Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam Waste
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dissolution of EPS Foam
2.3. Preparation and Characterization of Natural Fiber
2.4. Preparation of Natural Fiber-Reinforced Recycled EPS Foam Composites
2.5. Mechanical Properties of Natural Fiber-Reinforced Recycled EPS Foam Composites
3. Results and Discussion
3.1. Characterization of Natural Fibers
3.2. Characterization of Recycled EPS Foam/Natural Fiber Composites
3.2.1. The Distribution of Fibers in r-EPS
3.2.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandyopadhyay, A.; Basak, G.C. Studies on photocatalytic degradation of polystyrene. Mater. Sci. Technol. 2007, 23, 307–314. [Google Scholar] [CrossRef]
- Breaking Down Ocean Polystyrene–Fauna & Flora International. Available online: https://www.fauna-flora.org/app/uploads/2020/07/FFI_2020_Breaking-Down-Ocean-Polystyrene_Scoping-Report.pdf (accessed on 7 April 2022).
- International Agency for Research on Cancer; World Health Organization. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Some Industrial Chemicals); IARC: Lyon, France, 1994; Volume 60, pp. 233–320. [Google Scholar]
- Yanagiba, Y.; Ito, Y.; Yamanoshita, O.; Zhang, S.; Watanabe, G.; Taya, K.; Li, C.M.; Inotsume, Y.; Kamijima, M.; Gonzalez, F.J.; et al. Styrene trimer may increase thyroid hormone levels via down-regulation of the aryl hydrocarbon receptor (AhR) target gene UDP-glucuronosyltransferase. Environ. Health. Perspect. 2008, 116, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Eskander, S.B.; Tawfik, M.E. Polymer–cement composite based on recycled expanded polystyrene foam waste. Polym. Compos. 2011, 32, 1430–1438. [Google Scholar] [CrossRef]
- Kan, A.; Demirboğa, R. A new technique of processing for waste-expanded polystyrene foams as aggregates. J. Mater. Process. Technol. 2009, 209, 2994–3000. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- García, M.T.; Duque, G.; Gracia, I.; de Lucas, A.; Rodríguez, J.F. Recycling extruded polystyrene by dissolution with suitable solvents. J. Mater. Cycles Waste Manag. 2009, 11, 2–5. [Google Scholar] [CrossRef]
- Gutiérrez, C.; García, M.T.; Gracia, I.; de Lucas, A.; Rodríguez, J.F. Recycling of extruded polystyrene wastes by dissolution and supercritical CO2 technology. J. Mater. Cycles Waste Manag. 2012, 14, 308–316. [Google Scholar] [CrossRef]
- Miller-Chou, B.A.; Koenig, J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003, 28, 1223–1270. [Google Scholar] [CrossRef]
- Shin, C.; Chase, G.G. Nanofibers from recycle waste expanded polystyrene using natural solvent. Polym. Bull. 2005, 55, 209–215. [Google Scholar] [CrossRef]
- Noguchi, T.; Inagaki, Y.; Miyashita, M.; Watanabe, H. A new recycling system for expanded polystyrene using a natural solvent. Part 2. Development of a prototype production system. Packag. Technol. Sci. 1998, 11, 29–37. [Google Scholar] [CrossRef]
- Shin, C. Filtration application from recycled expanded polystyrene. J. Colloid Interface Sci. 2006, 302, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Chase, G.G.; Reneker, D.H. Recycled expanded polystyrene nanofibers applied in filter media. Colloids Surf. A Physicochem. Eng. Asp. 2005, 262, 211–215. [Google Scholar] [CrossRef]
- Homkhiew, C.; Ratanawilai, T.; Thongruang, W. Effects of natural weathering on the properties of recycled polypropylene composites reinforced with rubberwood flour. Ind. Crops Prod. 2014, 56, 52–59. [Google Scholar] [CrossRef]
- Khanam, N.P.; AlMaadeed, M.A. Improvement of ternary recycled polymer blend reinforced with date palm fibre. Mater. Des. 2014, 60, 532–539. [Google Scholar] [CrossRef]
- Zadeh, K.M.; Ponnamma, D.; Al-Maadeed, M.A.A. Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy. Polym. Test. 2017, 61, 341–348. [Google Scholar] [CrossRef]
- Arnandha, Y.; Satyarno, I.; Awaludin, A.; Irawati, I.S.; Prasetya, Y.; Prayitno, D.A.; Winata, D.C.; Satrio, M.H.; Amalia, A. Physical and mechanical properties of WPC board from sengon sawdust and recycled HDPE plastic. Procedia Eng. 2017, 171, 695–704. [Google Scholar] [CrossRef]
- Turku, I.; Keskisaari, A.; Kärki, T.; Puurtinen, A.; Marttila, P. Characterization of wood plastic composites manufactured from recycled plastic blends. Compos. Struct. 2017, 161, 469–476. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Mamun, A.A.; Faruk, O. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Express Polym. Lett. 2007, 1, 755–762. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Faruk, O.; Mamun, A.A. Influence of compounding processes and fibre length on the mechanical properties of abaca fibre-polypropylene composites. Polimery 2008, 53, 120–125. [Google Scholar] [CrossRef][Green Version]
- Abu Bakar, M.A.; Ahmad, S.; Kuntjoro, W. The mechanical properties of treated and untreated kenaf fibre reinforced epoxy composite. J. Biobased Mater. Bioenergy 2010, 4, 159–163. [Google Scholar] [CrossRef]
- Akil, H.M.; Omar, M.F.; Mazuki, A.A.M.; Safiee, S.; Ishak, Z.A.M.; Abu Bakar, A. Kenaf fiber reinforced composites: A review. Mater. Des. 2011, 32, 4107–4121. [Google Scholar] [CrossRef]
- Chandra Rao, C.H.; Madhusudan, S.; Raghavendra, G.; Venkateswara Rao, E. Investigation in to wear behavior of coir fiber reinforced epoxy composites with the Taguchi method. Int. J. Eng. Res. Appl. 2012, 2, 371–374. Available online: http://www.ijera.com/papers/Vol2_issue5/BK25371374.pdf (accessed on 7 April 2022).
- Haameem, J.A.M.; Abdul Majid, M.S.; Afendi, M.; Marzuki, H.F.A.; Hilmi, E.A.; Fahmi, I.; Gibson, A.G. Effects of water absorption on Napier grass fibre/polyester composites. Compos. Struct. 2016, 144, 138–146. [Google Scholar] [CrossRef]
- Naguib, H.M.; Kandil, U.F.; Hashem, A.I.; Boghdadi, Y.M. Effect of fiber loading on the mechanical and physical properties of “green” bagasse–polyester composite. J. Radiat. Res. Appl. Sci. 2015, 8, 544–548. [Google Scholar] [CrossRef]
- Barco Thinner AAA MSDS. Available online: https://04a77950-65bb-464b-99ba-845b033effcb.usrfiles.com/ugd/04a779_6d97802ffb23440d82d3d2ea114cf854.pdf (accessed on 20 May 2022).
- Punyamurthy, R.; Sampathkumar, D.; Ranganagowda, R.P.G.; Bennehalli, B.; Srinivasa, C.V. Mechanical properties of abaca fiber reinforced polypropylene composites: Effect of chemical treatment by benzenediazonium chloride. J. King Saud. Univ. Eng. Sci. 2017, 29, 289–294. [Google Scholar] [CrossRef]
- Samal, R.K.; Panda, B.B.; Rout, S.K.; Mohanty, M. Effect of chemical modification on FTIR spectra. I. Physical and chemical behavior of coir. J. Appl. Polym. Sci. 1995, 58, 745–752. [Google Scholar] [CrossRef]
- Sgriccia, N.; Hawley, M.C.; Misra, M. Characterization of natural fiber surfaces and natural fiber composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1632–1637. [Google Scholar] [CrossRef]
- Williams, T.; Hosur, M.; Theodore, M.; Netravali, A.; Rangari, V.; Jeelani, S. Time effects on morphology and bonding ability in mercerized natural fibers for composite reinforcement. Int. J. Polym. Sci. 2011, 2011, 192865. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Balamurugan, K. Effect of alkali treatment and fiber length on impact behavior of coir fiber reinforced epoxy composites. J. Sci. Ind. Res. 2012, 71, 627–631. Available online: http://nopr.niscair.res.in/handle/123456789/14634 (accessed on 7 April 2022).
- Gopinath, S.; Vadivu, K.S. Mechanical behavior of alkali treated coir fiber and rice husk reinforced epoxy composites. IJIRSET 2014, 3, 1268–1271. Available online: http://www.ijirset.com/upload/2014/icets/265_ME517.pdf (accessed on 7 April 2022).
- Mulinari, D.R.; Baptista, C.A.R.P.; Souza, J.V.C.; Voorwald, H.J.C. Mechanical properties of coconut fibers reinforced polyester composites. Procedia Eng. 2011, 10, 2074–2079. [Google Scholar] [CrossRef]
- Narayana, V.L.; Rao, L.B. A brief review on the effect of alkali treatment on mechanical properties of various natural fiber reinforced polymer composites. Mater. Today Proc. 2021, 4, 1988–1994. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, S.; Li, Y.; Wang, Z.; Long, Y.; Yu, T.; Shen, Y. High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Compos. Sci. Technol. 2020, 194, 108151. [Google Scholar] [CrossRef]
- Tran, L.Q.N.; Fuentes, C.A.; Dupont-Gillain, C.; Van Vuure, A.W.; Verpoest, I. Understanding the interfacial compatibility and adhesion of natural coir fibre thermoplastic composites. Compos. Sci. Technol. 2013, 80, 23–30. [Google Scholar] [CrossRef]
- Alonso, E.; Pothan, L.A.; Ferreira, A.; Cordeiro, N. Surface modification of banana fibers using organosilanes: An IGC insight. Cellulose 2019, 26, 3643–3654. [Google Scholar] [CrossRef]
- Yue, H.; Rubalcaba, J.C.; Cui, Y.; Fernández-Blázquez, J.P.; Yang, C.; Shuttleworth, P.S. Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose 2019, 26, 4693–4706. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- John, M.J.; Anandjiwala, R.D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym. Compos. 2008, 29, 187–207. [Google Scholar] [CrossRef]
- Paul, S.A.; Joseph, K.; Mathew, G.; Pothen, L.A.; Thomas, S. Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1380–1387. [Google Scholar] [CrossRef]
- Magagula, S.I.; Sefadi, J.S.; Mochane, M.J.; Mokhothu, T.H.; Mokhena, T.C.; Lenetha, G.G. 2-The effect of alkaline treatment on natural fibers/biopolymer composites. In Surface Treatment Methods of Natural Fibres and Their Effects on Biocomposites; Shahzad, A., Tanasa, F., Teaca, C., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 19–45. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Dufresne, A.; El-Zawawy, W.K.; Agblevor, F.A. Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydr. Polym. 2010, 81, 811–819. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Masuelli, M.A. Introduction of fibre-reinforced polymers−polymers and composites: Concepts, properties and processes. In Fiber Reinforced Polymers—The Technology Applied for Concrete Repair; Masuelli, M.A., Ed.; IntechOpen: London, UK, 2013; pp. 3–40. [Google Scholar] [CrossRef]
- Merlini, C.; Soldi, V.; Barra, G.M.O. Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polym. Test. 2011, 30, 833–840. [Google Scholar] [CrossRef]
- Ramesh, M.; Atreya, T.S.A.; Aswin, U.S.; Eashwar, H.; Deepa, C. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Eng. 2014, 97, 563–572. [Google Scholar] [CrossRef]
- Bagherpour, S. Fibre reinforced polyester composites. In Polyester; Saleh, H., Ed.; IntechOpen: London, UK, 2012; pp. 135–166. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
Material * | Tensile Strength | Flexural Strength | Impact Strength |
---|---|---|---|
r-EPS | ✓ | ✓ | ✓ |
r-EPS/u-coir (2, 5, and 10%) | ✓ | - | - |
r-EPS/u-BSF (2, 5, and 10%) | ✓ | - | - |
r-EPS/t-coir (2, 5, and 10%) | ✓ | ✓ | ✓ |
r-EPS/t-BSF (2, 5, and 10%) | ✓ | ✓ | ✓ |
Properties | Coir | Banana |
---|---|---|
Diameter (μm) | 150–250 [36] | 100–250 [36] |
Density (g/cm3) | 1.2 [36,37] | 0.8 [36] |
Tensile Strength (MPa) | 175 [36], 131–220 [37] | 161.8 [36] |
Young’s modulus (GPa) | 4–6 [36,37] | 8.5 [36] |
Elongation at break (%) | 30 [36], 15–30 [37] | 2.0 [36] |
Surface energy (mJ/m2) | 35.1 ± 1.3 [38] | 39.49 [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriprom, W.; Sirivallop, A.; Choodum, A.; Limsakul, W.; Wongniramaikul, W. Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam Waste. Polymers 2022, 14, 2241. https://doi.org/10.3390/polym14112241
Sriprom W, Sirivallop A, Choodum A, Limsakul W, Wongniramaikul W. Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam Waste. Polymers. 2022; 14(11):2241. https://doi.org/10.3390/polym14112241
Chicago/Turabian StyleSriprom, Wilasinee, Adilah Sirivallop, Aree Choodum, Wadcharawadee Limsakul, and Worawit Wongniramaikul. 2022. "Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam Waste" Polymers 14, no. 11: 2241. https://doi.org/10.3390/polym14112241
APA StyleSriprom, W., Sirivallop, A., Choodum, A., Limsakul, W., & Wongniramaikul, W. (2022). Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam Waste. Polymers, 14(11), 2241. https://doi.org/10.3390/polym14112241