Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = back-microextraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1596 KB  
Article
Volatile Compound Profiling and Antibacterial Efficacy of Heyang Fragrance: Bridging Cultural Heritage with Modern Scientific Analysis
by Binghui Liang, Qirui Ma, Xianglei Gong, Guohang Hu and Hongwu Chen
Compounds 2025, 5(3), 33; https://doi.org/10.3390/compounds5030033 - 18 Aug 2025
Viewed by 496
Abstract
Heyang Fragrance, a traditional incense dating back to the Eastern Han Dynasty (25–220 AD), was recently inscribed on China’s national list of intangible cultural heritage. This study aimed to systematically analyze three variants of Heyang Fragrance (Aicao, Qinqiang, and Jianjia) through integrated methodologies [...] Read more.
Heyang Fragrance, a traditional incense dating back to the Eastern Han Dynasty (25–220 AD), was recently inscribed on China’s national list of intangible cultural heritage. This study aimed to systematically analyze three variants of Heyang Fragrance (Aicao, Qinqiang, and Jianjia) through integrated methodologies including electronic nose analysis, headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), and antimicrobial activity assays. We selected Escherichia coli, Bacillus subtilis, and Candida glabrata for the antimicrobial activity assays. Comparative analysis revealed significant compositional differences between pre- and post-combustion volatile profiles. Upon ignition, sensor response values increased by 50–100% relative to baseline measurements, with sulfides, terpenes, and short-chain alkanes emerging as dominant components. Qinqiang demonstrated the highest odor activity values (OAVs), particularly through carvacrol (OAV = 6676.60) and eugenol (OAV = 2720.84), which collectively contributed to its complex aromatic characteristics. Antimicrobial assessments revealed concentration-dependent efficacy, with Qinqiang exhibiting broad antimicrobial activity against Escherichia coli (11.33 mm inhibition zone) and Bacillus subtilis (15.00 mm), while Jianjia showed maximal effectiveness against Bacillus subtilis (17.67 mm). These findings underscore the dual significance of Heyang Fragrance in cultural conservation and its prospective applications in aroma therapeutic and antimicrobial contexts. Full article
Show Figures

Figure 1

14 pages, 1921 KB  
Article
Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices
by Joana R. P. Pereira, Daniela C. Rocha, Nuno R. Neng, Paulo Maurício, M. Edite Torres, Samir M. Ahmad and Alexandre Quintas
Molecules 2025, 30(1), 68; https://doi.org/10.3390/molecules30010068 - 27 Dec 2024
Viewed by 1481
Abstract
The present work reports the development, optimization, and validation, of a methodology to determine lidocaine, procaine, tetracaine, and benzocaine in urine matrices. Two extractive preconcentration techniques, solid-phase microextraction (SPME) LC Tips and bar adsorptive microextraction (BAμE), were studied and applied to the four [...] Read more.
The present work reports the development, optimization, and validation, of a methodology to determine lidocaine, procaine, tetracaine, and benzocaine in urine matrices. Two extractive preconcentration techniques, solid-phase microextraction (SPME) LC Tips and bar adsorptive microextraction (BAμE), were studied and applied to the four target anesthetics, followed by gas chromatography-mass spectrometry (GC-MS) analysis. Several parameters that could affect microextraction and back-extraction were optimized using two different designs of experiments (Box–Behnken and full-factorial) to maximize extraction efficiency from aqueous media. Under optimized experimental conditions, the BAμE technique showed better performance than SPME LC Tips and was chosen for validation assays and urine sample analysis. In blank urine, the BAµE/GC-MS methodology revealed suitable sensitivity (LOD between 2 and 18 ng/mL), good linearity (r2 ≥ 0.9945) between 0.5 and 30.0 µg/mL and recovery yields of 30.3–97.9%. Good precision (%RSD ≤ 8.8%) and accuracy (bias % between −15.9 and 15.0%) values were achieved. The developed methodology was successfully applied to the target anesthetics analysis of volunteers’ urine matrices and proved to be an environmentally friendly alternative to monitor trace levels of local anesthetics in complex matrices compared to other extraction techniques. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

21 pages, 5258 KB  
Article
Historical Drugs in Transylvania: Disclosing the Composition of Ointments from the “History of Pharmacy Collection” in Cluj-Napoca Through a Multi-Analytical Approach
by Federica Nardella, Jacopo La Nasa, Ilaria Degano, Francesca Modugno, Ana-Maria Gruia, Ioana Cova, Andrea Beatrix Magó, Márta Guttmann and Erika Ribechini
Molecules 2024, 29(22), 5356; https://doi.org/10.3390/molecules29225356 - 14 Nov 2024
Viewed by 1907
Abstract
The National Museum of Transylvanian History in Cluj-Napoca, Romania, features a History of Pharmacy Collection that documents the evolution of pharmacies in the region since the 16th century. Within the “Pharmatrans” project (2021–2023), we investigated the chemical composition of ointments from fourteen historical [...] Read more.
The National Museum of Transylvanian History in Cluj-Napoca, Romania, features a History of Pharmacy Collection that documents the evolution of pharmacies in the region since the 16th century. Within the “Pharmatrans” project (2021–2023), we investigated the chemical composition of ointments from fourteen historical pharmaceutical containers dating back to the 18th and 19th centuries. Most samples were from an aristocratic traveling medicine chest, a key artifact in the collection. This study marks the first extensive analysis of historical pharmaceutical formulations in Romania, enhancing our understanding of these valuable items. The main ingredients of formulations were characterized using gas chromatography–mass spectrometry (GC–MS), solid-phase microextraction–GC–MS (SPME–GC–MS), and pyrolysis–GC–MS (Py–GC–MS). Additionally, high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-ESI-Q-ToF) was employed for the detailed analysis of lipid materials and polar compounds. Elemental analysis was conducted using field emission gun–scanning electron microscope (FEG–SEM) with energy-dispersive spectroscopy (EDS). The results revealed that twelve out of fourteen mixtures contained interpretable organic content, often aligning with the vessels’ labels. The findings indicate that Transylvanian elites in the late 18th century had access to both rare drugs and traditional remedies, reflecting contemporary trends in pharmacy. Full article
Show Figures

Figure 1

13 pages, 1880 KB  
Article
Screening Biogenic Volatile Organic Compounds from Common Portuguese Shrubs Using Headspace–Bar Adsorptive Microextraction (HS-BAµE)
by Jéssica S. R. F. Cerqueira and José M. F. Nogueira
Separations 2024, 11(9), 264; https://doi.org/10.3390/separations11090264 - 9 Sep 2024
Viewed by 2269
Abstract
In this study, headspace–bar adsorptive microextraction (HS-BAµE) combined with gas chromatography–mass spectrometry (GC-MS) was employed to screen the major biogenic volatile organic compounds (BVOCs) emitted by six different Portuguese shrub species (Erica scoparia L., Cistus ladanifer L., Cistus monspeliensis L., Lavandula stoechas [...] Read more.
In this study, headspace–bar adsorptive microextraction (HS-BAµE) combined with gas chromatography–mass spectrometry (GC-MS) was employed to screen the major biogenic volatile organic compounds (BVOCs) emitted by six different Portuguese shrub species (Erica scoparia L., Cistus ladanifer L., Cistus monspeliensis L., Lavandula stoechas L., Thymus villosus L., and Thymus camphoratus). The HS-BAµE/GC-MS methodology was developed, optimized, and validated using five common monoterpenoids (α-pinene, β-pinene, limonene, 1,8-cineole, and thymol) and one sesquiterpenoid (caryophyllene oxide). Under optimized experimental conditions (microextraction-sorbent phase: activated carbon (CN1), 3 h (35 °C); back-extraction: n-C6 (1 h)), good efficiencies (>45%), low analytical thresholds (5.0–15.0 µg/L) and suitable linear dynamic ranges (20.0–120.0 µg/L, r2 > 0.9872) were achieved, as well as acceptable intra and inter-day precisions (RSD ≤ 30.1%). Benchmarking the proposed methodology, HS-BAµE(CN1), against the reference methodology, HS-SPME(PDMS/DVB), revealed comparable analytical responses and demonstrated excellent reproducibility. Among the six shrub species studied, Thymus camphoratus exhibited the highest emissions of BVOCs from its leaves, notably, 1,8-cineole (4136.9 ± 6.3 µg/g), α-pinene (763.9 ± 0.5 µg/g), and β-pinene (259.3 ± 0.5 µg/g). It was also the only species found to release caryophyllene oxide (411.4 ± 0.3 µg/g). The observed levels suggest that these shrub species could potentially serve as fuel sources in the event of forest fires occurring under extreme conditions. In summary, the proposed methodology proved to be a favorable analytical alternative for screening BVOCs in plants. It not only exhibited remarkable performance but also demonstrated user- and eco-friendliness, cost-effectiveness, and ease of implementation. Full article
Show Figures

Figure 1

14 pages, 5782 KB  
Article
A Rapid and Sensitive Method for the Simultaneous Determination of Multipolar Compounds in Plant Tea by Supercritical Fluid Chromatography Coupled to Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry
by Zi-Xuan Yue and Jun Cao
Foods 2022, 11(1), 111; https://doi.org/10.3390/foods11010111 - 1 Jan 2022
Cited by 2 | Viewed by 2593
Abstract
In this study, matrix solid phase dispersion (MSPD) microextraction combined with supercritical fluid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (SFC/IM-QTOF-MS) was used to analyze the multipolar compounds in plant tea. The parameters of stationary phase, mobile phase, make-up solution, temperature, and back pressure [...] Read more.
In this study, matrix solid phase dispersion (MSPD) microextraction combined with supercritical fluid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (SFC/IM-QTOF-MS) was used to analyze the multipolar compounds in plant tea. The parameters of stationary phase, mobile phase, make-up solution, temperature, and back pressure were optimized. The target analytes were gradient eluted in 8 min by supercritical CO2 on a Zorbax RX-SIL column. Collisional Cross Section (CCS) values for single and multiple fields were measured. A series of validation studies were carried out under the optimal conditions, and the linear relationship and reproducibility were good. The limits of detection were 1.4 (Scoparone (1))~70 (Naringenin (4)) ng/mL, and the limits of quantification were 4.7 (Scoparone (1))~241 (Naringenin (4)) ng/mL. The recoveries of most compounds ranged from 60.7% to 127%. As a consequence, the proposed method was used for the separation and quantitative analysis of active ingredients in caulis dendrobii. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

12 pages, 1668 KB  
Article
Organic Ion-Associate Phase Microextraction/Back-Microextraction for Preconcentration: Determination of Nickel in Environmental Water Using 2-Thenoyltrifluoroacetone via GF-AAS
by Mitsuhito Kosugi, Kenta Mizuna, Kazuto Sazawa, Takuya Okazaki, Hideki Kuramitz, Shigeru Taguchi and Noriko Hata
AppliedChem 2021, 1(2), 130-141; https://doi.org/10.3390/appliedchem1020010 - 1 Dec 2021
Cited by 6 | Viewed by 4259
Abstract
An ion-associate phase (IAP) microextraction/ back-microextraction system was applied for the enrichment, separation, and detection of trace amounts of nickel from environmental water samples. Thenoyltrifluoroacetone (HTTA) acted not only as a chelating reagent for nickel, but also as a component of the extraction [...] Read more.
An ion-associate phase (IAP) microextraction/ back-microextraction system was applied for the enrichment, separation, and detection of trace amounts of nickel from environmental water samples. Thenoyltrifluoroacetone (HTTA) acted not only as a chelating reagent for nickel, but also as a component of the extraction phase, i.e., IAP. Nickel in a 40 mL sample solution was pH-adjusted with phenolsulfonate (PS) and tetramethylammonium hydroxide and converted by chelation reaction in the presence of thenoyltrifluoroacetonate (TTA). When benzyldodecyldimethylammonium ion (C12BzDMA+) was added, a suspension of IAP formed in the solution. The IAP consisted of TTA, a chelating reagent, the PS, a component of pH buffer, and C12BzDMA+, which helps extract the chelating complex. When the solution was centrifuged, the IAP separated from the suspension and the nickel-TTA chelate was extracted into the bottom phase of the centrifuge tube. After the aqueous phase was taken away, 100 µL of nitric acid (2 M) solution containing phosphate was used to back-microextract nickel from the IAP. The acid phase was measured via graphite-furnace atomic-absorption spectrometry (GF-AAS). The proposed method facilitated a 400-fold enrichment. The limit of detection was 0.02 µg L−1. The proposed method was applied for the determination of nickel in river water and seawater samples. Full article
(This article belongs to the Special Issue Feature Papers in AppliedChem)
Show Figures

Graphical abstract

27 pages, 2036 KB  
Review
Fabric Phase Sorptive Extraction: A Paradigm Shift Approach in Analytical and Bioanalytical Sample Preparation
by Abuzar Kabir and Victoria Samanidou
Molecules 2021, 26(4), 865; https://doi.org/10.3390/molecules26040865 - 6 Feb 2021
Cited by 82 | Viewed by 6384
Abstract
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol–gel organic–inorganic hybrid sorbent [...] Read more.
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol–gel organic–inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol–gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol–gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. In addition to the extensive simplification of the sample preparation workflow, FPSE has also innovatively combined the extraction principle of two major, yet competing sample preparation techniques: solid phase extraction (SPE) with its characteristic exhaustive extraction, and solid phase microextraction (SPME) with its characteristic equilibrium driven extraction mechanism. Furthermore, FPSE has offered the most comprehensive cache of sorbent chemistry by successfully combining almost all of the sorbents traditionally used exclusively in either SPE or in SPME. FPSE is the first sample preparation technique to exploit the substrate surface chemistry that complements the overall selectivity and the extraction efficiency of the device. As such, FPSE indeed represents a paradigm shift approach in analytical/bioanalytical sample preparation. Furthermore, an FPSE membrane can be used as an SPME fiber or as an SPE disk for sample preparation, owing to its special geometric advantage. So far, FPSE has overwhelmingly attracted the interest of the separation scientist community, and many analytical scientists have been developing new methodologies by implementing this cutting-edge technique for the extraction and determination of many analytes at their trace and ultra-trace level concentrations in environmental samples as well as in food, pharmaceutical, and biological samples. FPSE offers a total sample preparation solution by providing neutral, cation exchanger, anion exchanger, mixed mode cation exchanger, mixed mode anion exchanger, zwitterionic, and mixed mode zwitterionic sorbents to deal with any analyte regardless of its polarity, ionic state, or the sample matrix where it resides. Herein we present the theoretical background, synthesis, mechanisms of extraction and desorption, the types of sorbents, and the main applications of FPSE so far according to different sample categories, and to briefly show the progress, advantages, and the main principles of the proposed technique. Full article
Show Figures

Figure 1

10 pages, 1572 KB  
Article
Prediction of the Biogenic Amines Index of Poultry Meat Using an Electronic Nose
by Wojciech Wojnowski, Kaja Kalinowska, Tomasz Majchrzak, Justyna Płotka-Wasylka and Jacek Namieśnik
Sensors 2019, 19(7), 1580; https://doi.org/10.3390/s19071580 - 1 Apr 2019
Cited by 45 | Viewed by 9014
Abstract
The biogenic amines index of fresh chicken meat samples during refrigerated storage was predicted based on the headspace analysis using an electronic nose equipped with an array of electrochemical sensors. The reference biogenic amines index values were obtained using dispersive liquid–liquid microextraction–gas chromatography–mass [...] Read more.
The biogenic amines index of fresh chicken meat samples during refrigerated storage was predicted based on the headspace analysis using an electronic nose equipped with an array of electrochemical sensors. The reference biogenic amines index values were obtained using dispersive liquid–liquid microextraction–gas chromatography–mass spectrometry. A prototype electronic nose with modular construction and a dedicated sample chamber was used to rapidly analyze the volatile fraction of chicken meat samples, with a single measurement time of five minutes. Back-propagation artificial neural network was used to estimate the biogenic amines index of the samples with a determination coefficient of 0.954 based on ten-fold stratified cross-validation. The results indicate that the determination of the biogenic amines index is a good reference method for studies in which the freshness of meat products is assessed based on headspace analysis and fingerprinting, and that the described electronic device can be used to assess poultry meat freshness based on this value with high accuracy. Full article
(This article belongs to the Special Issue Biomimetic Sensor Arrays)
Show Figures

Figure 1

16 pages, 2873 KB  
Article
Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry
by Ramandeep Kaur, Ripneel Kaur, Susheela Rani, Ashok Kumar Malik, Abuzar Kabir, Kenneth G. Furton and Victoria F. Samanidou
Molecules 2019, 24(6), 1013; https://doi.org/10.3390/molecules24061013 - 13 Mar 2019
Cited by 35 | Viewed by 5803
Abstract
Fabric phase sorptive extraction, an innovative integration of solid phase extraction and solid phase microextraction principles, has been combined with gas chromatography-mass spectrometry for the rapid extraction and determination of nineteen organochlorine pesticides in various fruit juices and water samples. FPSE consolidates the [...] Read more.
Fabric phase sorptive extraction, an innovative integration of solid phase extraction and solid phase microextraction principles, has been combined with gas chromatography-mass spectrometry for the rapid extraction and determination of nineteen organochlorine pesticides in various fruit juices and water samples. FPSE consolidates the advanced features of sol-gel derived extraction sorbents with the rich surface chemistry of cellulose fabric substrate, which could extract the target analytes directly from the complex sample matrices, substantially simplifying the sample preparation operation. Important FPSE parameters, including sorbent chemistry, extraction time, stirring speed, type and volume of back-extraction solvent, and back-extraction time have been optimized. Calibration curves were obtained in a concentration range of 0.1–500 ng/mL. Under optimum conditions, limits of detection were obtained in a range of 0.007–0.032 ng/mL with satisfactory precision (RSD < 6%). The relative recoveries obtained by spiking organochlorine pesticides in water and selected juice samples were in the range of 91.56–99.83%. The sorbent sol-gel poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) was applied for the extraction and preconcentration of organochlorine pesticides in aqueous and fruit juice samples prior to analysis with gas chromatography-mass spectrometry. The results demonstrated that the present method is simple, rapid, and precise for the determination of organochlorine pesticides in aqueous samples. Full article
(This article belongs to the Special Issue Solid Phase Extraction: State of the Art and Future Perspectives)
Show Figures

Figure 1

21 pages, 3322 KB  
Article
Fabric Phase Sorptive Extraction Explained
by Abuzar Kabir, Rodolfo Mesa, Jessica Jurmain and Kenneth G. Furton
Separations 2017, 4(2), 21; https://doi.org/10.3390/separations4020021 - 2 Jun 2017
Cited by 134 | Viewed by 11038
Abstract
The theory and working principle of fabric phase sorptive extraction (FPSE) is presented. FPSE innovatively integrates the benefits of sol–gel coating technology and the rich surface chemistry of cellulose/polyester/fiberglass fabrics, resulting in a microextraction device with very high sorbent loading in the form [...] Read more.
The theory and working principle of fabric phase sorptive extraction (FPSE) is presented. FPSE innovatively integrates the benefits of sol–gel coating technology and the rich surface chemistry of cellulose/polyester/fiberglass fabrics, resulting in a microextraction device with very high sorbent loading in the form of an ultra-thin coating. This porous sorbent coating and the permeable substrate synergistically facilitate fast extraction equilibrium. The flexibility of the FPSE device allows its direct insertion into original, unmodified samples of different origin. Strong chemical bonding between the sol–gel sorbent and the fabric substrate permits the exposure of FPSE devices to any organic solvent for analyte back-extraction/elution. As a representative sorbent, sol–gel poly(ethylene glycol) coating was generated on cellulose substrates. Five (cm2) segments of these coated fabrics were used as the FPSE devices for sample preparation using direct immersion mode. An important class of environmental pollutants—substituted phenols—was used as model compounds to evaluate the extraction performance of FPSE. The high primary contact surface area (PCSA) of the FPSE device and porous structure of the sol–gel coatings resulted in very high sample capacities and incredible extraction sensitivities in a relatively short period of time. Different extraction parameters were evaluated and optimized. The new extraction devices demonstrated part per trillion level detection limits for substitute phenols, a wide range of detection linearity, and good performance reproducibility. Full article
(This article belongs to the Special Issue Trends in Microextraction Techniques for Sample Preparation)
Show Figures

Graphical abstract

13 pages, 2662 KB  
Article
Hollow Fiber Supported Liquid Membrane Extraction Combined with HPLC-UV for Simultaneous Preconcentration and Determination of Urinary Hippuric Acid and Mandelic Acid
by Abdulrahman Bahrami, Farhad Ghamari, Yadollah Yamini, Farshid Ghorbani Shahna and Abbas Moghimbeigi
Membranes 2017, 7(1), 8; https://doi.org/10.3390/membranes7010008 - 12 Feb 2017
Cited by 21 | Viewed by 7163
Abstract
This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was [...] Read more.
This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v) tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD) (%) values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME) based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens. Full article
Show Figures

Graphical abstract

Back to TopTop