Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = azelaic acid ester

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10309 KiB  
Article
Chemical Recycling of PLA and Its Copolyesters with Poly(Ethylene Azelate) via Microwave-Assisted Alkaline Hydrolysis and Enzymatic Hydrolysis
by Rafail O. Ioannidis, Nikolaos D. Bikiaris, Evangelia Vouvoudi, Alexandra Zamboulis, Nikolaos Nikolaidis and Dimitrios N. Bikiaris
Polymers 2025, 17(10), 1374; https://doi.org/10.3390/polym17101374 - 16 May 2025
Viewed by 925
Abstract
Poly(lactic acid) (PLA) is a widely used biobased polyester which can be derived from renewable resources. Due to its excellent properties, it has already been adopted in various industrial sectors. While PLA is compostable, its degradation to the environment is very slow, necessitating [...] Read more.
Poly(lactic acid) (PLA) is a widely used biobased polyester which can be derived from renewable resources. Due to its excellent properties, it has already been adopted in various industrial sectors. While PLA is compostable, its degradation to the environment is very slow, necessitating the development of efficient recycling methods. This study focuses on the chemical recycling via microwave-assisted alkaline hydrolysis of PLA and its copolymers with poly(ethylene azelate) (PEAz), aiming to recover both carboxylic acid monomers: lactic acid and azelaic acid. Moreover, our method tunes the degradation of PLA via the synthesis of the novel aliphatic PLA-based copolyesters, targeting engineering-like applications, specifically in the field of printed electronics. Various process parameters were analyzed, including the temperature and the duration of the experiments as well as different phase transfer catalysts. Complete degradation was achieved at low temperatures (110–125 °C) and short times (12–15 min) for the PLA-based copolyesters, offering significant environmental benefits, as considerably less energy is consumed compared to chemical conventional methods. So, by changing the composition of the copolyesters through the incorporation of PEAz blocky segments, the ester bonds became more susceptible to hydrolysis under alkaline conditions assisted with microwave irradiation. Additionally, enzymatic hydrolysis was also studied in parallel for comparative purposes, revealing low degradation rates, thus establishing the microwave-assisted alkaline hydrolysis as a solid and reliable method for tuning the degradation of PLA-based materials. Full article
Show Figures

Graphical abstract

12 pages, 1232 KiB  
Article
Azelaic Acid Esters as Pluripotent Immunomodulatory Molecules: Nutritional Supplements or Drugs
by Elzbieta Izbicka and Robert T. Streeper
Nutraceuticals 2021, 1(1), 42-53; https://doi.org/10.3390/nutraceuticals1010006 - 17 Dec 2021
Cited by 4 | Viewed by 4779
Abstract
Azelaic acid and its esters, the azelates, occur naturally in organisms ranging from plants to humans. We have shown that diethyl azelate (DEA) exhibits a broad range of immunomodulatory activities in vitro and in vivo, and mitigates insulin resistance. To further investigate the [...] Read more.
Azelaic acid and its esters, the azelates, occur naturally in organisms ranging from plants to humans. We have shown that diethyl azelate (DEA) exhibits a broad range of immunomodulatory activities in vitro and in vivo, and mitigates insulin resistance. To further investigate the therapeutic utility of DEA, we evaluated its mutagenicity in Salmonella typhimurium strains, examined metabolism of DEA in rat, dog, monkey and human primary hepatocytes and in human saliva, determined pharmacokinetics of DEA after an oral dose in rats, and queried its physicochemical properties for drug-like characteristics. DEA was not mutagenic in bacterial strains ± rat liver metabolic activation system S-9. It was chemically unstable in hepatocyte culture medium with a half-life of <1 h and was depleted by the hepatocytes in <5 min, suggesting rapid hepatic metabolism. DEA was also quickly degraded by human saliva in vitro. After an oral administration of DEA to rats, the di- and monoester were undetectable in plasma while the levels of azelaic acid increased over time, reached maximum at <2 h, and declined rapidly thereafter. The observed pharmacological properties of DEA suggest that it has value both as a drug or a nutritional supplement. Full article
(This article belongs to the Special Issue Current State of the Art—Nutraceutical Components of Foods)
Show Figures

Figure 1

19 pages, 27662 KiB  
Article
High-Throughput LC-ESI-MS/MS Metabolomics Approach Reveals Regulation of Metabolites Related to Diverse Functions in Mature Fruit of Grafted Watermelon
by Ali Aslam, Shengjie Zhao, Xuqiang Lu, Nan He, Hongju Zhu, Aman Ullah Malik, Muhammad Azam and Wenge Liu
Biomolecules 2021, 11(5), 628; https://doi.org/10.3390/biom11050628 - 23 Apr 2021
Cited by 14 | Viewed by 4646
Abstract
Grafting has been reported as a factor regulating the metabolome of a plant. Therefore, a comprehensive metabolic profile and comparative analysis of metabolites were conducted from fully mature fruit of pumpkin-grafted watermelon (PGW) and a self-rooted watermelon (SRW). Widely targeted LC-ESI-MS/MS metabolomics approach [...] Read more.
Grafting has been reported as a factor regulating the metabolome of a plant. Therefore, a comprehensive metabolic profile and comparative analysis of metabolites were conducted from fully mature fruit of pumpkin-grafted watermelon (PGW) and a self-rooted watermelon (SRW). Widely targeted LC-ESI-MS/MS metabolomics approach facilitated the simultaneous identification and quantification of 339 metabolites across PGW and SRW. Regardless of grafting, delta-aminolevulinic acid hydrochloride, sucrose, mannose-6-phosphate (carbohydrates), homocystine, 2-phenylglycine, s-adenosyl-L-homocysteine (amino acids and derivatives), malic, azelaic, H-butanoic acid ethyl ester-hexoside isomer 1, (organic acids), MAG (18:3) isomer1, LysoPC 16:0, LysoPC 18:2 2n isomer (lipids) p-coumaric acid, piperidine, and salicylic acid-o-glycoside (secondary metabolites) were among the dominant metabolite. Dulcitol, mono-, and disaccharide sugars were higher in PGW, while polysaccharides showed complex behavior. In PGW, most aromatic and nitrogen-rich amino acids accumulated greater than 1.5- and 1-fold, respectively. Intermediates of the tricarboxylic acid cycle (TCA), stress-related metabolites, vitamin B5, and several flavonoids were significantly more abundant in PGW. Most lipids were also significantly higher in grafted watermelon. This is the first report providing a comprehensive picture of watermelon metabolic profile and changes induced by grafting. Hence, the untargeted high-throughput LC-ESI-MS/MS metabolomics approach could be suitable to provide significant differences in metabolite contents between grafted and ungrafted plants. Full article
(This article belongs to the Special Issue Functional Plant Metabolism)
Show Figures

Figure 1

14 pages, 4699 KiB  
Article
Enhancing the Bioconversion of Azelaic Acid to Its Derivatives by Response Surface Methodology
by Nurshafira Khairudin, Mahiran Basri, Hamid Reza Fard Masoumi, Shazwani Samson and Siti Efliza Ashari
Molecules 2018, 23(2), 397; https://doi.org/10.3390/molecules23020397 - 13 Feb 2018
Cited by 17 | Viewed by 7400
Abstract
Azelaic acid (AzA) and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA) to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435) [...] Read more.
Azelaic acid (AzA) and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA) to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435) is reported. Response surface methodology was selected to optimize the reaction conditions. A well-fitting quadratic polynomial regression model for the acid conversion was established with regards to several parameters, including reaction time and temperature, enzyme amount, and substrate molar ratios. The regression equation obtained by the central composite design of RSM predicted that the optimal reaction conditions included a reaction time of 360 min, 0.14 g of enzyme, a reaction temperature of 46 °C, and a molar ratio of substrates of 1:4.1. The results from the model were in good agreement with the experimental data and were within the experimental range (R2 of 0.9732).The inhibition zone can be seen at dilaurylazelate ester with diameter 9.0±0.1 mm activities against Staphylococcus epidermidis S273. The normal fibroblasts cell line (3T3) was used to assess the cytotoxicity activity of AzA and AzA derivative, which is dilaurylazelate ester. The comparison of the IC50 (50% inhibition of cell viability) value for AzA and AzA derivative was demonstrated. The IC50 value for AzA was 85.28 μg/mL, whereas the IC50 value for AzA derivative was more than 100 μg/mL. The 3T3 cell was still able to survive without any sign of toxicity from the AzA derivative; thus, it was proven to be non-toxic in this MTT assay when compared with AzA. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Show Figures

Graphical abstract

Back to TopTop