Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = beta human papillomavirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7103 KiB  
Article
Transforming Properties of E6/E7 Oncogenes from Beta-2 HPV80 in Primary Human Fibroblasts
by Francisco Israel Renteria-Flores, Andrea Molina-Pineda, Ruben Piña-Cruz, Sayma Vizcarra-Ramos, Alejandra Natali Vega-Magaña, Mariel García-Chagollán, María Teresa Magaña-Torres, Rodolfo Hernández-Gutiérrez, Adriana Aguilar-Lemarroy and Luis Felipe Jave-Suárez
Int. J. Mol. Sci. 2025, 26(11), 5347; https://doi.org/10.3390/ijms26115347 - 2 Jun 2025
Viewed by 682
Abstract
Cervical cancer is the second leading cause of cancer-related death in Mexico, primarily due to persistent infection with high-risk Alpha-papillomavirus genotypes, such as HPV16 and 18. Next-generation sequencing (NGS) has revealed a high prevalence of Beta- and Gamma-HPVs, mainly Beta-2 types 38b, 80, [...] Read more.
Cervical cancer is the second leading cause of cancer-related death in Mexico, primarily due to persistent infection with high-risk Alpha-papillomavirus genotypes, such as HPV16 and 18. Next-generation sequencing (NGS) has revealed a high prevalence of Beta- and Gamma-HPVs, mainly Beta-2 types 38b, 80, 107, and 122, in cervical cancer samples from Mexico. Our group previously reported that HPVs 38b, 107, and 122 possess transforming properties in primary fibroblasts; however, the oncogenic potential of E6/E7-HPV80 has not yet been elucidated. For this purpose, primary human fibroblasts were transduced with E6/E7-HPV80 (FB-E6/E7-HPV80), and functional assays were conducted to evaluate changes in proliferation, metabolic activity, and cell migration. RNA-seq analysis identified differentially expressed genes (DEGs) and enriched pathways. Fibroblasts transduced with E6/E7-HPV16 (FB-E6/E7-HPV16) or empty vector (FB-pLVX) served as controls. FB-E6/E7-HPV80 extended their lifespan and exhibited increased proliferation, metabolic activity, and migration capacity. RNA-seq analysis identified 196 upregulated DEGs (such as GPAT2, MST1R, ACAN, SLCO4A1, and CHRNA3) and 887 downregulated DEGs (such as KLHDC7B, TRIM58, CST1, FBLL1, INHBE, and TMEM132D) shared between FB-E6/E7-HPV80 and FB-E6/E7-HPV16. Enriched pathways included p53, TNF, IL-17, apoptosis, cell cycle, etc. These findings suggest that E6/E7-HPV80 exhibits transforming capabilities that could play an important role in cervical carcinogenesis. Full article
Show Figures

Figure 1

18 pages, 3055 KiB  
Article
Stromal Interferon Regulatory Factor 3 Can Antagonize Human Papillomavirus Replication by Supporting Epithelial-to-Mesenchymal Transition
by Oluwamuyiwa T. Amusan, Rebecca Lopez, Elijah Burks, Jessica Trammel, Gaurav Raikhy, Hongyan Guo and Jason Bodily
Viruses 2025, 17(5), 598; https://doi.org/10.3390/v17050598 - 23 Apr 2025
Viewed by 635
Abstract
Epithelia contribute to the innate immune system through barrier formation and through signaling to immune cells. When the barrier is breached, epithelial cells undergo epithelial-to-mesenchymal transition (EMT) as part of the wound healing process. EMT is largely directed by signals from the stromal [...] Read more.
Epithelia contribute to the innate immune system through barrier formation and through signaling to immune cells. When the barrier is breached, epithelial cells undergo epithelial-to-mesenchymal transition (EMT) as part of the wound healing process. EMT is largely directed by signals from the stromal microenvironment, including transforming growth factor beta (TGFβ1), and antagonizes normal epithelial differentiation. How EMT and innate immunity may be connected molecularly has not been explored, although both processes are likely to occur simultaneously. Keratinocytes are the host cell type for human papillomaviruses (HPV), which can induce EMT in certain conditions but also depend on differentiation for their replication. We previously found that the innate immune factor interferon regulatory factor 3 (IRF3) inhibits epithelial differentiation and reduces the expression of HPV16 late genes. Here we report that IRF3 in the stroma compartment promotes an EMT-like pattern of gene expression in an HPV16-containing epithelium. The depletion of stromal IRF3 resulted in the downregulation of TGFβ1-related signaling in both the stroma and epithelium. IRF3 binds to the TGFB1 promoter in human foreskin fibroblasts and is necessary for TGFB1 mRNA production. Because an EMT-like state is unfavorable for differentiation-dependent HPV16, we observed that all EMT markers examined were reduced in the presence of episomal HPV16. Together, we show that stromal IRF3 can disrupt epithelial differentiation and act as an anti-HPV factor through the regulation of EMT, linking wound healing and immunity. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

19 pages, 665 KiB  
Review
Treatment and Prevention of HPV-Associated Skin Tumors by HPV Vaccination
by Thomas Meyer and Eggert Stockfleth
Vaccines 2024, 12(12), 1439; https://doi.org/10.3390/vaccines12121439 - 20 Dec 2024
Viewed by 1676
Abstract
HPV-associated dermatological diseases include benign lesions like cutaneous warts and external genital warts. In addition, HPV infection is associated with the development of epithelial skin cancers, in particular cutaneous squamous cell carcinoma (cSCC). In contrast to anogenital and oropharyngeal cancers caused by mucosal [...] Read more.
HPV-associated dermatological diseases include benign lesions like cutaneous warts and external genital warts. In addition, HPV infection is associated with the development of epithelial skin cancers, in particular cutaneous squamous cell carcinoma (cSCC). In contrast to anogenital and oropharyngeal cancers caused by mucosal HPV types of genus alpha papillomavirus, cSCC-associated HPV types belong to the genus beta papillomavirus. Currently available HPV vaccines that target mucosal HPV types associated with anogenital cancer and genital warts are type-specific and provide no cross-protection against beta HPV. When implementing vaccination to beta HPV to prevent skin tumors, it must be considered that acquisition of these HPV types occurs early in childhood and that the risk for cSCC increases with growing age and decreasing immune surveillance. Thus, individuals considered for beta HPV vaccination usually have pre-existing infection and are largely immunocompromised. On the other hand, worldwide increasing incidence rates of epithelial skin cancer reflect an urgent need for skin cancer prevention measures. Based on the pathogenic involvement of beta HPV, vaccination may represent a promising prevention strategy. Indeed, various procedures of prophylactic and therapeutic vaccination have been developed, and some of them have shown efficiency in animal models. Thus far, however, none of these vaccine candidates has been approved for application in humans. Full article
(This article belongs to the Section Human Papillomavirus Vaccines)
Show Figures

Figure 1

16 pages, 13046 KiB  
Article
Tobacco Smoke Condensate Induces Morphologic Changes in Human Papillomavirus-Positive Cervical Epithelial Cells Consistent with Epithelial to Mesenchymal Transition (EMT) with Activation of Receptor Tyrosine Kinases and Regulation of TGFB
by Zaniya A. Mark, Linda Yu, Lysandra Castro, Xiaohua Gao, Noelle R. Rodriguez, Deloris Sutton, Erica Scappini, Charles J. Tucker, Rob Wine, Yitang Yan, Evangeline Motley and Darlene Dixon
Int. J. Mol. Sci. 2024, 25(9), 4902; https://doi.org/10.3390/ijms25094902 - 30 Apr 2024
Cited by 2 | Viewed by 1971
Abstract
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette [...] Read more.
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10−6–100 μg/mL). We found CSC (10−3 or 10 μg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC. Full article
Show Figures

Figure 1

16 pages, 4152 KiB  
Article
Downregulation of LAMB3 Altered the Carcinogenic Properties of Human Papillomavirus 16-Positive Cervical Cancer Cells
by Warattaya Wattanathavorn, Masahide Seki, Yutaka Suzuki, Supranee Buranapraditkun, Nakarin Kitkumthorn, Thanayod Sasivimolrattana, Parvapan Bhattarakosol and Arkom Chaiwongkot
Int. J. Mol. Sci. 2024, 25(5), 2535; https://doi.org/10.3390/ijms25052535 - 22 Feb 2024
Cited by 5 | Viewed by 2376
Abstract
Nearly all cervical cancer cases are caused by infection with high-risk human papillomavirus (HR-HPV) types. The mechanism of cervical cell transformation is related to the powerful action of viral oncoproteins and cellular gene alterations. Transcriptomic data from cervical cancer and normal cervical cells [...] Read more.
Nearly all cervical cancer cases are caused by infection with high-risk human papillomavirus (HR-HPV) types. The mechanism of cervical cell transformation is related to the powerful action of viral oncoproteins and cellular gene alterations. Transcriptomic data from cervical cancer and normal cervical cells were utilized to identify upregulated genes and their associated pathways. The laminin subunit beta-3 (LAMB3) mRNAwas overexpressed in cervical cancer and was chosen for functional analysis. The LAMB3 was predominantly expressed in the extracellular region and the plasma membrane, which play a role in protein binding and cell adhesion molecule binding, leading to cell migration and tissue development. LAMB3 was found to be implicated in the pathway in cancer and the PI3K-AKT signaling pathway. LAMB3 knockdown decreased cell migration, invasion, anchorage-dependent and anchorage-independent cell growth and increased the number of apoptotic cells. These effects were linked to a decrease in protein levels involved in the PI3K-AKT signaling pathway and an increase in p53 protein. This study demonstrated that LAMB3 could promote cervical cancer cell migration, invasion and survival. Full article
Show Figures

Figure 1

10 pages, 2371 KiB  
Article
Broad-Spectrum Detection of HPV in Male Genital Samples Using Target-Enriched Whole-Genome Sequencing
by Tengguo Li, Elizabeth R. Unger and Mangalathu S. Rajeevan
Viruses 2023, 15(9), 1967; https://doi.org/10.3390/v15091967 - 21 Sep 2023
Cited by 2 | Viewed by 1852
Abstract
Most human papillomavirus (HPV) surveillance studies target 30–50 of the more than 200 known types. We applied our recently described enriched whole-genome sequencing (eWGS) assay to demonstrate the impact of detecting all known and novel HPV types in male genital samples (n [...] Read more.
Most human papillomavirus (HPV) surveillance studies target 30–50 of the more than 200 known types. We applied our recently described enriched whole-genome sequencing (eWGS) assay to demonstrate the impact of detecting all known and novel HPV types in male genital samples (n = 50). HPV was detected in nearly all (82%) samples, (mean number of types/samples 13.6; range 1–85), and nearly all HPV-positive samples included types in multiple genera (88%). A total of 560 HPV detections (237 unique HPV types: 46 alpha, 55 beta, 135 gamma, and 1 mu types) were made. The most frequently detected HPV types were alpha (HPV90, 43, and 74), beta (HPV115, 195, and 120), and gamma (HPV134, mSD2, and HPV50). High-risk alpha types (HPV16, 18, 31, 39, 52, and 58) were not common. A novel gamma type was identified (now officially HPV229) along with 90 unclassified types. This pilot study demonstrates the utility of the eWGS assay for broad-spectrum type detection and suggests a significantly higher type diversity in males compared to females that warrants further study. Full article
(This article belongs to the Special Issue HPV-Associated Cancers)
Show Figures

Figure 1

17 pages, 2712 KiB  
Article
Betapapillomaviruses in p16-Negative Vulvar Intraepithelial Lesions Associated with Squamous Cell Carcinoma
by Taja Lozar, Aysenur Keske, Racheal S. Dube Mandishora, Qiqi Yu, Adam Bailey, Jin Xu, Massimo Tommasino, Stephanie M. McGregor, Paul F. Lambert, Tarik Gheit and Megan B. Fitzpatrick
Viruses 2023, 15(9), 1950; https://doi.org/10.3390/v15091950 - 19 Sep 2023
Cited by 1 | Viewed by 1897
Abstract
Approximately 40% of vulvar squamous cell carcinoma (vSCC) cases are etiologically associated with high-risk human papillomaviruses (HPVs) of the alpha genera (α-HPV) that cause other anogenital cancers; however, the etiology of α-HPV-negative vSCC is poorly understood. HPVs of the beta genera (β-HPV) are [...] Read more.
Approximately 40% of vulvar squamous cell carcinoma (vSCC) cases are etiologically associated with high-risk human papillomaviruses (HPVs) of the alpha genera (α-HPV) that cause other anogenital cancers; however, the etiology of α-HPV-negative vSCC is poorly understood. HPVs of the beta genera (β-HPV) are risk factors for cutaneous squamous cell carcinoma (cSCC) and may be related to carcinomas originating in other cutaneous sites such as the vulva. In this study, we investigate the presence of β-HPVs, with an emphasis on p16-negative squamous lesions adjacent to vSCC. We subjected 28 vulvar squamous intraepithelial lesions adjacent to vSCC for comprehensive HPV genotyping, p16 and p53 immunohistochemistry, and consensus morphology review. Selected cases were subjected to qPCR and RNA in situ hybridization. Clinical data were obtained from medical records. β-HPV DNA was detected in eight of ten p16-negative lesions and three of fourteen p16-positive high-grade squamous intraepithelial lesions. The HPV DNA loads in vulvar squamous intraepithelial lesions ranged between less than 1 HPV DNA copy per cell to more than 100 HPV DNA copies per cell. This is, to the best of our knowledge, the first report of the association of p16-negative vulvar intraepithelial squamous lesions with detection of β-HPVs. These findings expand possible etiologic mechanisms that may contribute to p16-negative lesions of the vulva. Full article
(This article belongs to the Special Issue Biomarkers for Oncogenic Viruses)
Show Figures

Figure 1

12 pages, 792 KiB  
Article
HPV Vaccination Behavior, Vaccine Preference, and Health Beliefs in Chinese Female Health Care Workers: A Nationwide Cross-Sectional Study
by Xiaoping Shao, Xinyue Lu, Weiyu Zhou, Weifeng Huang and Yihan Lu
Vaccines 2023, 11(8), 1367; https://doi.org/10.3390/vaccines11081367 - 15 Aug 2023
Cited by 14 | Viewed by 2977
Abstract
Human papillomavirus (HPV) vaccination has been proven to be the most effective method to prevent cervical cancer. This study aimed to determine the HPV vaccination behavior and preference in Chinese female health care workers. A nationwide cross-sectional study was performed to recruit 15,967 [...] Read more.
Human papillomavirus (HPV) vaccination has been proven to be the most effective method to prevent cervical cancer. This study aimed to determine the HPV vaccination behavior and preference in Chinese female health care workers. A nationwide cross-sectional study was performed to recruit 15,967 respondents aged 18–45 years from 31 provinces in China’s mainland in 2021. Of them, 30.0% have been vaccinated or have made an appointment. Regardless of actual vaccination status, respondents mostly preferred the 9-valent HPV vaccine (58.6%), followed by 4-valent (15.6%) and 2-valent vaccines (3.1%); additionally, 17.9% did not have a preference. Moreover, health beliefs on HPV and HPV vaccination were measured using a health belief model (HBM) analysis. Six HBM constructs differed significantly by HPV vaccination status. Higher levels of perceived susceptibility (beta = 0.074), perceived benefit (beta = 0.072), self-efficacy (beta = 0.304), and cues to action (beta = 0.039) scales were significantly associated with increasing HPV vaccine uptake. In contrast, perceived severity (beta = −0.019) and perceived barriers (beta = −0.089) were negative factors. In conclusion, HPV vaccine uptake is high in Chinese female health care workers. HBM constructs may be effective in facilitating the improvement and delivery of targeted intervention programs to increase HPV vaccine uptake. Full article
Show Figures

Figure 1

14 pages, 2361 KiB  
Article
Cervicovaginal Microbiota Profiles in Precancerous Lesions and Cervical Cancer among Ethiopian Women
by Brhanu Teka, Kyoko Yoshida-Court, Ededia Firdawoke, Zewditu Chanyalew, Muluken Gizaw, Adamu Addissie, Adane Mihret, Lauren E. Colbert, Tatiana Cisneros Napravnik, Molly B. El Alam, Erica J. Lynn, Melissa Mezzari, Jhingran Anuja, Eva Johanna Kantelhardt, Andreas M. Kaufmann, Ann H. Klopp and Tamrat Abebe
Microorganisms 2023, 11(4), 833; https://doi.org/10.3390/microorganisms11040833 - 24 Mar 2023
Cited by 21 | Viewed by 3672
Abstract
Although high-risk human papillomavirus infection is a well-established risk factor for cervical cancer, other co-factors within the local microenvironment may play an important role in the development of cervical cancer. The current study aimed to characterize the cervicovaginal microbiota in women with premalignant [...] Read more.
Although high-risk human papillomavirus infection is a well-established risk factor for cervical cancer, other co-factors within the local microenvironment may play an important role in the development of cervical cancer. The current study aimed to characterize the cervicovaginal microbiota in women with premalignant dysplasia or invasive cervical cancer compared with that of healthy women. The study comprised 120 Ethiopian women (60 cervical cancer patients who had not received any treatment, 25 patients with premalignant dysplasia, and 35 healthy women). Cervicovaginal specimens were collected using either an Isohelix DNA buccal swab or an Evalyn brush, and ribosomal RNA sequencing was used to characterize the cervicovaginal microbiota. Shannon and Simpson diversity indices were used to evaluate alpha diversity. Beta diversity was examined using principal coordinate analysis of weighted UniFrac distances. Alpha diversity was significantly higher in patients with cervical cancer than in patients with dysplasia and in healthy women (p < 0.01). Beta diversity was also significantly different in cervical cancer patients compared with the other groups (weighted UniFrac Bray-Curtis, p < 0.01). Microbiota composition differed between the dysplasia and cervical cancer groups. Lactobacillus iners was particularly enriched in patients with cancer, and a high relative abundance of Lactobacillus species was identified in the dysplasia and healthy groups, whereas Porphyromonas, Prevotella, Bacteroides, and Anaerococcus species predominated in the cervical cancer group. In summary, we identified differences in cervicovaginal microbiota diversity, composition, and relative abundance between women with cervical cancer, women with dysplasia, and healthy women. Additional studies need to be carried out in Ethiopia and other regions to control for variation in sample collection. Full article
(This article belongs to the Special Issue Vaginal Microbiome in Women's Health)
Show Figures

Figure 1

17 pages, 1358 KiB  
Article
Human Papillomavirus E7 and p16INK4a mRNA Multiplexed Quantification by a QuantiGeneTM Proof-of-Concept Assay Sensitively Detects Infection and Cervical Dysplasia Severity
by Anna Sophie Skof, Lina Rotenberg, Paul Viktor Felix Hannemann, Sarah Thies, Eleonora Boschetti-Grützmacher and Andreas M. Kaufmann
Diagnostics 2023, 13(6), 1135; https://doi.org/10.3390/diagnostics13061135 - 16 Mar 2023
Cited by 3 | Viewed by 2312
Abstract
Background: Persistent infection with human papillomavirus (HPV) can lead to cervical cancer (CxCa). During the progression to CxCa, the expression of HPV oncogenes E6 and E7 is upregulated. In turn, cellular proteins such as p16INK4a are also modulated. The combined detection of [...] Read more.
Background: Persistent infection with human papillomavirus (HPV) can lead to cervical cancer (CxCa). During the progression to CxCa, the expression of HPV oncogenes E6 and E7 is upregulated. In turn, cellular proteins such as p16INK4a are also modulated. The combined detection of HPV oncogenes and cellular biomarkers indicative for dysplasia could be informative and convey better specificity than the current HPV tests that cannot discriminate transient infection from dysplastic changes. Methods: The QuantiGeneTM 2.0 Plex Assay platform was chosen for the effective multiplexing and quantitative detection of seven HPV-E7 mRNA targets (HPV6, 16, 18, 31, 45, 59, and 68) and the cellular mRNA of p16INK4a as a biomarker for HPV-induced transformation. Actin-beta (ACTB) and hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) were included as reference markers. Sequences for the specific capture and detector probes were customized and developed by ThermoFisher and formulated as a QuantiGene proof-of-concept (QG-POC) plex-set. The crude lysates of the HPV-positive cervical cancer cell lines CaSki (HPV16), HeLa (HPV18), MRHI-215 (HPV45), Erin59 (HPV59), ME180 (HPV68), and the HPV-negative cell line C33A, as well as liquid-based cytology smear samples (n = 441) were analyzed. The study was a proof-of-concept evaluating the feasibility of the platform. Logistic regression and receiver operating characteristic (ROC) analyses were performed to test for the sensitivity and specificity of HPV detection and dysplastic stage discrimination. Results: A QG-POC assay specifically and sensitively detects the HPV-E7 mRNA of seven different genotypes with an assay linearity between 20 and 13,000 cells. Cellular mRNA was detected from the crude lysates of cell lines and of cellular material from clinical liquid-based cytology smear samples. By combining HPV-E7 and p16INK4a expression normalized to ACTB, high-grade dysplasia (HCIN) and invasive cervical cancer (CxCa) were detectable, discriminable, and correlated to the biomarker expression strength. The ROC analysis from the multivariate logistic regression model including HPV-E7 and p16 INK4a resulted in an AUC of 0.74, at the optimal cut-off (sensitivity: 70.4%; specificity: 66.0%) for HCIN detection. CxCa was detected with an AUC of 0.77 (sensitivity: 81.8%, specificity: 77.4%). Conclusions: The QG-POC assay is sufficiently sensitive to detect and quantify HPV-E7 and cellular mRNA species. Multiplexing allows the specific detection of at least 10 analytes in a single reaction. Determining the abundance of E7 and p16INK4a transcripts when normalized to ACTB is informative about the presence of cervical dysplasia and potentially discriminates between low-grade and high-grade dysplasia and invasive cervical cancer. Further studies including more HPV genotypes and biomarkers are warranted. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

11 pages, 838 KiB  
Article
Interaction of HPV16 and Cutaneous HPV in Head and Neck Cancer
by Walid A. Al-Soneidar, Sam Harper, Babatunde Y. Alli and Belinda Nicolau
Cancers 2022, 14(21), 5197; https://doi.org/10.3390/cancers14215197 - 23 Oct 2022
Cited by 2 | Viewed by 2149
Abstract
Objectives: Human papillomavirus 16 (HPV16) is an established risk factor for Head and Neck Cancer (HNC). Recent reports have shown that genotypes from the beta (β) and gamma (γ) genera, also known as cutaneous HPV, can be found in the oral cavity, but [...] Read more.
Objectives: Human papillomavirus 16 (HPV16) is an established risk factor for Head and Neck Cancer (HNC). Recent reports have shown that genotypes from the beta (β) and gamma (γ) genera, also known as cutaneous HPV, can be found in the oral cavity, but their role is largely unidentified. We investigated the interaction between oral HPV16 and cutaneous HPV in HNC. Methods: We use data on incident HNC cases (n = 384) and frequency-matched hospital-based controls (n = 423) from the HeNCe Life study in Montreal, Canada. Participants were tested for alpha HPV and cutaneous genera using oral mouth rinse and brush samples. We used unconditional logistic regression to obtain adjusted odds ratios (aOR) and 95% confidence interval (CI) as a measure of the effect between HPV and HNC and assessed the interaction between HPV genotypes on the multiplicative and additive scales. Results: Prevalence of HPV infection was higher among cases (73%) than controls (63.4%), with cases more likely to be coinfected with more than a single genotype, 52.9% vs. 43.5%, respectively. Infection with HPV16 alone had a strong effect on HNC risk aOR = 18.2 [6.2, 53.2], while infection with any cutaneous HPV, but not HPV16, appeared to have the opposite effect aOR = 0.8 [0.6, 1.1]. The observed effect of joint exposure to HPV16 and any cutaneous HPV (aOR = 20.4 [8.3, 50.1]) was stronger than the expected effect based on an assumption of independent exposures but was measured with considerable imprecision. While the point estimate suggests a positive interaction between HPV16 and cutaneous HPV, results were imprecise with relative excess risk due to interaction (RERI) = 2.4 [−23.3, 28.2]. Conclusion: There could be biologic interaction between HPV16 and genotypes from cutaneous genera, which warrants further investigation. Although cutaneous HPVs are not usually found in tumor tissues, they are cofactors that could interact with HPV16 in the oral cavity and thus strengthen the latter’s carcinogenic effect. Full article
(This article belongs to the Special Issue Epidemiology of HPV-Associated Oropharyngeal Squamous Cell Carcinoma)
Show Figures

Figure 1

14 pages, 1971 KiB  
Article
Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-Like Receptor MDA5
by Stephanie Rattay, Martin Hufbauer, Christian Hagen, Bastian Putschli, Christoph Coch, Baki Akgül and Gunther Hartmann
Viruses 2022, 14(7), 1361; https://doi.org/10.3390/v14071361 - 22 Jun 2022
Cited by 12 | Viewed by 2875
Abstract
Persistent infections of the skin with the human papillomavirus of genus beta (β-HPV) in immunocompetent individuals are asymptomatic, but in immunosuppressed patients, β-HPV infections exhibit much higher viral loads on the skin and are associated with an increased risk of skin cancer. Unlike [...] Read more.
Persistent infections of the skin with the human papillomavirus of genus beta (β-HPV) in immunocompetent individuals are asymptomatic, but in immunosuppressed patients, β-HPV infections exhibit much higher viral loads on the skin and are associated with an increased risk of skin cancer. Unlike with HPV16, a high-risk α-HPV, the impact of β-HPV early genes on the innate immune sensing of viral nucleic acids has not been studied. Here, we used primary skin keratinocytes and U2OS cells expressing HPV8 or distinct HPV8 early genes and well-defined ligands of the nucleic-acid-sensing receptors RIG-I, MDA5, TLR3, and STING to analyze a potential functional interaction. We found that primary skin keratinocytes and U2OS cells expressed RIG-I, MDA5, TLR3, and STING, but not TLR7, TLR8, or TLR9. While HPV16-E6 downregulated the expression of RIG-I, MDA5, TLR3, and STING and, in conjunction with HPV16-E7, effectively suppressed type I IFN in response to MDA5 activation, the presence of HPV8 early genes showed little effect on the expression of these immune receptors, except for HPV8-E2, which was associated with an elevated expression of TLR3. Nevertheless, whole HPV8 genome expression, as well as the selective expression of HPV8-E1 or HPV8-E2, was found to suppress MDA5-induced type I IFN and the proinflammatory cytokine IL-6. Furthermore, RNA isolated from HPV8-E2 expressing primary human keratinocytes, but not control cells, stimulated a type I IFN response in peripheral blood mononuclear cells, indicating that the expression of HPV8-E2 in keratinocytes leads to the formation of stimulatory RNA ligands that require the active suppression of immune recognition. These results identify HPV8-E1 and HPV8-E2 as viral proteins that are responsible for the immune escape of β-HPV from the innate recognition of viral nucleic acids, a mechanism that may be necessary for establishing persistent β-HPV infections. Full article
(This article belongs to the Special Issue Host Cell–Virus Interaction 2.0)
Show Figures

Figure 1

14 pages, 354 KiB  
Review
Beta HPV Deregulates Double-Strand Break Repair
by Changkun Hu and Nicholas Wallace
Viruses 2022, 14(5), 948; https://doi.org/10.3390/v14050948 - 30 Apr 2022
Cited by 7 | Viewed by 2687
Abstract
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to [...] Read more.
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to increase genomic instability stemming from ultraviolet light exposure by disrupting DNA damage responses. Implicit in this hypothesis is that the virus encodes one or more proteins that impair DNA repair signaling. Fluorescence-based reporters, next-generation sequencing, and animal models have been used to test this primarily in cells expressing beta HPV E6/E7. Of the two, beta HPV E6 appears to have the greatest ability to increase UV mutagenesis, by attenuating two major double-strand break (DSB) repair pathways, homologous recombination, and non-homologous end-joining. Here, we review this dysregulation of DSB repair and emerging approaches that can be used to further these efforts. Full article
14 pages, 287 KiB  
Review
Merkel Cell Polyoma Virus and Cutaneous Human Papillomavirus Types in Skin Cancers: Optimal Detection Assays, Pathogenic Mechanisms, and Therapeutic Vaccination
by Ramona Gabriela Ursu, Costin Damian, Elena Porumb-Andrese, Nicolae Ghetu, Roxana Gabriela Cobzaru, Catalina Lunca, Carmen Ripa, Diana Costin, Igor Jelihovschi, Florin Dumitru Petrariu and Luminita Smaranda Iancu
Pathogens 2022, 11(4), 479; https://doi.org/10.3390/pathogens11040479 - 16 Apr 2022
Cited by 5 | Viewed by 3866
Abstract
Oncogenic viruses are recognized to be involved in some cancers, based on very well-established criteria of carcinogenicity. For cervical cancer and liver cancer, the responsible viruses are well-known (e.g., HPV, HBV); in the case of skin cancer, there are still many studies which [...] Read more.
Oncogenic viruses are recognized to be involved in some cancers, based on very well-established criteria of carcinogenicity. For cervical cancer and liver cancer, the responsible viruses are well-known (e.g., HPV, HBV); in the case of skin cancer, there are still many studies which are trying to identify the possible viral etiologic agents as principal co-factors in the oncogenic process. We analysed scientific literature published in the last 5 years regarding mechanisms of carcinogenicity, methods of detection, available targeted therapy, and vaccination for Merkel cell polyomavirus, and beta human papillomavirus types, in relation to skin cancer. This review is targeted at presenting the recent findings which support the involvement of these viruses in the development of some types of skin cancers. In order to optimize the management of skin cancer, a health condition of very high importance, it would be ideal that the screening of skin cancer for these two analysed viruses (MCPyV and beta HPV types) to be implemented in each region’s/country’s cancer centres’ molecular detection diagnostic platforms, with multiplex viral capability, optimal sensitivity, and specificity; clinically validated, and if possible, at acceptable costs. For confirmatory diagnosis of skin cancer, another method should be used, with a different principle, such as immunohistochemistry, with specific antibodies for each virus. Full article
(This article belongs to the Special Issue Role of Pathogens in Chronic Inflammatory Diseases and Cancer)
17 pages, 3922 KiB  
Article
Targeting Wnt/Beta-Catenin Signaling in HPV-Positive Head and Neck Squamous Cell Carcinoma
by Faris F. Brkic, Stefan Stoiber, Tobias Maier, Elisabeth Gurnhofer, Lukas Kenner, Gregor Heiduschka and Lorenz Kadletz-Wanke
Pharmaceuticals 2022, 15(3), 378; https://doi.org/10.3390/ph15030378 - 20 Mar 2022
Cited by 11 | Viewed by 4476
Abstract
Wnt/Beta-Catenin signaling is involved in the carcinogenesis of different solid malignant tumors. The interaction of Creb-binding protein (CBP) with Beta-Catenin is a pivotal component of the Wnt/Beta-Catenin signaling pathway. The first aim of this study was to evaluate the association of CBP expression [...] Read more.
Wnt/Beta-Catenin signaling is involved in the carcinogenesis of different solid malignant tumors. The interaction of Creb-binding protein (CBP) with Beta-Catenin is a pivotal component of the Wnt/Beta-Catenin signaling pathway. The first aim of this study was to evaluate the association of CBP expression with survival in patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC). Second, the in vitro effects of the inhibition of CBP/Beta-Catenin interaction were analyzed. In particular, the effects of ICG-001, an inhibitor of CBP/Beta-Catenin interaction, on proliferation, cell death, modulation of Wnt/Beta-Catenin target expression, and cell migration were examined in vitro. High CBP expression is significantly associated with better survival on mRNA and protein levels. Furthermore, we observed cytotoxic as well as anti-migratory effects of ICG-001. These effects were particularly more potent in the HPV-positive than in the -negative cell line. Mechanistically, ICG-001 treatment induced apoptosis and led to a downregulation of CBP, c-MYC, and Cyclin D1 in HPV-positive cells, indicating inhibition of Wnt/Beta-Catenin signaling. In conclusion, high CBP expression is observed in HPV-positive HNSCC patients with a good prognosis, and ICG-001 showed a promising antineoplastic potential, particularly in HPV-positive HNSCC cells. Therefore, ICG-001 may potentially become an essential component of treatment de-escalation regimens for HPV-positive HNSCC. Further studies are warranted for additional assessment of the mechanistic background of our in vitro findings. Full article
(This article belongs to the Special Issue Novel Anti-proliferative Agents)
Show Figures

Figure 1

Back to TopTop