Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = axisymmetric free vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 805 KiB  
Article
Axisymmetric Free Vibration of Functionally Graded Piezoelectric Circular Plates
by Yang Li and Yang Gao
Crystals 2024, 14(12), 1103; https://doi.org/10.3390/cryst14121103 - 22 Dec 2024
Viewed by 791
Abstract
An analytical solution is presented for axisymmetric free vibration analysis of a functionally graded piezoelectric circular plate on the basis of the three-dimensional elastic theory of piezoelectric materials. The material properties are assumed to follow an exponential law distribution through the thickness of [...] Read more.
An analytical solution is presented for axisymmetric free vibration analysis of a functionally graded piezoelectric circular plate on the basis of the three-dimensional elastic theory of piezoelectric materials. The material properties are assumed to follow an exponential law distribution through the thickness of the circular plate. The state space equations for the free vibration behavior of the functionally graded piezoelectric circular plate are developed based on the state space method. The finite Hankel transform is utilized to obtain an ordinary differential equation with variable coefficients. By virtue of the proposed exponential law model, we have ordinary differential equations with constant coefficients. Then, the free vibration behaviors of the functionally graded piezoelectric circular plate with two kinds of boundary conditions are investigated. Some numerical examples are given to validate the accuracy and stability of the present model. The influences of the exponential factor and thickness-to-span ratio on the natural frequency of the functionally graded piezoelectric circular plate, constrained by different boundary conditions, are discussed in detail. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

20 pages, 3426 KiB  
Article
Differential Transform Method for Axisymmetric Vibration Analysis of Circular Sandwich Plates with Viscoelastic Core
by Özgür Demir
Symmetry 2022, 14(5), 852; https://doi.org/10.3390/sym14050852 - 20 Apr 2022
Cited by 4 | Viewed by 2336
Abstract
The purpose of this paper is to study the axisymmetric vibrations of circular three-layered sandwich plates with a frequency-dependent fractional viscoelastic core and elastic face sheets. First, the equations of motion and related boundary conditions are derived using the Hamilton’s principle for the [...] Read more.
The purpose of this paper is to study the axisymmetric vibrations of circular three-layered sandwich plates with a frequency-dependent fractional viscoelastic core and elastic face sheets. First, the equations of motion and related boundary conditions are derived using the Hamilton’s principle for the free vibrations. Then, the governing equations obtained for various boundary conditions are solved and parametric studies are carried out to examine the vibration behavior of circular sandwich plates with a viscoelastic core. The differential transform method (DTM), a well-known semi-analytical–numerical solution technique, is utilized for the eigenvalue analysis. In addition, the finite element (FE) solution obtained with the commercial code ANSYS is added to this comparison. The effect of face and core layer thicknesses and the location of the core layer and core material on the dynamic and damping characteristics of circular sandwich plates with a fractional derivative viscoelastic core is studied in detail. Full article
Show Figures

Figure 1

34 pages, 7568 KiB  
Article
Applicability and Limitations of Simplified Elastic Shell Theories for Vibration Modelling of Double-Walled Carbon Nanotubes
by Matteo Strozzi, Oleg V. Gendelman, Isaac E. Elishakoff and Francesco Pellicano
C 2021, 7(3), 61; https://doi.org/10.3390/c7030061 - 9 Aug 2021
Cited by 4 | Viewed by 3362
Abstract
The applicability and limitations of simplified models of thin elastic circular cylindrical shells for linear vibrations of double-walled carbon nanotubes (DWCNTs) are considered. The simplified models, which are based on the assumptions of membrane and moment approximate thin-shell theories, are compared with the [...] Read more.
The applicability and limitations of simplified models of thin elastic circular cylindrical shells for linear vibrations of double-walled carbon nanotubes (DWCNTs) are considered. The simplified models, which are based on the assumptions of membrane and moment approximate thin-shell theories, are compared with the extended Sanders–Koiter shell theory. Actual discrete DWCNTs are modelled by means of couples of concentric equivalent continuous thin, circular cylindrical shells. Van der Waals interaction forces between the layers are taken into account by adopting He’s model. Simply supported and free–free boundary conditions are applied. The Rayleigh–Ritz method is considered to obtain approximate natural frequencies and mode shapes. Different aspect and thickness ratios, and numbers of waves along longitudinal and circumferential directions, are analysed. In the cases of axisymmetric and beam-like modes, it is proven that membrane shell theory, differently from moment shell theory, provides results with excellent agreement with the extended Sanders–Koiter shell theory. On the other hand, in the case of shell-like modes, it is found that both membrane and moment shell theories provide results reporting acceptable agreement with the extended Sanders–Koiter shell theory only for very limited ranges of geometries and wavenumbers. Conversely, for shell-like modes it is found that a newly developed, simplified shell model, based on the combination of membrane and semi-moment theories, provides results in satisfactory agreement with the extended Sanders–Koiter shell theory in all ranges. Full article
Show Figures

Figure 1

7 pages, 1318 KiB  
Article
Finite Element Calculation with Experimental Verification for a Free-Flooded Transducer Based on Fluid Cavity Structure
by Zhengyao He, Geng Chen, Yun Wang, Kan Zhang and Wenqiang Tian
Sensors 2018, 18(9), 3128; https://doi.org/10.3390/s18093128 - 17 Sep 2018
Cited by 4 | Viewed by 3895
Abstract
A free-flooded transducer that couples the vibration of a longitudinal vibration transducer and the fluid cavity of an aluminum ring was investigated. Given the transducer is based on a fluid cavity structure and has no air cavity, it can resist high hydrostatic pressure [...] Read more.
A free-flooded transducer that couples the vibration of a longitudinal vibration transducer and the fluid cavity of an aluminum ring was investigated. Given the transducer is based on a fluid cavity structure and has no air cavity, it can resist high hydrostatic pressure when working underwater, which is suitable for application in the deep sea. At first, the structure and working principle of the transducer were introduced. Then, the axisymmetric finite element model of the transducer was established; and the transmitting voltage response, admittance, and radiation directivity of the transducer were simulated using the finite element method. According to the size of the finite element model, a prototype of the transducer was designed and fabricated, and the electro-acoustic performance of the prototype was measured in an anechoic water tank. The experimental results were consistent with the simulation results and showed a good performance of the transducer. Finally, the improvement of the radiation directivity of the transducer by the optimal design of the free-flooded aluminum ring was obtained using the finite element method and verified by experiments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 1569 KiB  
Article
Research on Bell-Shaped Vibratory Angular Rate Gyro’s Character of Resonator
by Zhong Su, Mengyin Fu, Qing Li, Ning Liu and Hong Liu
Sensors 2013, 13(4), 4724-4741; https://doi.org/10.3390/s130404724 - 10 Apr 2013
Cited by 28 | Viewed by 8155
Abstract
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. [...] Read more.
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator’s mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. Full article
(This article belongs to the Special Issue Piezoelectric Sensors and Actuators)
Show Figures

Back to TopTop