromobility. Full article
Show Figures

Figure 1

22 pages, 8010 KB  
Article
A Fuzzy Logic-Based Automatic Gear-Shifting System for Electric Bicycles in Urban Mobility Solutions for Smart Cities
by Jin-Shyan Lee and Ruo You
Systems 2025, 13(4), 228; https://doi.org/10.3390/systems13040228 - 26 Mar 2025
Viewed by 1465
Abstract
In smart cities, bicycle-sharing systems have become essential as last-mile transportation solutions, seamlessly integrating into urban mobility networks worldwide. To improve riding efficiency, the development of automatic gear-shifting systems for electric bicycles has gained significant attention. This study presents a novel fuzzy logic [...] Read more.
In smart cities, bicycle-sharing systems have become essential as last-mile transportation solutions, seamlessly integrating into urban mobility networks worldwide. To improve riding efficiency, the development of automatic gear-shifting systems for electric bicycles has gained significant attention. This study presents a novel fuzzy logic controller (FLC) designed to address the challenges of frequent and unstable gear shifts in automatic bicycle transmissions. Unlike traditional systems that rely solely on velocity or cadence as inputs, the proposed FLC incorporates both acceleration and slope data to enhance shifting stability and cadence regulation. By replacing velocity with acceleration and integrating slope information, the system minimizes frequent shifting and improves overall performance. Experimental and simulation results demonstrate that the proposed approach reduces acceleration ripple, stabilizes gear-shifting, and maintains cadence within the desired range, ensuring a smoother and more comfortable riding experience. The proposed approach significantly reduces acceleration ripple by 1 m/s2, maintains target cadence, and aligns gear shifts with design intent, yielding a substantial 20% safety improvement. These advancements offer particular promise for public bicycle-sharing systems, providing a robust and adaptable solution suited to diverse cycling conditions and rider profiles. Full article
Show Figures

Figure 1

21 pages, 2497 KB  
Article
On the Use of a Bike-Sharing System in Extreme Weather Events: The Case of Porto Alegre, Rio Grande do Sul, Brazil
by Kayck de Araújo, Luciana Lima, Mariana Andreotti Dias, Daniel G. Costa and Ivanovitch Silva
Sustainability 2025, 17(5), 2291; https://doi.org/10.3390/su17052291 - 6 Mar 2025
Viewed by 2696
Abstract
This article aims to analyze the use of a bike-sharing system (BSS) during the flooding event caused by extreme rainfall that hit the municipality of Porto Alegre, Brazil, in May 2024. Public transport services were interrupted, prompting an investigation into the resilience of [...] Read more.
This article aims to analyze the use of a bike-sharing system (BSS) during the flooding event caused by extreme rainfall that hit the municipality of Porto Alegre, Brazil, in May 2024. Public transport services were interrupted, prompting an investigation into the resilience of the BSS during the crisis. Considering data from the Tembici BSS company, a set of approximately 400,000 trips made between 104 stations in the municipality of Porto Alegre from January to May 2024 were analyzed. Daily rainfall data from the National Institute of Meteorology (INMET) were compared with the daily trip flow to identify the travel flow patterns on the days most affected by the flooding. The results indicate an abrupt drop in shared bicycle use during May 2024, but 7600 trips were recorded despite the crisis. Regarding the travel pattern between 1 May and 10 May, most trips were still for recreational purposes (73%), while trips for work and study accounted for 22% of the total, and only 5% were for delivery services. Overall, the resilience of the BSS during the extreme climate event in question points to the continuation of practical daily activities, although with more significant effects on economic-related activities and lesser effects on leisure-related activities. Full article
Show Figures

Figure 1

Back to TopTop