Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = awn development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3270 KiB  
Article
The Effect of the Isolation Hotel Facade Attachment on the Inter-Flat Transmission of Aerosols
by Nan Zhang, Yuze Li, Ying Ji and Xiangyu Li
Buildings 2025, 15(5), 755; https://doi.org/10.3390/buildings15050755 - 25 Feb 2025
Viewed by 603
Abstract
Although natural ventilation can effectively control the indoor air quality and thermal comfort, the single-sided natural ventilation in isolation hotels may lead to the transmission of virus-laden aerosols between windows on the same façade but on different floors near the pollution source. Hereinafter, [...] Read more.
Although natural ventilation can effectively control the indoor air quality and thermal comfort, the single-sided natural ventilation in isolation hotels may lead to the transmission of virus-laden aerosols between windows on the same façade but on different floors near the pollution source. Hereinafter, this kind of transmission is referred to as inter-flat transmission. The configuration of the building façade is a key factor influencing this risk. This study took into account various façade attachment scenarios including flat façades (with no attachments), outdoor units only, awnings only, and a combination of outdoor units and awnings. A model based on a real isolation hotel was developed, and computational fluid dynamics (CFD) simulations were carried out to investigate the inter-flat transmission of aerosols under these façade conditions. The study analyzed the risk of gaseous pollutant transmission caused by single-sided natural ventilation and quantified the effects of different outdoor wind speeds and indoor–outdoor temperature differences on this transmission route. When the indoor–outdoor temperature difference was 5 °C, the mass fraction of gaseous pollutants in the receptor rooms above the source first increased and then decreased as the outdoor wind speed increased, reaching a peak at 1 m/s. When the outdoor wind speed was 2 m/s, the mass fraction of pollutants in the receptor rooms increased with the increase in the indoor–outdoor temperature difference. Compared with the flat façade, the presence of outdoor units reduced the air exchange rate of natural ventilation, resulting in a slight increase in the infection risk. A 1 m-long awning reduced the infection risk associated with inter-flat transmission by 46%. Buildings equipped with both a 1 m-long awning and outdoor units achieved a 68% reduction in infection risk. These findings provide valuable insights for mitigating inter-flat transmission and inform the development of relevant policies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 4200 KiB  
Article
High- or Low-Yielding F2 Progeny of Wheat Is Result of Specific TaCKX Gene Coexpression Patterns in Association with Grain Yield in Paternal Parent
by Karolina Szala, Marta Dmochowska-Boguta, Joanna Bocian, Wacław Orczyk and Anna Nadolska-Orczyk
Int. J. Mol. Sci. 2024, 25(6), 3553; https://doi.org/10.3390/ijms25063553 - 21 Mar 2024
Viewed by 1347
Abstract
Members of the TaCKX gene family (GFM) encode oxidase/dehydrogenase cytokinin degrading enzymes (CKX), which play an important role in the homeostasis of phytohormones, affecting wheat development and productivity. Therefore, the objective of this investigation was to test how the expression patterns of the [...] Read more.
Members of the TaCKX gene family (GFM) encode oxidase/dehydrogenase cytokinin degrading enzymes (CKX), which play an important role in the homeostasis of phytohormones, affecting wheat development and productivity. Therefore, the objective of this investigation was to test how the expression patterns of the yield-related TaCKX genes and TaNAC2-5A (NAC2) measured in 7 days after pollination (DAP) spikes and the seedling roots of parents are inherited to apply this knowledge in the breeding process. The expression patterns of these genes were compared between parents and their F2 progeny in crosses of one mother with different paterns of awnless cultivars and reciprocal crosses of awned and awnless lines. We showed that most of the genes tested in the 7 DAP spikes and seedling roots of the F2 progeny showed paternal expression patterns in crosses of awnless cultivars as well as reciprocal crosses of awned and awnless lines. Consequently, the values of grain yield in the F2 progeny were similar to the pater; however, the values of seedling root mass were similar to the mother or both parents. The correlation analysis of TaCKX GFMs and NAC2 in spikes and spikes per seedling roots reveals that the genes correlate with each other specifically with the pater and the F2 progeny or the mother and the F2 progeny, which shape phenotypic traits. The numbers of spikes and semi-empty spikes are mainly correlated with the specific coexpression of the TaCKX and NAC2 genes expressed in spikes or spikes per roots of the pater and F2 progeny. Variable regression analysis of grain yield and root mass with TaCKX GFMs and NAC2 expressed in the tested tissues of five crosses revealed a significant dependency of these parameters on the mother and F2 and/or the pater and F2 progeny. We showed that the inheritance of yield-related traits depends on the specific cooperative expression of some TaCKX GFMs, in some crosses coupled with NAC2, and is strongly dependent on the genotypes used for the crosses. Indications for parental selection in the breeding of high-yielding lines are discussed. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetic Regulation of Crops)
Show Figures

Figure 1

12 pages, 1196 KiB  
Article
Marker-Trait Associations of Agronomic Traits in Barley (Hordeum vulgare L.) under Semi-Arid Conditions
by Salem Marzougui and Mongi Ben Younes
Agronomy 2023, 13(11), 2804; https://doi.org/10.3390/agronomy13112804 - 13 Nov 2023
Viewed by 1696
Abstract
Heading date, plant height, and spike-related phenotypes are key traits that affect the yield potential and adaptation of barley to Mediterranean environments. These traits are controlled by a complex network of genes as well as environmental effects. Marker-trait associations (MTAs) were performed using [...] Read more.
Heading date, plant height, and spike-related phenotypes are key traits that affect the yield potential and adaptation of barley to Mediterranean environments. These traits are controlled by a complex network of genes as well as environmental effects. Marker-trait associations (MTAs) were performed using a set of 361 barley genotypes, evaluated phenotypically for three years under semi-arid conditions. In total, 24 MTAs were detected using the recently developed GWAS method (BLINK) at –log p ≥ 5. These included one MTA with awn length (Awl) on chromosome 2H; twelve MTAs with heading date (HD) distributed over all chromosomes except 4H; three MTAs with grains per spike (GPS) on chromosomes 1H, 2H, and 6H; six MTAs were detected for plant height (PH) on 2H (2), 3H, 4H, 6H, and 7H; and two MTAs with spike length (SL) on 3H and 7H. The results showed novel and known associations between specific SNP markers and heading date, plant height, and spike-related traits, suggesting that these markers can be used in breeding programs to improve these traits in barley. This study provides valuable information for breeders and geneticists working to develop new barley varieties that are better adapted to semi-arid climates and have improved yield and quality characteristics. Full article
(This article belongs to the Special Issue Genetic and Genomic Studies of Important Traits in Cereal Crops)
Show Figures

Figure 1

11 pages, 980 KiB  
Article
Secreted Extracellular Products of Flavobacterium covae as Potential Immunogenic Factors for Protection against Columnaris Disease in Channel Catfish (Ictalurus punctatus)
by Mohamed Sayed, Lakshmi Narayanan, Manal Essa, Mark Lawrence, Attila Karsi and Hossam Abdelhamed
Pathogens 2023, 12(6), 808; https://doi.org/10.3390/pathogens12060808 - 7 Jun 2023
Cited by 2 | Viewed by 2186
Abstract
Columnaris disease caused by Flavobacterium covae leads to substantial economic losses in commercially important fish species worldwide. The US channel catfish (Ictalurus punctatus) industry is particularly vulnerable to this disease. Therefore, there is an urgent need to develop a vaccine to [...] Read more.
Columnaris disease caused by Flavobacterium covae leads to substantial economic losses in commercially important fish species worldwide. The US channel catfish (Ictalurus punctatus) industry is particularly vulnerable to this disease. Therefore, there is an urgent need to develop a vaccine to reduce the economic losses caused by this disease. Secreted extracellular products (SEPs) are considered to be essential bacterial virulence factors that often provide immunogenicity and protection. The current study sought to identify the main SEPs of F. covae and to evaluate their potential to provide protection in channel catfish against columnaris disease. SDS-PAGE analysis of SEPs revealed five protein bands with molecular weights ranging from 13 to 99 kDa. Mass spectrometry analysis showed that these SEPs were hypothetical protein (AWN65_11950), zinc-dependent metalloprotease (AWN65_10205), DNA/RNA endonuclease G (AWN65_02330), outer membrane protein beta-barrel domain (AWN65_12620), and chondroitin-sulfate-ABC endolyase/exolyase (AWN65_08505). Catfish fingerlings were vaccinated with SEPs, SEPs emulsified with mineral oil adjuvant, or heat-inactivated SEPs, or they were sham-immunized through intraperitoneal (IP) injection. After 21 days, an F. covae challenge showed 58.77% and 46.17% survival in the catfish vaccinated with the SEPs and the SEPs emulsified with adjuvant compared to the sham-vaccinated control (100% mortality within 120 h post-infection). However, the heat-inactivated SEPs failed to provide significant protection (23.15% survival). In conclusion, although SEPs contain potentially important immunogenic proteins, further work is needed to optimize their use for long-lasting protection against columnaris disease in fish. These results are significant given the economic impact of columnaris disease on fish farming worldwide. Full article
(This article belongs to the Special Issue Emerging Infections in Aquatic Animals)
Show Figures

Figure 1

14 pages, 7096 KiB  
Article
Anatomical and Physiological Characteristics of Awn Development in Elymus nutans, an Important Forage Grass in Qinghai-Tibet Plateau
by Yongsen Qiu and Wengang Xie
Agronomy 2023, 13(3), 862; https://doi.org/10.3390/agronomy13030862 - 15 Mar 2023
Cited by 1 | Viewed by 2188
Abstract
Awns are the important structures of inflorescence in many crops that belong to the Poaceae family. In addition, they actively participate in photosynthesis, transpiration, seed dispersal, and self-planting. The Elymus nutans Griseb. is an important, self-pollinated, allohexaploid (2n = 6x = 42) and [...] Read more.
Awns are the important structures of inflorescence in many crops that belong to the Poaceae family. In addition, they actively participate in photosynthesis, transpiration, seed dispersal, and self-planting. The Elymus nutans Griseb. is an important, self-pollinated, allohexaploid (2n = 6x = 42) and perennial native forage grass in Qinghai-Tibet Plateau that shows variation in awns length. However, the changes in the anatomical structure, physiological traits, and biochemical characteristics during awn development remain unclear in E. nutans. Therefore, this study investigated the changes in anatomical structures, enzymatic activities, and hormonal regulations of awns at four developmental stages, i.e., booting, heading, flowering, and maturity stages of three E. nutans accessions having different awn lengths. The results showed that the cross-sections of E. nutans awns had an acute triangular shape and structural similarities to wheat awns. In addition, the growth of long awns was recorded faster than short awns at the heading stage, but no significant differences in awns lengths were found at the heading, flowering, and maturity stages. The differences in the sizes of barbs and stomata of three accessions were statistically non-significant; however, the accession with long awns had more stomata than the accession with shorter awns at all developmental stages. In addition, the content of cytokinin (CTK), abscisic acid (ABA), and ethylene (ETH), and activities of superoxide dismutase (SOD) and peroxidase (POD) were significantly related to the development of awn. At the flowering stage, the content of CTK, and activities of SOD and POD of long awn accession were significantly higher than the short awn accession. Therefore, the obtained results provide a sound basis for future research on the molecular mechanisms of awn development and their potential role in E. nutans. Full article
Show Figures

Figure 1

14 pages, 1704 KiB  
Article
Analysis of Domestication Loci in Wild Rice Populations
by Sharmin Hasan, Agnelo Furtado and Robert Henry
Plants 2023, 12(3), 489; https://doi.org/10.3390/plants12030489 - 20 Jan 2023
Cited by 3 | Viewed by 2742
Abstract
The domestication syndrome is defined as a collection of domestication-related traits that have undergone permanent genetic changes during the domestication of cereals. Australian wild rice populations have not been exposed to gene flow from domesticated rice populations. A high level of natural variation [...] Read more.
The domestication syndrome is defined as a collection of domestication-related traits that have undergone permanent genetic changes during the domestication of cereals. Australian wild rice populations have not been exposed to gene flow from domesticated rice populations. A high level of natural variation of the sequences at domestication loci (e.g., seed shattering, awn development, and grain size) was found in Australian AA genome wild rice from the primary gene pool of rice. This natural variation is much higher than that found in Asian cultivated rice and wild Asian rice populations. The Australian Oryza meridionalis populations exhibit a high level of homozygous polymorphisms relative to domesticated rice, inferring the fixation of distinct wild and domesticated alleles. Alleles of the seed shattering genes (SH4/SHA1 and OsSh1/SH1) present in the shattering-prone O. meridionalis populations are likely to be functional, while the dysfunctional alleles of these seed shattering genes are found in domesticated rice. This confirms that unlike Asian wild rice populations, Australian wild rice populations have remained genetically isolated from domesticated rice, retaining pre-domestication alleles in their wild populations that uniquely allow the impact of domestication on the rice genome to be characterized. This study also provides key information about the domestication loci in Australian wild rice populations that will be valuable in the utilization of these genetic resources in crop improvement and de novo domestication. Full article
(This article belongs to the Special Issue Advances in Genetics and Breeding of Grain Crops)
Show Figures

Figure 1

19 pages, 8254 KiB  
Article
Development of a Solar Tracking-Based Movable Louver System to Save Lighting Energy and Create a Comfortable Light Environment
by Su-yeon Jung, Sowon Han, Min-Goo Lee and Heangwoo Lee
Buildings 2022, 12(11), 2017; https://doi.org/10.3390/buildings12112017 - 18 Nov 2022
Cited by 14 | Viewed by 6230
Abstract
Louvers are among the technical components considered for improving energy performance in buildings, and there has been increased interest in adapting the louver system. However, most previous studies have focused on their performance evaluation based on the width and angle of the slats, [...] Read more.
Louvers are among the technical components considered for improving energy performance in buildings, and there has been increased interest in adapting the louver system. However, most previous studies have focused on their performance evaluation based on the width and angle of the slats, which allow for limited improvement in their efficiency. This study suggests a solar tracking-based movable louver (STML) system and examines the efficacy using a full-scale test bed. To do so, we developed a full-scale test bed and estimated the energy reduction and improvement of indoor uniformity of different types of STML systems, including vertical, horizontal, eggcrate, and hybrid. The main findings are as follows: (1) The proposed STML is a hybrid louver with four movable shafts due to its structural characteristics. The shading area is increased sequentially by controlling the length of the movable shaft adjacent to the sun through solar tracking. (2) Compared with conventional vertical and horizontal louvers, the STML can improve indoor uniformity by 5.0% and 13.9%, respectively. Unlike conventional louvers, the STML awnings are installed at the end of the daylighting window, reducing window view obstruction and creating a more pleasant indoor visual environment. (3) Compared with conventional louvers, the STML can reduce lighting and heating/cooling energy by 35.7–49.7%. These findings prove the effectiveness of the proposed system. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 3658 KiB  
Article
Transcriptome and Metabolome Analysis Provides Insights into the Heterosis of Yield and Quality Traits in Two Hybrid Rice Varieties (Oryza sativa L.)
by Dahu Zhou, Xinyi Zhou, Changhui Sun, Guoping Tang, Lin Liu, Le Chen, Haohua He and Qiangqiang Xiong
Int. J. Mol. Sci. 2022, 23(21), 12934; https://doi.org/10.3390/ijms232112934 - 26 Oct 2022
Cited by 3 | Viewed by 2374
Abstract
Heterosis is a common biological phenomenon that is useful for breeding superior lines. Using heterosis to increase the yield and quality of crops is one of the main achievements of modern agricultural science. In this study, we analysed the transcriptome and metabolome of [...] Read more.
Heterosis is a common biological phenomenon that is useful for breeding superior lines. Using heterosis to increase the yield and quality of crops is one of the main achievements of modern agricultural science. In this study, we analysed the transcriptome and metabolome of two three-line hybrid rice varieties, Taiyou 871 (TY871), and Taiyou 398 (TY398) and the parental grain endosperm using RNA-seq (three biological repeats per variety) and untargeted metabolomic (six biological repeats per variety) methods. TY871 and TY398 showed specific heterosis in yield and quality. Transcriptome analysis of the hybrids revealed 638 to 4059 differentially expressed genes in the grain when compared to the parents. Metabolome analysis of the hybrids revealed 657 to 3714 differential grain metabolites when compared to the parents. The honeydew1 and grey60 module core genes Os04g0350700 and Os05g0154700 are involved in the regulation of awn development, grain size, and grain number, as well as the regulation of grain length and plant height, respectively. Rice grain length may be an important indicator for improving the quality of three-line hybrid rice. In addition, the rice quality-related metabolite NEG_M341T662 was highly connected to the module core genes Os06g0254300 and Os03g0168100. The functions of Os06g0254300 and Os03g0168100 are EF-hand calcium binding protein and late embroideries absolute protein repeat containing protein, respectively. These genes may play a role in the formation of rice quality. We constructed a gene and metabolite coexpression network, which provides a scientific basis for the utilization of heterosis in producing high-yield and high-quality hybrid rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 2634 KiB  
Article
InDels Identification and Association Analysis with Spike and Awn Length in Chinese Wheat Mini-Core Collection
by Zhenyu Wang, Zhongyin Deng, Xingchen Kong, Fang Wang, Jiantao Guan, Dada Cui, Guoliang Sun, Ruyi Liao, Mingxue Fu, Yuqing Che, Chenyang Hao, Shuaifeng Geng, Xueyong Zhang, Peng Zhou, Long Mao, Shaoshuai Liu and Aili Li
Int. J. Mol. Sci. 2022, 23(10), 5587; https://doi.org/10.3390/ijms23105587 - 17 May 2022
Cited by 8 | Viewed by 3355
Abstract
Diversity surveys of germplasm are important for gaining insight into the genomic basis for crop improvement; especially InDels, which are poorly understood in hexaploid common wheat. Here, we describe a map of 89,923 InDels from exome sequencing of 262 accessions of a Chinese [...] Read more.
Diversity surveys of germplasm are important for gaining insight into the genomic basis for crop improvement; especially InDels, which are poorly understood in hexaploid common wheat. Here, we describe a map of 89,923 InDels from exome sequencing of 262 accessions of a Chinese wheat mini-core collection. Population structure analysis, principal component analysis and selective sweep analysis between landraces and cultivars were performed. Further genome-wide association study (GWAS) identified five QTL (Quantitative Trait Loci) that were associated with spike length, two of them, on chromosomes 2B and 6A, were detected in 10 phenotypic data sets. Assisted with RNA-seq data, we identified 14 and 21 genes, respectively that expressed in spike and rachis within the two QTL regions that can be further investigated for candidate genes discovery. Moreover, InDels were found to be associated with awn length on chromosomes 5A, 6B and 4A, which overlapped with previously reported genetic loci B1 (Tipped 1), B2 (Tipped 2) and Hd (Hooded). One of the genes TaAGL6 that was previously shown to affect floral organ development was found at the B2 locus to affect awn length development. Our study shows that trait-associated InDels may contribute to wheat improvement and may be valuable molecular markers for future wheat breeding Full article
(This article belongs to the Special Issue Recent Advances in Plant Molecular Science in China 2022)
Show Figures

Figure 1

15 pages, 2914 KiB  
Article
Phenotype and Genotype Interaction Underlying Distributive Characteristic for Awn Development in Rice
by Jae-Ryoung Park, Ju Hyeong Son, Eun-Gyeong Kim, Yoon-Hee Jang, Byoung-Ju Yun and Kyung-Min Kim
Plants 2022, 11(7), 851; https://doi.org/10.3390/plants11070851 - 23 Mar 2022
Cited by 1 | Viewed by 2673
Abstract
As a wild ancestor of cultivated rice, Oryza rufipogon is domesticated into cultivated rice Oryza sativa, many agricultural traits are newly created or disappear. In particular, in wild rice, awn protects from predators and is easily blown by the wind and used [...] Read more.
As a wild ancestor of cultivated rice, Oryza rufipogon is domesticated into cultivated rice Oryza sativa, many agricultural traits are newly created or disappear. In particular, in wild rice, awn protects from predators and is easily blown by the wind and used as a means of propagation. However, awns gradually disappeared as they were breeding from wild rice to cultivated rice. Since awn development is disadvantageous to rice yield, it is important to understand the genetic basis related to awn development. In addition, characterization of the genes associated with awn development is helpful in analyzing the genetic relationships of rice from ancient times to the present for the regulatory mechanisms of awn formation. QTL analysis identified RM14330-RM218 on chromosome 3 using a 120 Cheongcheong/Nagdong double haploid population. Through screening of genes related to awn development in RM-14330-RM218, it is indicated that OsDRPq3 is a causal gene that can be involved in awn development. OsDRPq3 transcription level is maintained high in long awn and less yield populations during the panicle formation stage, the period during awn development. Moreover, the sequence of OsDRPq3 has high homology with the drooping protein leaf. This study provides a new resource for phylogenetic research of rice and exploration of awn development. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Graphical abstract

16 pages, 3641 KiB  
Article
Analyses of MADS-box Genes Suggest HvMADS56 to Regulate Lateral Spikelet Development in Barley
by Mohammed A. Sayed, Mohamed Allam, Quinn Kalby Heck, Ieva Urbanavičiūtė, Twan Rutten, David Stuart, Shakhira Zakhrabekova, Andreas Börner, Klaus Pillen, Mats Hansson and Helmy M. Youssef
Plants 2021, 10(12), 2825; https://doi.org/10.3390/plants10122825 - 20 Dec 2021
Cited by 2 | Viewed by 4042
Abstract
MADS-box transcription factors are crucial regulators of inflorescence and flower development in plants. Therefore, the recent interest in this family has received much attention in plant breeding programs due to their impact on plant development and inflorescence architecture. The aim of this study [...] Read more.
MADS-box transcription factors are crucial regulators of inflorescence and flower development in plants. Therefore, the recent interest in this family has received much attention in plant breeding programs due to their impact on plant development and inflorescence architecture. The aim of this study was to investigate the role of HvMADS-box genes in lateral spikelet development in barley (Hordeum vulgare L.). A set of 30 spike-contrasting barley lines were phenotypically and genotypically investigated under controlled conditions. We detected clear variations in the spike and spikelet development during the developmental stages among the tested lines. The lateral florets in the deficiens and semi-deficiens lines were more reduced than in two-rowed cultivars except cv. Kristina. Interestingly, cv. Kristina, int-h.43 and int-i.39 exhibited the same behavior as def.5, def.6, semi-def.1, semi-def.8 regarding development and showed reduced lateral florets size. In HOR1555, HOR7191 and HOR7041, the lateral florets continued their development, eventually setting seeds. In contrast, lateral florets in two-rowed barley stopped differentiating after the awn primordia stage giving rise to lateral floret sterility. At harvest, the lines tested showed large variation for all central and lateral spikelet-related traits. Phylogenetic analysis showed that more than half of the 108 MADS-box genes identified are highly conserved and are expressed in different barley tissues. Re-sequence analysis of a subset of these genes showed clear polymorphism in either SNPs or in/del. Variation in HvMADS56 correlated with altered lateral spikelet morphology. This suggests that HvMADS56 plays an important role in lateral spikelet development in barley. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 4132 KiB  
Article
Mapping and Characterization of QTLs for Awn Morphology Using Crosses between “Double-Awn” Wheat 4045 and Awnless Wheat Zhiluowumai
by Tianxiang Liu, Xue Shi, Jun Wang, Jiawang Song, Enshi Xiao, Yong Wang, Xin Gao, Wenzhi Nan and Zhonghua Wang
Plants 2021, 10(12), 2588; https://doi.org/10.3390/plants10122588 - 26 Nov 2021
Cited by 2 | Viewed by 3485
Abstract
Awns play important roles in seed dispersal, protection against predators, and photosynthesis. The characterization of genes related to the formation of awns helps understand the regulation mechanisms of awn development. In the present study, the “double-awn” wheat 4045, which features super-long lemma awns [...] Read more.
Awns play important roles in seed dispersal, protection against predators, and photosynthesis. The characterization of genes related to the formation of awns helps understand the regulation mechanisms of awn development. In the present study, the “double-awn” wheat 4045, which features super-long lemma awns and long glume awns, and an awnless wheat line, Zhiluowumai, were used to investigate QTLs or genes involved in awn development. QTL analysis identified three loci—Qawn-1D, Qawn-5A, and Qawn-7B—using a population of 101 4045 × ZLWM F2 plants. Fine mapping with a total of 9018 progenies narrowed the mapping interval of Qawn-5A to an 809-kb region, which was consistent with the B1 locus, containing five genes on chromosome 5AL. Gene structure and expression analysis indicated that TraesCS5A02G542800 was the causal gene, which was subsequently verified by overexpression of TraesCS5A02G542800 in a “double-awn” wheat, Yangmai20. The retained “double-awn” phenotype of transgenic plants suggested that B1 represses the elongation but does not influence the emergence of the awns. Moreover, 4045 harbors a new allele of B1 with a 261-bp insertion in the promoter region and a lack of the EAR2 motif in the encoding region, which influences several important agronomic traits. In this study, we identify two novel QTLs and a novel allele of B1, providing new resources for exploration of awn development. Full article
Show Figures

Figure 1

16 pages, 3706 KiB  
Article
Contribution of Awns to Seed Yield and Seed Shattering in Siberian Wildrye Grown under Irrigated and Rainfed Environments
by Fabrice Ntakirutimana, Yiyang Wan, Wenhui Liu and Wengang Xie
Agronomy 2021, 11(11), 2219; https://doi.org/10.3390/agronomy11112219 - 2 Nov 2021
Cited by 5 | Viewed by 2076
Abstract
The seed yield of grass species is greatly dependent on inflorescence morphological traits, starting with spikelets per inflorescence and seeds per spikelet, to kernel size, and then to awns. Previous studies have attempted to estimate the contribution of these traits on the harvested [...] Read more.
The seed yield of grass species is greatly dependent on inflorescence morphological traits, starting with spikelets per inflorescence and seeds per spikelet, to kernel size, and then to awns. Previous studies have attempted to estimate the contribution of these traits on the harvested yield of major cereal crops, but little information can be accessed on the influence of awns on seed yield of forage grass species. Siberian wildrye (Elymus sibiricus L.) is a widely important perennial forage grass used to increase forage production in arid and semi-arid grasslands. The grass has long inflorescences with long awns developed at the tip end of the lemmas in the florets. In order to evaluate the effect of awns on Siberian wildrye seed production, awn excision analyses from 10 accessions were performed at flowering stage under irrigated and rainfed regimes. Overall, awn excision reduced thousand-seed weight and seed size under both irrigated and rainfed regimes, which decreased final seed yield per plant. De-awned plants produced significantly more seeds per inflorescence, but spikelets per inflorescence was not influenced by awn excision in either condition. Moreover, histological analyses showed a high degradation of the abscission layer in the awned plants than de-awned ones, and awn excision evidently improved average seed breaking tensile strength (BTS), and thus decreased the degree of seed shattering. In conclusion, the observed significant impact of awn excision on different yield-related traits mirrored the impact of awns on the performance of Siberian wildrye under diverse growing conditions. These results provide useful information for plant breeders, seed producers, and researchers to efficiently improve seed production in Siberian wildrye. Full article
Show Figures

Figure 1

13 pages, 18176 KiB  
Review
Genetic Loci Underlying Awn Morphology in Barley
by Biguang Huang, Weiren Wu and Zonglie Hong
Genes 2021, 12(10), 1613; https://doi.org/10.3390/genes12101613 - 14 Oct 2021
Cited by 13 | Viewed by 4736
Abstract
Barley awns are highly active in photosynthesis and account for 30–50% of grain weight in barley. They are diverse in length, ranging from long to awnless, and in shape from straight to hooded or crooked. Their diversity and importance have intrigued geneticists for [...] Read more.
Barley awns are highly active in photosynthesis and account for 30–50% of grain weight in barley. They are diverse in length, ranging from long to awnless, and in shape from straight to hooded or crooked. Their diversity and importance have intrigued geneticists for several decades. A large collection of awnness mutants are available—over a dozen of them have been mapped on chromosomes and a few recently cloned. Different awnness genes interact with each other to produce diverse awn phenotypes. With the availability of the sequenced barley genome and application of new mapping and gene cloning strategies, it will now be possible to identify and clone more awnness genes. A better understanding of the genetic basis of awn diversity will greatly facilitate development of new barley cultivars with improved yield, adaptability and sustainability. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

11 pages, 3103 KiB  
Article
Awn Stem-Derived High-Activity Free-Metal Porous Carbon for Oxidation Reduction
by Qingyun Zhao, Shikai Wen and Junhua Hou
Molecules 2021, 26(19), 6071; https://doi.org/10.3390/molecules26196071 - 8 Oct 2021
Cited by 1 | Viewed by 1810
Abstract
Designing oxygen reduction reaction (ORR) catalysts with excellent performance has far-reaching significance. In this work, a high-activity biomass free-metal carbon catalyst with N and S co-doped was successfully prepared by using the KOH activated awn stem powder as the precursor with organic matter [...] Read more.
Designing oxygen reduction reaction (ORR) catalysts with excellent performance has far-reaching significance. In this work, a high-activity biomass free-metal carbon catalyst with N and S co-doped was successfully prepared by using the KOH activated awn stem powder as the precursor with organic matter pore-forming doping technology, which is named TAAS. The content of pyridine nitrogen groups accounts for up to 36% of the total nitrogen content, and a rich pore structure is formed on the surface and inside, which are considered as the potential active centers of ORR. The results show that the specific surface area of TAAS reaches 191.04 m2/g, which effectively increases the active sites of the catalyst, and the initial potential and half slope potential are as high as 0.90 and 0.76 V vs. RHE, respectively. This study provides a low-cost, environmentally friendly and feasible strategy for the conversion of low-value agricultural and forestry wastes into high value-added products to promote sustainable development of energy and the environment. Full article
(This article belongs to the Special Issue Novel Carbon Nanomaterials: Preparation and Photoelectric Properties)
Show Figures

Figure 1

Back to TopTop