Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = banana stem fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 17875 KiB  
Article
Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials
by Fazilla Oktaviani Tarigan, Luthfi Hakim, Agus Purwoko, Tito Sucipto, Halimatuddahliana Nasution, Widya Fatriasari, Muhammad Adly Rahandi Lubis, Jajang Sutiawan, Mohammad Irfan Bakhsi, Nam-Hun Kim, Petar Antov, Seng Hua Lee, Rangabhashiyam Selvasembian, Mohd Hazwan Hussin, Manggar Arum Aristri and Apri Heri Iswanto
Polymers 2025, 17(4), 512; https://doi.org/10.3390/polym17040512 - 16 Feb 2025
Cited by 2 | Viewed by 1175
Abstract
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite [...] Read more.
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite products as alternatives to non-wood lignocellulosic raw materials. As a result, the purpose of this study is to examine and assess the physical, mechanical, and acoustic properties of particleboard manufactured from non-wood lignocellulosic biomass. The core layer was composed of non-wood lignocelluloses (banana stem, rice straw, coconut fiber, sugarcane bagasse, and fibrous vascular bundles (FVB) from snakefruit fronds), whereas the surface was made of belangke bamboo (Gigantochloa pruriens) and wood. The chemical characteristics, fiber dimensions and derivatives, and contact angles of non-wood lignocellulosic materials were investigated. The contact angle, which ranged from 44.57 to 62.37 degrees, was measured to determine the wettability of these materials toward adhesives. Hybrid particleboard (HPb) or sandwich particleboard (SPb) samples of 25 cm × 25 cm with a target density of 0.75 g/cm3 and a thickness of 1 cm were manufactured using 7% isocyanate adhesive (based on raw material oven dry weight). The physical parameters of the particleboard, including density, water content, water absorption (WA), and thickness swelling (TS), ranged from 0.47 to 0.79 g/cm3, 6.57 to 13.78%, 16.46 to 103.51%, and 3.38 to 39.91%, respectively. Furthermore, the mechanical properties of the particleboard, including the modulus of elasticity (MOE), bending strength (MOR), and internal bond strength (IB), varied from 0.39 to 7.34 GPa, 6.52 to 87.79 MPa, and 0.03 to 0.69 MPa, respectively. On the basis of these findings, the use of non-wood lignocellulosic raw materials represents a viable alternative for the production of high-performance particleboard. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials III)
Show Figures

Figure 1

26 pages, 1331 KiB  
Review
An Upcycling Approach from Fruit Processing By-Products: Flour for Use in Food Products
by Laís Benvenutti, Fernanda Moreira Moura, Gabriela Zanghelini, Cristina Barrera, Lucía Seguí and Acácio Antonio Ferreira Zielinski
Foods 2025, 14(2), 153; https://doi.org/10.3390/foods14020153 - 7 Jan 2025
Cited by 4 | Viewed by 3452
Abstract
The growing global population has led to increased food consumption and a significant amount of food waste, including the non-consumed parts of fruits (e.g., stems, rinds, peels, seeds). Despite their nutrient richness, these by-products are often discarded. With the rising interest in nutrient-dense [...] Read more.
The growing global population has led to increased food consumption and a significant amount of food waste, including the non-consumed parts of fruits (e.g., stems, rinds, peels, seeds). Despite their nutrient richness, these by-products are often discarded. With the rising interest in nutrient-dense foods for health benefits, fruit by-products have potential as nutritious ingredients. Upcycling, which repurposes waste materials, is one solution. White flour, which is common in food products like bread and pasta, has good functional properties but poor nutritional value. This can be enhanced by blending white flour with fruit by-product flours, creating functional, nutrient-rich mixtures. This review explores using flours from common Brazilian fruit by-products (e.g., jaboticaba, avocado, guava, mango, banana, jackfruit, orange, pineapple, and passion fruit) and their nutritional, physical–chemical properties, quality and safety, and applications. Partially replacing wheat flour with fruit flour improves its nutritional value, increasing the amount of fiber, protein, and carbohydrates present in it. However, higher substitution levels can alter color and flavor, impacting the sensory appeal and acceptability. While studies showed the potential of fruit by-product flours in food formulation, there is limited research on their long-term health impacts. Full article
(This article belongs to the Special Issue Food Ingredients from Food Wastes and By-Products)
Show Figures

Figure 1

14 pages, 2484 KiB  
Article
Potential for Biogas Production from Water Hyacinth and Banana Peels: A Case Study of Substrates Harvested from Lomé, Togo
by Djangbadjoa Gbiete, Jan Sprafke, Damgou Mani Kongnine, Satyanarayana Narra, Pali Kpelou, Essowè Mouzou and Komi Agboka
Fuels 2024, 5(3), 494-507; https://doi.org/10.3390/fuels5030027 - 9 Sep 2024
Cited by 4 | Viewed by 3693
Abstract
Climate change and the growing demand for energy have prompted research on alternative eco-friendly energy sources. This study focused on the potential for biogas production from water hyacinth and banana peel waste through physicochemical characterization and batch anaerobic digestion tests. The water hyacinth [...] Read more.
Climate change and the growing demand for energy have prompted research on alternative eco-friendly energy sources. This study focused on the potential for biogas production from water hyacinth and banana peel waste through physicochemical characterization and batch anaerobic digestion tests. The water hyacinth and banana peel samples were dried, ground, and subjected to elemental, proximate, and fiber content analyses. Subsequently, banana peel waste, water hyacinth stems, and leaves were used for batch anaerobic digestion tests in 500 mL glass flask bottles for 21 days under mesophilic conditions in n = 3 trials. Kruskal–Wallis and Dunnett’s tests were performed to identify the significance of the differences in biogas yield among the samples. The analyses of the elemental, proximate, and fiber contents of water hyacinth and banana peels revealed that they possess a suitable chemical composition and essential nutrients for the production of high-yield biogas. The biogas yields from water hyacinth leaves, stems, and banana peels were 280.15, 324.79, and 334.82 mL/g VS, respectively. These findings indicate that water hyacinth and banana peel waste have significant potential for biogas production. Full article
(This article belongs to the Special Issue Biomass Conversion to Biofuels)
Show Figures

Figure 1

12 pages, 6542 KiB  
Proceeding Paper
A Numerical Study on Coconut Inflorescence Stem-Fiber-Reinforced Panels Subjected to Tensile Load, Compressive Load, and Flexural Load
by Muralidhar Nagarajaiah, Raveesh Ranganathappa Mahadevaiah, Kishan Rao Bangri Parshuram and Pavan Hiremath
Eng. Proc. 2023, 59(1), 233; https://doi.org/10.3390/engproc2023059233 - 22 Feb 2024
Cited by 1 | Viewed by 1082
Abstract
Natural-fiber-reinforced composites are attracting an increasing amount of interest, and they are becoming more popular as a replacement for synthetic-fiber-reinforced composites. Natural-fiber-reinforced composites are important as a potential building material due to their lightweight nature, strength, and favorable qualities, which include eco-friendliness, non-toxicity, [...] Read more.
Natural-fiber-reinforced composites are attracting an increasing amount of interest, and they are becoming more popular as a replacement for synthetic-fiber-reinforced composites. Natural-fiber-reinforced composites are important as a potential building material due to their lightweight nature, strength, and favorable qualities, which include eco-friendliness, non-toxicity, and biodegradability. Natural fibers such as hemp fibers, jute fibers, banana fibers, coconut fibers, sisal fibers, bamboo fibers, areca nut fibers, and kenaf fibers have been used for making composite panels because of their strength-to-weight ratio. Coconut inflorescence stem fibers are considered for our study. Coconut inflorescence stem-reinforced composite panels are often subjected to tensile load, compression load, and flexural load. Tensile strength, compressive strength, and flexural strength play a vital role when these panels are subjected to service loads. In this context, finite element analysis (FEA) is carried out on coconut inflorescence stem-reinforced panels subjected to tensile load, compressive load, and flexural load. A linear analysis is performed for the mechanical properties by using ANSYS workbench 2021 R1. A coconut inflorescence stem-reinforced composite specimen with the dimensions 280 mm × 25 mm × 3 mm (length × width × thickness) for tensile loading, 145 mm × 25 mm × 4 mm for the compressive load, and 150 mm × 25 mm × 4 mm for the flexural load is considered for the present study, as per the ASTM-D3039, ASTM-D3410, and ASTM-D790 standards, respectively. Finite element analysis results showed good correlation with the analytical results. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

11 pages, 3379 KiB  
Proceeding Paper
Finite Element Study on Coconut Inflorescence Stem Fiber Composite Panels Subjected to Static Loading
by Muralidhar Nagarajaiah, Arunkumar Yadav, Shanmukha Prasannakumar, Raveesh Ranganathapura Mahadevaiah and Pavan Hiremath
Eng. Proc. 2023, 59(1), 215; https://doi.org/10.3390/engproc2023059215 - 24 Jan 2024
Cited by 1 | Viewed by 1063
Abstract
Natural fiber-reinforced composites (NFCs) are alternatives to synthetic fiber-reinforced composites, since they are abundant in nature, inexpensive, lightweight, and have a high strength-to-weight ratio. Natural fibers encompass a diverse composition, including lignin, hemicellulose, wax, and cellulose. Natural fibers are environmentally friendly, biodegradable, renewable, [...] Read more.
Natural fiber-reinforced composites (NFCs) are alternatives to synthetic fiber-reinforced composites, since they are abundant in nature, inexpensive, lightweight, and have a high strength-to-weight ratio. Natural fibers encompass a diverse composition, including lignin, hemicellulose, wax, and cellulose. Natural fibers are environmentally friendly, biodegradable, renewable, reusable, and sustainable. In bio-composites, natural fibers such as jute, banana, hemp, coir, kenaf, areca nut, and coconut inflorescence stem fibers, are blended with resin. Natural fiber-reinforced bio-composites have various applications in the construction industry, automobile industry, aerospace industry, sports equipment and gadgets, textile industry, and hotel industry. Fibers from natural sources are also used as reinforcements in composites, such as roofing sheets, bricks, door panels, furniture panels, and panels for interior decoration. The mechanical properties of natural fiber-reinforced composites are profoundly influenced by the bonding between the fibers and the matrix. This study involves the testing of compact tension (CT) specimens under mode I fracture conditions and employs three-dimensional finite element analysis (FEA) using ANSYS software to enhance our understanding of the material’s fracture behavior. Finite element analysis was performed on coconut inflorescence stem fiber-reinforced composite (CIFRC) panels with preformed cracks. Numerical simulation was carried out using ANSYS software. Properties such as crack growth initiation, stress-intensity factor, and stresses along the length of a CIFRC panel were examined using finite element analysis (FEA). ASTM D-5045 standards were followed for the specimen size and the ASTM E399 standard was followed for the finite element pre-cracking. The simulation results were found to be in good agreement with the analytical results. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

12 pages, 2795 KiB  
Article
Liquid Smoke Treatment for Natural Fibers: The Effect on Tensile Properties, Surface Morphology, Crystalline Properties, and Functional Groups of Banana Stem Fibers
by Mukhlis Muslimin, Mustamin Rahim, Ahmad Seng and Sandi Rais
Appl. Syst. Innov. 2022, 5(5), 94; https://doi.org/10.3390/asi5050094 - 28 Sep 2022
Cited by 5 | Viewed by 3005
Abstract
This study aims to determine the effect of the treatment of banana stem fibers (BSF) with grade three liquid smoke on changes in the micromechanical properties of the BSF, single fiber tensile strength, morphology, crystal properties, and functional groups. This study used four [...] Read more.
This study aims to determine the effect of the treatment of banana stem fibers (BSF) with grade three liquid smoke on changes in the micromechanical properties of the BSF, single fiber tensile strength, morphology, crystal properties, and functional groups. This study used four variations of the specimen model, namely, fiber without treatment and immersion in liquid smoke for 1, 2, and 3 h. BSF with treatment was dried in an oven at 40 °C for 30 min. Several tests were carried out, including the tensile test for single fiber capacity of 50N standard ASTM 3379-02, Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infra-Red (FTIR) observation. The results showed that the highest increase in fiber strength occurred in P2J, which was 43.78%, with crystal intensity of 34.97%, compared to TP fiber. Treatment of fiber with liquid smoke can form a strong C-C elemental bond caused by the H2O degradation process in BSF so that the carbon atom (C) becomes solid; under conditions of excessive H2O degradation, the fiber strength will become brittle, however, liquid smoke can increase the fiber tensile strength. The morphology of the fiber changed where the untreated fiber was covered in lignin, while the treated fiber had a rectangular pattern of elongated lines, was porous, and the lignin was eroded. The fiber crystallization index increased due to changes in fiber structure, where the highest peak of TP BSF occurred at point two, while the highest peaks in BSF P1J, P2J, and P3J occurred respectively at points two and three. These results prove that the innovation of BSF treatment with liquid smoke can change the morphology, crystalline, and functional aspects of BSF, so that it becomes the choice of composite reinforcement material in the future, an option that is lightweight and environmentally friendly. Full article
(This article belongs to the Section Industrial and Manufacturing Engineering)
Show Figures

Figure 1

11 pages, 2751 KiB  
Article
Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam Waste
by Wilasinee Sriprom, Adilah Sirivallop, Aree Choodum, Wadcharawadee Limsakul and Worawit Wongniramaikul
Polymers 2022, 14(11), 2241; https://doi.org/10.3390/polym14112241 - 31 May 2022
Cited by 13 | Viewed by 4628
Abstract
A novel reinforced recycled expanded polystyrene (r-EPS) foam/natural fiber composite was successfully developed. EPS was recycled by means of the dissolution method using an accessible commercial mixed organic solvent, while natural fibers, i.e., coconut husk fiber (coir) and banana stem fiber (BSF) were [...] Read more.
A novel reinforced recycled expanded polystyrene (r-EPS) foam/natural fiber composite was successfully developed. EPS was recycled by means of the dissolution method using an accessible commercial mixed organic solvent, while natural fibers, i.e., coconut husk fiber (coir) and banana stem fiber (BSF) were used as reinforcement materials. The treatment of natural fibers with 5% (w/v) sodium hydroxide solution reduces the number of –OH groups and non-cellulose components in the fibers, more so with longer treatments. The natural fibers treated for 6 h showed rough surfaces that provided good adhesion and interlocking with the polymer matrix for mechanical reinforcement. The tensile strength and impact strength of r-EPS foam composites with treated fibers were higher than for non-filled r-EPS foam, whereas their flexural strengths were lower. Thus, this study has demonstrated an alternative way to produce recycled polymer/natural fiber composites via the dissolution method, with promising enhanced mechanical properties. Full article
(This article belongs to the Topic Polymers from Renewable Resources)
Show Figures

Graphical abstract

10 pages, 3842 KiB  
Article
Utilization of Banana Fiber-Reinforced Hybrid Composites in the Sports Industry
by Ans Al Rashid, Muhammad Yasir Khalid, Ramsha Imran, Umair Ali and Muammer Koc
Materials 2020, 13(14), 3167; https://doi.org/10.3390/ma13143167 - 16 Jul 2020
Cited by 80 | Viewed by 10593
Abstract
The sports industry is an ever-growing sector worldwide. With technological advancements in information technologies, the sports industry has merged with the entertainment industry, reaching and influencing billions of people globally. However, to ensure and advance the safety, security, and sustainability of the sports [...] Read more.
The sports industry is an ever-growing sector worldwide. With technological advancements in information technologies, the sports industry has merged with the entertainment industry, reaching and influencing billions of people globally. However, to ensure and advance the safety, security, and sustainability of the sports industry, technological innovations are always needed in several manufacturing and materials processes to achieve cost-effectiveness, efficiency, durability, reusability, and recyclability of products used in this industry. For example, 90% of the field hockey equipment produced in the world comes from Sialkot, Pakistan. Most export quality field hockey equipment is currently produced via reinforcement of glass/carbon fibers in epoxy resin. The current study aimed to introduce new materials for field hockey equipment to reduce manufacturing costs and the environmental impact of synthetic materials, without comprising the quality of the final product. Our literature review on natural fibers revealed that they offer excellent and compatible mechanical properties. Based on extensive experimental studies, we concluded that banana fiber reinforced hybrid composites could be an alternative to pure glass fiber reinforced composites, with comparable and even higher load withstanding capabilities. Using banana fiber reinforced hybrid composites for the fabrication of hockey products would cut costs and lower the environmental impact stemming from the uses of biodegradable organic materials. It will also lead to the development of a domestic economy based on domestic resources. Full article
Show Figures

Figure 1

22 pages, 10612 KiB  
Article
Impact Damage Resistance and Post-Impact Tolerance of Optimum Banana-Pseudo-Stem-Fiber-Reinforced Epoxy Sandwich Structures
by Mohamad Zaki Hassan, S. M. Sapuan, Zainudin A. Rasid, Ariff Farhan Mohd Nor, Rozzeta Dolah and Mohd Yusof Md Daud
Appl. Sci. 2020, 10(2), 684; https://doi.org/10.3390/app10020684 - 18 Jan 2020
Cited by 27 | Viewed by 6071
Abstract
Banana fiber has a high potential for use in fiber composite structures due to its promise as a polymer reinforcement. However, it has poor bonding characteristics with the matrixes due to hydrophobic–hydrophilic incompatibility, inconsistency in blending weight ratio, and fiber length instability. In [...] Read more.
Banana fiber has a high potential for use in fiber composite structures due to its promise as a polymer reinforcement. However, it has poor bonding characteristics with the matrixes due to hydrophobic–hydrophilic incompatibility, inconsistency in blending weight ratio, and fiber length instability. In this study, the optimal conditions for a banana/epoxy composite as determined previously were used to fabricate a sandwich structure where carbon/Kevlar twill plies acted as the skins. The structure was evaluated based on two experimental tests: low-velocity impact and compression after impact (CAI) tests. Here, the synthetic fiber including Kevlar, carbon, and glass sandwich structures were also tested for comparison purposes. In general, the results showed a low peak load and larger damage area in the optimal banana/epoxy structures. The impact damage area, as characterized by the dye penetration, increased with increasing impact energy. The optimal banana composite and synthetic fiber systems were proven to offer a similar residual strength and normalized strength when higher impact energies were applied. Delamination and fracture behavior were dominant in the optimal banana structures subjected to CAI testing. Finally, optimization of the compounding parameters of the optimal banana fibers improved the impact and CAI properties of the structure, making them comparable to those of synthetic sandwich composites. Full article
(This article belongs to the Special Issue Progress of Fiber-Reinforced Composites: Design and Applications)
Show Figures

Figure 1

Back to TopTop