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Abstract: The purpose of this paper is to study the axisymmetric vibrations of circular three-layered
sandwich plates with a frequency-dependent fractional viscoelastic core and elastic face sheets. First,
the equations of motion and related boundary conditions are derived using the Hamilton’s principle
for the free vibrations. Then, the governing equations obtained for various boundary conditions
are solved and parametric studies are carried out to examine the vibration behavior of circular
sandwich plates with a viscoelastic core. The differential transform method (DTM), a well-known
semi-analytical–numerical solution technique, is utilized for the eigenvalue analysis. In addition, the
finite element (FE) solution obtained with the commercial code ANSYS is added to this comparison.
The effect of face and core layer thicknesses and the location of the core layer and core material on
the dynamic and damping characteristics of circular sandwich plates with a fractional derivative
viscoelastic core is studied in detail.

Keywords: dynamic analysis; axisymmetric vibration; circular sandwich plate; viscoelastic core;
differential transform method (DTM)

1. Introduction

Sandwich plates are commonly utilized as structural members in the marine, aerospace
and automobile industry due to their tunable vibration damping performance, low specific
weight and high stiffness-to-weight ratio. Therefore, a good understanding of the vibration
and damping capabilities of such structural members is of decisive importance for the
design of optimal structures. In this respect, theoretical and semi-analytical or numerical
studies for circular sandwich structures have attracted the attention of many researchers.
Sandwich structures, which are widely used in engineering applications, consist of a core
material placed between two stiff surface layers. The core of the sandwich plate, which
connects the surfaces, allows the entire structure to act as one thick plate while maintaining
the integrity of the plate. In addition, sandwich plates show high rigidity and bending
resistance despite their low weight. Therefore, there are many studies on the dynamic
analysis of sandwich panels, and only a brief summary of the literature will be presented.
In their pioneering work, Midlin et al. [1] studied the vibrations of a circular disk with
free edges. Then, Pardoen [2] investigated the asymmetric free vibration characteristics
of circular and annular plates using the finite element method (FEM). In this study, the
Fourier series approach was used to model the geometric asymmetry of the circular and
annular plates. Gu et al. [3] conducted the free vibration analysis of annular plates with both
uniform and non-uniform thickness using the differential quadrature method (DQM). Some
difficulties were found when applying discontinuities to geometry and loads; however,
they found that the solutions were more applicable than the quadrature element method
and found good agreement with the literature. Hashemi et al. [4] carried out the vibration
analysis of circular plates using classical plate theory and FSDT in comparison with the
three-dimensional Ritz solution. Mode shape switching was examined in graphical form for
the Winkler foundation stiffness parameters. Lee et al. [5] used a semi-analytical solution
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to calculate the natural frequencies and mode shapes for circular plates with holes using
the Fourier series method, and compared the results with the finite element results. The
effect of the eccentricity of a hole on natural frequency was also investigated, and high
accuracy and rate of convergence were obtained in this paper. Ciancio et al. [6] studied
the buckling of circular, annular plates of continuously variable thickness used as internal
bulkheads in submersibles. Ha et al. [7] performed an experimental study and numerical
analysis for the free vibration of flat plates under dry and wet conditions. Kim et al. [8]
investigated the behavioral characteristics of the lateral deflection of a simply supported
perforated steel plate subjected to axial compression. Wu et al. [9] studied the free vibration
of circular plates using GDQM. They investigated the effects of ring supports, stepped
thickness and elastic restraints. Wu et al. [10] performed free vibration analysis of circular
plates with variable thickness and elastic restraints using DQM. Peng et al. [11] used the
differential quadrature method to solve nonlinear vibration equations of circular plates. The
method was validated with the analytical results, and good accuracy and convergence were
obtained. Yalcin et al. [12] investigated the vibration characteristics of circular thin plates
for different boundary conditions using the differential transform method (DTM). This
method is a semi-numerical and analytical approach to solve different types of differential
equations. In this study, the calculated dimensionless frequency values were compared
using the Bessel solution, and the results showed good agreement. Ozakca et al. [13]
conducted the buckling analysis of circular and annular plates using the finite element
method. Zur and Jankowski [14] studied the free vibration of FGM porous circular plates;
the influences of the even and uneven distributions of porosity, power-law index, diverse
boundary conditions and the neglected effect of the coupling in-plane and transverse
displacements on the dimensionless frequencies of the circular plate were presented in
their paper.

However, studies on the vibration and damping behavior of circular sandwich plates
are very limited due to the additional difficulties arising from regularity and boundary
conditions. Yu and Koplik [15] presented the torsional vibrations of circular sandwich
plates. Kao and Ross [16] investigated the natural frequencies of circular sandwich panels
with clamped and simply supported boundary conditions. Mirza and Singh [17] presented
the axisymmetric vibration of three-layered circular sandwich plates. The two face lay-
ers were assumed to be isotropic and the thick core layer was an aluminum honeycomb.
Alipour and Shariyat [18] examined the free vibration analysis of circular/annular com-
posite sandwich plates with auxetic cores. Zhou and Stronge [19] presented axisymmetric
and non-axisymmetric modes of circular sandwich panels. The finite element method was
applied to validate the analytical modeling. Lal and Rani [20] studied the axisymmetric
vibrations of circular sandwich plates with a shear deformable variable thickness stiff
core. Karamooz et al. [21] derived frequency equations for the in-plane vibration of the
orthotropic circular annular plate for general boundary conditions. Magnucki et al. [22]
conducted a theoretical and experimental study of a bending circular sandwich plate. Gane-
san and Roy [23] carried out the vibration analysis of circular plates with a viscoelastic
damping layer. Nguyen-Xuan et al. [24] proposed an effective approach for a fifth-order
shear deformation theory for composite sandwich plates. Pai and Palazotto [25] con-
ducted the impact analysis of a sandwich plate with an elastic foundation at a low velocity.
Magnucki et al. [26] investigated the buckling analysis of symmetrical circular sandwich
plates with a radially variable foam core. In this study, the mechanical properties of the
core varied along the radial direction, remaining constant in the face sheets. The math-
ematical model of the displacements consisted of the shear effects. The accuracy of the
analytical model was validated using finite element analysis. Liu et al. [27] examined the
three-dimensional vibrations of circular and annular plates under different combinations
of boundary conditions. Mao et al. [28] examined the load-carrying capacity of simply and
clamp-supported circular sandwich plates with a metal foam core. Jalali and Heshmati [29]
examined the buckling behavior of circular sandwich plates with tapered cores and carbon
nanotube faces.
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As previously reported in the literature, DTM has the advantage of obtaining more
accurate results with less computational cost. This technique is based on the Taylor series
expansion, first proposed by Zhou [30] in 1986.

This study presents the vibration analysis of circular sandwich plates with a frequency
dependent viscoelastic core and isotropic face layers using DTM. The Hamilton’s principle
is used to obtain the governing equations as well as the boundary conditions. The results
are compared with those already presented in the open literature for circular sandwich
plates for various boundary conditions, and a good correlation is observed. Then, the effects
of system parameters such as core and face layer thicknesses, core material and location of
the core layer on the dynamic behavior of the circular sandwich plates are studied.

2. Materials and Methods

The governing equations of motion, together with the boundary conditions for the
vibration of the circular sandwich plates, are derived by Hamilton’s principle:

- The damping core is assumed to be linearly viscoelastic and the material properties
are frequency- and temperature-dependent.

- The layers are considered incompressible and transverse displacement remains con-
stant throughout the plate’s thickness. The layers are perfectly bonded and there is no
slip between the layers.

- Linear vibration analysis is conducted because of the small deformations and strains.

The geometry and dimensions of the circular sandwich plate and the displacement of
each layer are given in Figures 1 and 2.
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In the light of the relevant assumptions, the kinematic relationships are obtained for
the geometry depicted in Figure 2.

Uk(r, z, θ, t) = uk(r, θ, t) + z
hk
[uk+1(r, θ, t)− uk(r, θ, t)],

Wk(r, z, θ, t) = w(r, θ, t),
k = 1, 2, 3 (1)

where hk is the thickness, Uk is axial and Wk is the transverse displacement field, uk is the
axial displacement at z(k) = 0 and uk+1 is the axial displacement at z(k) = hk for the kth
layer. In cylindrical coordinates, the strain displacement relations can be given as follows:

ε
(k)
rr =

∂uk
∂r

+
z(k)

hk

(
∂uk+1

∂r
− ∂uk

∂r

)
, (2)

ε
(k)
θθ =

1
r
(uk +

z
hk

(uk+1 − uk)), (3)

γ
(k)
rz =

uk+1 − uk
hk

+
∂w
∂r

. (4)

The stress–strain relation for the isotropic faces are:
σ
(k)
rr

σ
(k)
θθ

τ
(k)
rz

 =


Ek

1−(νk)
2

Ekνk
1−(νk)

2 0
Ekνk

1−(νk)
2

Ek
1−(νk)

2 0

0 0 Ek
2+2νk




ε
(k)
rr

ε
(k)
θθ

γk
rz

, (5)

where Ek is the Young’s modulus and νk is the Poisson ratio of the kth layer. If the ma-
terial is frequency- and temperature-dependent viscoelastic, it converts E2 to E∗2 , where
E∗2 = E2( f )[1 + iη2( f )] is the complex modulus of the viscoelastic core with f the frequency
in Hertz. Hamilton’s principle is used to derive the governing equations for the vibration
analysis of the circular sandwich plate:

δL =
∫ t

0
(δK− δU)dt = 0, (6)

where δL is the Lagrangian, δK is the kinetic energy and δU is the strain energy for the
upper and lower elastic face layers and the circular sandwich plate with a viscoelastic core,
which can be written as follows:

δU =
1
2

∫ 2π

0

∫ R

0

∫ hk

0

(
σ
(k)
rr δε

(k)
rr + σ

(i)
θθ δε

(i)
θθ + τ

(i)
rz δγ

(i)
rz

)
rdzdrdθ, (7)

δK =
1
2

∫ t

0

∫ 2π

0

∫ R

0

∫ hk

0

{
ρ(k)

{[
∂w
∂t

]2
+

[
∂uk
∂t

+
z(k)

hk

(
∂uk+1

∂t
− ∂uk

∂t

)2
]}}

rdzdrdθdt, (8)

where ρ(k) is the density of each layer. Note that the problem is modelled as axisymmetric
and the shear strains of the face sheets and the normal strains of the core are added in the
energy expressions, and all inertia terms are considered in the governing equations.

The governing equations in terms of cross-section force and moments are derived
from Equations (2)–(5) and (8) for the free vibration of the circular sandwich plate:

−
(

r(−I1
0 + 2I1

1 − I1
2)

∂2u1

∂t2 + r(I1
2 − I1

1)
∂2u2

∂t2

)
−

M(1)
θθ

h1
+

1
h1

∂(rM(1)
rr )

∂r
− rQ(1)

rz
h1

+ N1
θθ −

∂(rN(1)
rr )

∂r
= 0, (9)

−
(

r(−I2
0 + 2I2

1 − I2
2)

∂2u2
∂t2 + r(I1

2 − I1
1)

∂2u1
∂t2 + r(I2

2 − I2
1)

∂2u3
∂t2 − I1

2r ∂2u2
∂t2

)
+

M(1)
θθ

h1
− M(2)

θθ
h2
− 1

h1

∂(rM(1)
rr )

∂r + 1
h2

∂(rM(2)
rr )

∂r + Q(1)
rz r
h1
− Q(2)

rz r
h2

+ N2
θθ −

∂(N(2)
rr r)

∂r = 0,
(10)
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−
(

r(−I3
0 + 2I3

1 − I3
2)

∂2u3
∂t2 + r(I2

2 − I2
1)

∂2u2
∂t2 + r(I3

2 − I3
1)

∂2u4
∂t2 − I2

2r ∂2u3
∂t2

)
+

M(2)
θθ

h2
− M(3)

θθ
h3
− 1

h2

∂(rM(2)
rr )

∂r + 1
h3

∂(rM(3)
rr )

∂r + Q(2)
rz r
h2
− Q(3)

rz r
h3

+ N3
θθ −

∂(N(3)
rr r)

∂r = 0,
(11)

−
(

r(I3
2 − I3

1)
∂2u3

∂t2 − I3
2

∂2u4

∂t2

)
+

M(3)
θθ

h3
− 1

h3

∂(rM(3)
rr )

∂r
+

Q(3)
rz r
h3

= 0, (12)

∂(rQ(1)
rz )

∂r
+

∂(rQ(2)
rz )

∂r
+

∂(rQ(3)
rz )

∂r
− (I1

0 + I2
0 + I3

0)r
∂2w
∂t2 = 0. (13)

In addition, the boundary conditions are derived as:(
rN(1)

rr −
r

h1
M(1)

rr

)
δu1

∣∣∣∣R
0
= 0, (14)

(
rN(2)

rr −
r

h2
M(2)

rr +
r

h1
M(1)

rr

)
δu2

∣∣∣∣R
0
= 0, (15)

(
rN(3)

rr −
r

h3
M(3)

rr +
r

h2
M(2)

rr

)
δu3

∣∣∣∣R
0
= 0, (16)

r
h3

M(3)
rr δu4

∣∣∣∣R
0
= 0, (17)

r
(

Q(1)
rz + Q(2)

rz + Q(3)
rz + Q(4)

rz

)
δw
∣∣∣R
0
= 0, (18)

where

N(k)
rr =

hk∫
0

σ
(k)
rr dz and M(k)

rr =
hk∫
0

σ
(k)
rr zdz,

N(k)
θθ =

hk∫
0

σ
(k)
θθ dz and M(k)

θθ =
hk∫
0

σ
(k)
θθ zdz,

Q(k)
rz =

hk∫
0

τ
(k)
rz dz and M(k)

rz =
hk∫
0

τ
(k)
rz zdz.

(19)

The open forms of the equations of motion and derived boundary conditions are
presented in the Appendix A.

The regularity conditions at r = 0 for the symmetrical vibrations of the circular sand-
wich plate are as follows:

u1 = 0, u2 = 0, u3 = 0, u4 = 0 and
∂w
∂r

= 0. (20)

3. Differential Transform Method (DTM)

The Taylor series expansion-based differential transform method (DTM) is the one
of the semi-analytical–numerical techniques, and by using this technique, it is possible
to obtain highly accurate results for differential or integro-differential equations. The kth
order differential transform of a function w = w(r) is defined about a point r = r0 in domain
R and the differential transform of the kth derivative of the function w(r) in one variable is
defined as follows [12,31]:

Wk =
1
k!

[
dkw(r)

drk

]
r=r0

, (21)
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where w(r) is the original and Wk is the transformed function. On the other hand, the
inverse transformation of the original function w(r) is given as follows [12,31]:

w(r) =
∞

∑
k=0

(r− r0)
kWk. (22)

Combining Equations (21) and (22), one may be given [12,31]:

w(r) =
∞

∑
k=0

(r− r0)
k

k!

[
dkw(r)

drk

]
r=r0

, (23)

Equation (23) indicates that Taylor’s expansion is the source of the idea of the differ-
ential transform method. However, the differential transform method does not estimate
the derivatives symbolically. An iterative procedure can be used to evaluate the relative
derivatives defined by the transformed equations of the original functions. The function
w(r) is expressed by a finite series, and Equation (22) can be given:

w(r) =
N

∑
k=0

(r− r0)
kWk. (24)

Depending on the convergence of the eigenvalues, it is possible to limit the series
size. In this study, the value of N represents the number of terms in Taylor’s series, and
Equation (24) implies that ∑∞

k=n+1 (r− r0)
kWk is negligibly small. Table 1 shows some

useful theorems that are needed in the differential transform method.

Table 1. DTM theorems [12,32].

Theorem Original Function DTM

1 w(r) = g(r)± h(r) Wk = Gk ± Hk

2 w(r) = λg(r) Wk = λGk

3 w(r) = g(r)h(r) Wk =
k
∑

l=0
Gl Hk−l

4 w(r) = dn g(r)
drn Wk = (k+n)!

k! Gk+n

5 w(r) = rn
Wk = δ(k− n) =

{
1
0

k = n
k 6= n

}

In addition, from Theorems 3–5 presented in Table 1, one can derive the following:

If w(r) = rm dng(r)
drn then w(k) =

(k + n−m)!
(k−m)!

g(k + n−m) where k ≥ m, (25)

This rule will be very important in the transformation of governing differential equa-
tions since there are many terms of dependent functions and their derivatives multiplied
with r and r2.

The differential transforms of Equations (A1)–(A5) are also presented in Appendix A
in (A6)–(A10), using the rules in Table 2 and the rule presented in Equation (25).
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Table 2. DTM theorems for various edge boundary conditions (r = R).

Original BC Transformed BC

Free

− E1h1[ν1(2u1+u2)+R(2u′1+u′2)]
6(ν2

1−1)R
= 0 −

E1h1
N+2
∑

k=0
(ν1+k)Rk [2U1(k)+U2(k)]

6(ν2
1−1)R

= 0

E1h1
6(1−ν2

1)R
(ν1u1 + Ru′1 + 2ν1u2 + 2Ru′2)+

E2h2
6(1−ν2

2)R
(ν2u3 + Ru′3 + 2ν2u2 + 2Ru′2) = 0

E1h1
N+2
∑

k=0
(ν1+k)Rk [U1(k)+2U2(k)]

6(ν2
1−1)R

+
E2h2

N+2
∑

k=0
(ν2+k)Rk [2U2(k)+U3(k)]

6(ν2
2−1)R

= 0

E2h2
6(1−ν2

2)R
(ν2u2 + Ru′2 + 2ν2u3 + 2Ru′3)+

E3h3
6(1−ν2

3)R
(ν3u4 + Ru′3 + 2ν3u3 + 2Ru′3) = 0

E2h2
N+2
∑

k=0
(ν2+k)Rk [U2(k)+2U3(k)]

6(ν2
2−1)R

+
E3h3

N+2
∑

k=0
(ν3+k)Rk [2U3(k)+U4(k)]

6(ν2
3−1)R

= 0

− E3h3[ν3(u3+2u4)+R(u′3+2u′4)]
6(ν2

3−1)R
= 0 −

E3h3
N+2
∑

k=0
(ν3+k)Rk [U3(k)+2U4(k)]

6(ν2
3−1)R

= 0

−G1u1 + (G1 −G2)u2 + (G2 −G3)u3 + G3u4

+(G1h1 + G2h2 + G3h3)w′ = 0

N+2
∑

k=0
Rk[−G1U1(k) + (G1 −G2)U2(k) + (G2 −G3)U3(k) + G3U4(k)]+

N+2
∑

k=0
kRk−1(G1h1 + G2h2 + G3h3)W(k) = 0

Simple
Support

− E1h1[ν1(2u1+u2)+R(2u′1+u′2)]
6(ν2

1−1)R
= 0 −

E1h1
N+2
∑

k=0
(ν1+k)Rk [2U1(k)+U2(k)]

6(ν2
1−1)R

= 0

E1h1
6(1−ν2

1)R
(ν1u1 + Ru′1 + 2ν1u2 + 2Ru′2)+

E2h2
6(1−ν2

2)R
(ν2u3 + Ru′3 + 2ν2u2 + 2Ru′2)−

E2h2
6(1−ν2

2)R
(ν2u2 + Ru′2 + 2ν2u3 + 2Ru′3)+

E3h3
6(1−ν2

3)R
(ν3u4 + Ru′3 + 2ν3u3 + 2Ru′3) = 0

E1h1
N+2
∑

k=0
(ν1+k)Rk [U1(k)+2U2(k)]

6(ν2
1−1)R

+
E2h2

N+2
∑

k=0
(ν2+k)Rk [2U2(k)+U3(k)]

6(ν2
2−1)R

−

E2h2
N+2
∑

k=0
(ν2+k)Rk [U2(k)+2U3(k)]

6(ν2
2−1)R

+
E3h3

N+2
∑

k=0
(ν3+k)Rk [2U3(k)+U4(k)]

6(ν2
3−1)R

= 0

u2 + u3 = 0 N+2
∑

k=0
Rk[U2(k) + U3(k)] = 0

− E3h3[ν3(u3+2u4)+R(u′3+2u′4)]
6(ν2

3−1)R
= 0 −

E3h3
N+2
∑

k=0
(ν3+k)Rk [U3(k)+2U4(k)]

6(ν2
3−1)R

= 0
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Table 2. Cont.

Original BC Transformed BC

−G1u1 + (G1 −G2)u2 + (G2 −G3)u3 + G3u4

+(G1h1 + G2h2 + G3h3)w′ = 0

N+2
∑

k=0
Rk[−G1U1(k) + (G1 −G2)U2(k) + (G2 −G3)U3(k) + G3U4(k)]+

N+2
∑

k=0
kRk−1(G1h1 + G2h2 + G3h3)W(k) = 0

Clamped u1 = u2 = u3 = u4 = w = 0 N+2
∑

k=0
RkU1(k) =

N+2
∑

k=0
RkU2(k) =

N+2
∑

k=0
RkU3(k) =

N+2
∑

k=0
RkU4(k) =

N+2
∑

k=0
RkW(k) = 0
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4. Validation

Before starting the parametric study, it is necessary to conduct a validation. For this
purpose, dynamic analyses of circular sandwich plates are conducted and compared with
the results that already exist in the literature. Additionally, FEM analyses are performed
using the commercial code ANSYS and added into the comparison to validate the proposed
model and the solution methodology.

The first problem investigated in this paper is the vibration analysis of a circular
sandwich plate with isotropic face sheets and a soft core. The solutions are conducted for
free and simply supported boundary conditions. The second example is the vibration and
damping analysis of a circular sandwich plate with aluminum face layers and a frequency
independent viscoelastic core.

4.1. Example 1

The first problem is the vibration analysis of a circular sandwich plate with isotropic
face sheets and a soft core for various BCs, i.e., simply supported and free boundary.
The geometric and mechanical properties of the examined circular sandwich plate are as
presented in Table 3. The free and simply supported boundary conditions at the plate edge
are applied as given in Table 2.

Table 3. Material properties and dimensions [19].

Elastic layers (Layers 1 and 3)
Young’s modulus Ef = 210 GPa

Density ρ1 = ρ3 = 7800 kg/m3

Poisson’s ratio ν1 = ν3 = 0.3
Thickness h1 = h3 = 0.2 mm

Core layer (Layer 2)
Young’s modulus Ezz = 100 MPa

Shear modulus Gxz = Gyz = 40 × 106 Pa
Density ρ2 = 624 kg/m3

Poisson’s ratio ν2 = 0.3
Thickness h2 = 0.8 mm

Whole plate
Radius R = 78 mm

For the first example, solutions are achieved for the boundary conditions with free
and simply supported edges using N = 50 terms in DTM calculations. The first four mode
shapes are presented in Figures 3 and 4. Both Tables 4 and 5 demonstrate good agreement
between the results conducted by DTM, FEM results obtained with ANSYS and the existing
results in the literature for free edge and simply supported edge sandwich plates.

Table 4. Natural frequencies of a free edge sandwich plate with a radius of 78 mm.

Mode DTM FEM Ref. [19] a Ref. [19] b Ref. [19] c

1 503.7 503.7 501.2 505.7 503.8
2 1393.3 1393.2 - - -
3 2290.8 2290.3 - - -
4 3221.0 3219.8 - - -
5 4214.3 4212.0 - - -

a: Analytical solution, b: FEM solution, c: Experimental results for the axisymmetric modes.
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Table 5. Natural frequencies of a simply supported sandwich plate with a radius of 78 mm.

Mode DTM FEM Ref. [19] a Ref. [19] b

1 284.9 284.9 283.8 285.4
2 1105.6 1105.6 1096.9 1106.0
3 1962.2 1962.1 1910.6 1928.3
4 2855.1 2854.8 2701.3 2727.7
5 3811.9 3811.1 - -

a: Analytical solution, b: FEM solution for the axisymmetric modes.

4.2. Example 2

The second example considered in this paper is the dynamic analysis of a circular
sandwich plate with aluminum face layers and a frequency independent viscoelastic core.
The geometric and material parameters of the selected problem are given in Table 6. The
frequencies and modal loss factors are determined by Equation (26).

fn =
√

Re(ω2
n) and ηn =

Im(ω2
n)

Re(ω2
n)

, (26)

where ωn defines the complex natural frequency.

Table 6. Material properties and dimensions [33].

Face layers (Layers 1 and 3)
Young’s modulus E1 = E3 = 68.9 GPa

Density ρ1 = ρ3 = 2680 kg/m3

Thickness h1 = h3 = 2.5 mm
Poisson’s ratio ν1 = ν3 = 0.28

Core layer (Layer 2)
Shear modulus G2 = 82.68 MPa

Density ρ2 = 32.8 kg/m3

Thickness h2 = 5 mm
Loss Factor η2 = 0, 0.1, 0.2, 0.5

Whole Plate
Radius R = 500 mm

Tables 7–9 show the natural frequencies and modal loss factors of the circular sandwich
plate for free, clamped and simply supported boundary conditions for the first six modes,
respectively. In this example, the DTM and finite element (FE) results obtained with ANSYS
Classical 2019 R2 are compared. A total of 2000 solid eight-node axisymmetric quadrilateral
finite elements are used in the FE model.

Table 7. The natural frequencies of circular sandwich plate for free boundary condition.

f (Hz) DTM

Mode N = 20 N = 40 N = 60 N = 80 ANSYS

1 98.92 98.93 98.93 98.93 98.93
2 288.64 288.86 288.86 288.86 288.84
3 - 493.82 493.82 493.82 493.69
4 - 719.90 719.90 719.90 719.56
5 - 993.66 975.36 975.36 974.69
6 - 1026.92 1265.78 1265.78 1264.70
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Table 8. The natural frequencies of circular sandwich plate for clamped boundary condition.

f (Hz) DTM

Mode N = 20 N = 40 N = 60 N = 80 ANSYS

1 91.58 91.35 91.35 91.35 91.366
2 256.56 255.15 255.15 255.15 255.16
3 456.47 450.62 450.62 450.62 450.59
4 - 673.11 673.11 673.11 672.97
5 - 927.69 927.41 927.41 927.09
6 - 1121.16 1218.12 1218.12 1217.50

Table 9. The natural frequencies of circular sandwich plate for simple support boundary condition.

f (Hz) DTM

Mode N = 20 N = 40 N = 60 N = 80 ANSYS

1 55.60 55.60 55.60 55.60 55.60
2 227.98 228.05 228.05 228.05 228.05
3 301.29 420.74 420.74 420.74 420.71
4 - 635.18 635.18 635.18 635.03
5 - 879.50 879.36 879.36 879.02
6 - 1082.53 1158.96 1158.96 1158.3

The finite element results by the commercial software ANSYS were also added into
this comparison. However, defining the complex modulus of the viscoelastic core layer
was not possible using this software; therefore, the undamped ANSYS solution was used to
obtain the modal loss factors using the modal strain energy method (MSE) as given in [34].

ηn =
ηcVc,n

VT,n
, (27)

where ηn is the nth modal loss factor and ηc is the material loss factor of the viscoelastic
core, Vc,n is the elastic strain energy of the core and VT,n is the total strain energy at the nth
modal frequency of the circular sandwich plate.

The results for the frequencies show that the DTM and ANSYS solutions are quite
close to each other and a good agreement is achieved. There is a similar correlation for
modal loss factors between the results of the undamped ANSYS solution combined with
the MSE approach and the DTM solution results. In addition, considering the results from
Tables 7–12, it is decided that it would be appropriate to use N = 60 terms in the remaining
part of this study.

Table 10. Modal loss factors (%) of circular sandwich plate for free boundary condition.

η Mode N = 20 N = 40 N = 60 N = 80 ANSYS

0.1

1 2.435 2.435 2.435 2.435 2.454
2 5.863 5.868 5.869 5.869 5.890
3 - 6.576 6.576 6.576 6.591
4 - 6.320 6.320 6.320 6.331
5 - 5.780 5.744 5.744 5.752
6 - 5.429 5.089 5.089 5.094

0.2

1 4.767 4.770 4.770 4.770 4.908
2 11.626 11.636 11.636 11.636 11.778
3 - 13.096 13.096 13.096 13.181
4 - 12.607 12.607 12.607 12.662
5 - 11.570 11.470 11.470 11.505
6 - 10.848 10.170 10.170 10.190
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Table 10. Cont.

η Mode N = 20 N = 40 N = 60 N = 80 ANSYS

0.5

1 10.402 10.400 10.400 10.400 12.270
2 27.440 27.450 27.450 27.450 29.443
3 - 31.801 31.801 31.801 32.954
4 - 30.980 30.980 30.980 31.654
5 - 28.580 28.350 28.350 28.762
6 - 26.950 25.220 25.220 25.472

Table 11. Modal loss factors (%) of circular sandwich plate for clamped boundary condition.

η Mode N = 20 N = 40 N = 60 N = 80 ANSYS

0.1

1 4.843 4.771 4.771 4.770 4.793
2 6.531 6.354 6.354 6.354 6.369
3 6.729 6.564 6.564 6.564 6.572
4 - 6.162 6.162 6.162 6.165
5 - 5.517 5.521 5.521 5.521
6 - 5.523 4.839 4.839 4.837

0.2

1 9.562 9.415 9.415 9.415 9.586
2 12.987 12.626 12.626 12.626 12.738
3 13.424 13.080 13.080 13.080 13.314
4 - 12.300 12.300 12.300 12.330
5 - 11.020 11.029 11.029 11.042
6 - 11.040 9.672 9.672 9.673

0.5

1 21.931 21.556 21.556 21.556 23.976
2 31.215 30.206 30.206 30.206 31.845
3 32.965 31.906 31.907 31.907 32.860
4 - 30.331 30.331 30.331 30.826
5 - 27.332 27.356 27.356 27.604
6 - 27.496 24.065 24.065 24.184

Table 12. Modal loss factors (%) of circular sandwich plate for simple support boundary condition.

η Mode N = 20 N = 40 N = 60 N = 80 ANSYS

0.1

1 2.072 2.074 2.074 2.074 2.090
2 5.931 5.937 5.937 5.937 5.957
3 6.824 6.802 6.802 6.802 6.813
4 6.610 6.530 6.530 6.530 6.536
5 - 5.889 5.891 5.891 5.893
6 - 5.593 5.173 5.173 5.172

0.2

1 4.052 4.055 4.055 4.055 4.180
2 11.751 11.762 11.762 11.762 11.914
3 13.593 13.542 13.545 13.545 13.626
4 13.148 13.032 13.032 13.032 13.073
5 - 11.764 11.768 11.768 11.786
6 - 11.178 10.334 10.339 10.344

0.5

1 8.754 8.758 8.758 8.758 10.450
2 27.567 27.593 27.593 27.593 29.785
3 33.048 32.878 32.878 32.878 34.066
4 31.663 32.086 32.086 32.086 32.681
5 - 29.158 29.167 29.167 29.466
6 - 27.812 25.712 25.712 25.861

5. Parametric Analyses

A series of parametric calculations are performed to understand the effect of system
parameters on the dynamic behavior of the circular sandwich plates. The geometrical
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parameters and the choice of core material on the damping and the dynamic characteristics
of a clamped circular sandwich plate with a viscoelastic core layer are analyzed in this
section. The bottom and top face sheets are an isotopically elastic aluminum material
with E1= E3= 68.9 GPa, ρ1= ρ3= 2680 kg/m3, the radius of the plate is constant and
R = 500 mm.

The core layer material is selected as viscoelastic, hence, its mechanical properties such
as dynamic modulus and loss factor are highly dependent on frequency and temperature.
A ten-parameter fractional derivative material model is selected to model the frequency-
dependent damping layer’s behavior [35,36]:

G∗ =
λ1(i f τ)γ+ϕ

1 + λ2(i f τ)γ + G0

[
1 + Ω

(i f τ)α+β

1 + λ3(i f τ)α + (i f τ)α+β

]
, (28)

where f is the frequency, τ is the relaxation time, G0 is the static shear modulus, α, β, γ
and ϕ are the fractional time derivatives and λ1, λ2, λ3 and Ω are the fitting parameters.
Table 10 lists the unknown material properties for damping polymers in the fractional
derivative model.

Equation (28) is used to compute the viscoelastic core’s loss factor and shear modulus
using data from Table 13. First, the effect of the thickness of the core layer on vibration
and damping behavior is examined. The results depicted in Figure 3 are achieved keeping
constant both the face layers’ thicknesses h1 = h2 = 2.5 mm, and the thickness of the
core layer varies from 0.2 to 30 mm. The results show that the core layer thickness and
polymeric core material choice have a significant effect on the modal loss factors and
natural frequencies.

Table 13. Viscoelastic material properties at T0 = 20 ◦C [35].

Material G0 (Pa) Ω α β Γ ϕ λ1 (Pa) λ2 λ3 τ(s) ρ (kg/m3)

3M Y966 3.153 × 104 12,394 0.427 0.234 0.228 0.0423 1.269 × 106 0.0352 4.004 3.852 × 10−6 1102
DYAD 606 1.014 × 106 532 0.486 0.329 0.222 0.0413 2.177 × 107 0.0745 6.721 1.255 × 10−2 969

EAR C-1002 3.633 × 106 573 0.489 0.205 0.330 0.0176 4.287 × 108 0.329 4.482 1.007 × 10−8 1280
Polyisoprene 4.659 × 106 480 0.120 0.706 0.291 0.0653 6.442 × 107 0.0749 4.254 5.577 × 10−8 930
Polyurethane 7.361 × 106 236 0.513 0.368 0.308 0.0503 3.943 × 107 0.0558 4.087 1.115 × 10−2 1150

Two of the damping polymers, DYAD 606 and polyurethane, are stiff compared to
the remaining three, namely, 3M Y966, EAR C-1002 and polyisoprene. As the core layer
thickness increases for soft materials, it experiences large shear deformations, and the
radial bending rigidity of the cross-section decreases. As a result, the fundamental natural
frequency decreases with h2, as can be observed from Figure 5a. However, using stiff
material as a core layer, the bending rigidity increases and a continuous increase can be
observed for the frequency with h2.

On the other hand, there are two mechanisms that affect the structural damping of
the sandwich plate. The first one is the core layer material loss factor that is a function of
frequency and temperature. The second one is the ratio of the stored strain energy of the
core layer to the total strain energy. The core layer is forced in shear due to the relative
motion of the face layers in bending. As the core layer thickness increases, this ratio also
increases, as expected.

However, this mechanism loses its efficiency when the core thickness becomes too
large compared to the face layers, and the modal loss factor converges to the material loss
factor. In general, the modal loss factors increase with h2 due to the increase in damping
material mass, as expected. One exception is the 3M Y966 material at small values of h2.
The reason seems to be that the material loss factor shows significant variation at around
30 Hz, which is the fundamental frequency of the sandwich plate. As the core thickness
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increases, the natural frequency decreases, as well as the material loss factor. This can be
seen in Figure 5a,b in detail.
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Then, the effect of face layer thickness on the vibration and damping characteristics of
the symmetrically sectioned circular sandwich plate is investigated by keeping the core
layer constant (h2 = 5 mm) and changing h1 and h3. The fundamental natural frequency
and the modal loss factor are depicted in Figure 6. As the face sheet thickness increases,
the natural frequency increases, as expected, due to the increasing bending rigidity. The
natural frequency exhibits the highest values for the stiff polyurethane core and the lowest
values for the soft 3M Y966 core.

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 24 
 

 

  

(a) (b) 

Figure 6. Variation of the frequency and loss factor with h1 and h3 (h2 = 5 mm, R = 500 mm): (a) 

natural frequency, (b) modal loss factor. 

Lastly, the effect of the location of the core layer on the vibration and damping char-

acteristics of the unsymmetrically sectioned circular sandwich plate is investigated by 

keeping the core layer and total thickness constant (h2 = 5 mm and h1 + h2 + h3 = 12.5 mm) 

and changing h1 for examining the effects of geometric asymmetry. 

As can be seen in Figure 7, the frequency is maximum for the asymmetric sections 

for soft core materials, as highlighted in the existing studies on sandwich structures avail-

able in the literature [31,32]. On the other hand, this effect seems contrary to the loss factor 

where the maximum values are for symmetrical sections. This is an expected outcome, 

since the core experiences the greatest magnitudes of shear stress for symmetrical sections, 

as indicated by Arikoglu et al. [31]. 

  

(a) (b) 

Figure 7. Variation of the frequency and loss factor with location of core layer (h2 = 5 mm, total 

thickness is constant and h1 + h2 + h3 = 12.5 mm, R = 500 mm): (a) natural frequency, (b) modal loss 

factor. 

6. Discussion 

This study presents the vibration and damping analysis of three-layered circular 

sandwich plates with a frequency-dependent viscoelastic core layer using the differential 

Figure 6. Variation of the frequency and loss factor with h1 and h3 (h2 = 5 mm, R = 500 mm):
(a) natural frequency, (b) modal loss factor.

For thin face layers, the core layer cannot be deformed in shear efficiently. On the
other hand, when the face layer thicknesses increase, the stored strain energy in the core
layer increases as well. Therefore, the modal loss factor increases with face layer thickness
for small values of h1 and h3 for all of the core materials except 3M Y966, as can be seen in
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Figure 6b. Then, the modal loss factor starts to decrease for the higher values of face layer
thickness. This is mainly due to the decreasing ratio of stored modal strain energy by the
core layer to the total strain energy.

Lastly, the effect of the location of the core layer on the vibration and damping char-
acteristics of the unsymmetrically sectioned circular sandwich plate is investigated by
keeping the core layer and total thickness constant (h2 = 5 mm and h1 + h2 + h3 = 12.5 mm)
and changing h1 for examining the effects of geometric asymmetry.

As can be seen in Figure 7, the frequency is maximum for the asymmetric sections for
soft core materials, as highlighted in the existing studies on sandwich structures available
in the literature [31,32]. On the other hand, this effect seems contrary to the loss factor
where the maximum values are for symmetrical sections. This is an expected outcome,
since the core experiences the greatest magnitudes of shear stress for symmetrical sections,
as indicated by Arikoglu et al. [31].
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6. Discussion

This study presents the vibration and damping analysis of three-layered circular
sandwich plates with a frequency-dependent viscoelastic core layer using the differen-
tial transform method. First, the governing equations, boundary conditions and related
differential transforms were obtained. Then, inverse transformation was performed and
the frequencies and loss factors obtained for various end conditions. The results were
validated against those that exist in the open literature and the commercial FEM software
ANSYS, and a very good correlation was observed. This study shows that DTM can be
utilized for the vibration and damping analysis of circular sandwich plates as an efficient,
fast converging tool, which, to the best of the author’s knowledge, has been achieved for
the first time. Finally, parametric analyses were carried out to understand the effects of
geometric and material parameters on the dynamic response of circular sandwich plates.
The followings are observed:

- The modal loss factors and natural frequencies are highly influenced by the core layer
thickness and polymeric material properties.

- As the core layer thickness increases for soft materials, it experiences large shear
deformations, and the radial bending rigidity of the cross-section decreases. On the
other hand, the bending rigidity continuously increases with the frequency when the
core layer is stiff.
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- As the face thicknesses increase, the natural frequency increases, as expected, due to
the increased bending stiffness. For thin face layers, the core layer cannot be deformed
in shear efficiently. On the other hand, when the face layer thicknesses increase, the
stored strain energy in the core layer increases as well.

- The core layer experiences the greatest magnitudes of shear stress for symmetrical sections.

The study conducted here can be extended to the asymmetrical vibration analysis of
circular laminated composite and sandwich plates for future work.
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Appendix A

The open forms of Equations (9)–(13) are as follows:
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The transformed equations are obtained as follows:
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Equations (A6) to (A10) are recurrence relations starting from k = 0. They will give
an algebraic equation system from which the unknown DTM coefficients are solved in
terms of given and missing initial conditions at r = 0 (w(0), u1′ (0), . . . , un+1′ (0)). Then,
the transformed boundary conditions given in Table 2 are used to solve the vibration
frequencies and mode shapes. As an example, for the clamped end conditions of the
three-layered sandwich plate, the end conditions in Table 2 give:

N+2

∑
k=0

RkU1(k) =
N+2

∑
k=0

RkU2(k) =
N+2

∑
k=0

RkU3(k) =
N+2

∑
k=0

RkU4(k) =
N+2

∑
k=0

RkW(k) = 0, (A11)
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where U1(k), U2(k), U3(k), U4(k) and W(k) depend on U1(1), U2(1), U3(1), U4(1) and W(0),
and this equation can be represented in matrix form:

K11(ω) K12(ω) K13(ω) K14(ω) K15(ω)
K21(ω) K22(ω) K23(ω) K24(ω) K25(ω)
K31(ω) K32(ω) K33(ω) K34(ω) K35(ω)
K41(ω) K42(ω) K43(ω) K44(ω) K45(ω)
K51(ω) K52(ω) K53(ω) K54(ω) K55(ω)




U1(1)
U2(1)
U3(1)
U4(1)
W(0)

 =


0
0
0
0
0

 or [K(ω)]{U} = {0}, (A12)

the frequencies of vibration are solved from:

det[K(ω)] = 0, (A13)

and the eigenvectors are obtained by setting W(0) = 1 for the related mode ωn:
U1(1)
U2(1)
U3(1)
U4(1)


n

= −


K11(ωn) K12(ωn) K13(ωn) K14(ωn)
K21(ωn) K22(ωn) K23(ωn) K24(ωn)
K31(ωn) K32(ωn) K33(ωn) K34(ωn)
K41(ωn) K42(ωn) K43(ωn) K44(ωn)


−1

K15(ωn)
K25(ωn)
K35(ωn)
K45(ωn)

. (A14)
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