Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = autonomous surface vehicle (ASV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3812 KiB  
Article
A Design of Leaderless Formation Controller for Multi-ASVs with Sampled Data and Communication Delay
by Wenxu Zhu, Guihua Xia and Xiangli Jiang
J. Mar. Sci. Eng. 2025, 13(7), 1259; https://doi.org/10.3390/jmse13071259 - 28 Jun 2025
Viewed by 251
Abstract
The formation control technology of the multi-ASV (autonomous surface vehicle) system is one of the key technologies required for performing maritime missions. In this paper, a leaderless formation controller is proposed, where the issues of sampled communication and data transmission delays in formation [...] Read more.
The formation control technology of the multi-ASV (autonomous surface vehicle) system is one of the key technologies required for performing maritime missions. In this paper, a leaderless formation controller is proposed, where the issues of sampled communication and data transmission delays in formation are taken into consideration. By introducing the desired displacements and the implicit formation center (IFC), the control goal of the leaderless formation is explicitly defined. Through the application of a state-space transformation, the achievement of the leaderless formation is shown to be equivalent to the stabilization of the transformed subsystem. The implicit formation center of the leaderless framework is derived, which facilitates the description and analysis of formation movements. The stability of the system is rigorously analyzed by using the Lyapunov–Krasovskii functional. Furthermore, an H performance controller is designed to evaluate the tolerance of the leaderless formation against marine environmental disturbances. Numerical simulations with 10 ASVs under sampled communication and transmission delay demonstrate the effectiveness of the proposed controller, achieving an H performance bound γ of 10. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3633 KiB  
Article
Flying Robots Teach Floating Robots—A Machine Learning Approach for Marine Habitat Mapping Based on Combined Datasets
by Zacharias Kapelonis, Georgios Chatzigeorgiou, Manolis Ntoumas, Panos Grigoriou, Manos Pettas, Spyros Michelinakis, Ricardo Correia, Catarina Rasquilha Lemos, Luis Menezes Pinheiro, Caio Lomba, João Fortuna, Rui Loureiro, André Santos and Eva Chatzinikolaou
J. Mar. Sci. Eng. 2025, 13(3), 611; https://doi.org/10.3390/jmse13030611 - 19 Mar 2025
Viewed by 870
Abstract
Unmanned aerial and autonomous surface vehicles (UAVs and ASVs, respectively) are two emerging technologies for the mapping of coastal and marine environments. Using UAV photogrammetry, the sea-bottom composition can be resolved with very high fidelity in shallow waters. At greater depths, acoustic methodologies [...] Read more.
Unmanned aerial and autonomous surface vehicles (UAVs and ASVs, respectively) are two emerging technologies for the mapping of coastal and marine environments. Using UAV photogrammetry, the sea-bottom composition can be resolved with very high fidelity in shallow waters. At greater depths, acoustic methodologies have far better propagation properties compared to optics; therefore, ASVs equipped with multibeam echosounders (MBES) are better-suited for mapping applications in deeper waters. In this work, a sea-bottom classification methodology is presented for mapping the protected habitat of Mediterranean seagrass Posidonia oceanica (habitat code 1120) in a coastal subregion of Heraklion (Crete, Greece). The methodology implements a machine learning scheme, where knowledge obtained from UAV imagery is embedded (through training) into a classifier that utilizes acoustic backscatter intensity and features derived from the MBES data provided by an ASV. Accuracy and precision scores of greater than 85% compared with visual census ground-truth data for both optical and acoustic classifiers indicate that this hybrid mapping approach is promising to mitigate the depth-induced bias in UAV-only models. The latter is especially interesting in cases where the studied habitat boundaries extend beyond depths that can be studied via aerial devices’ optics, as is the case with P. oceanica meadows. Full article
Show Figures

Figure 1

27 pages, 3487 KiB  
Article
Cooperative Formation Control of Multiple Ships with Time Delay Conditions
by Wei Tao, Jian Tan, Zhongyi Sui, Lizheng Wang and Xin Xiong
J. Mar. Sci. Eng. 2025, 13(3), 549; https://doi.org/10.3390/jmse13030549 - 12 Mar 2025
Viewed by 596
Abstract
The cooperative control of multiple autonomous surface vehicles (ASVs) is a critical area of research due to its significant applications in maritime operations, such as search and rescue and environmental monitoring. However, challenges such as communication delays and dynamic topologies often hinder stable [...] Read more.
The cooperative control of multiple autonomous surface vehicles (ASVs) is a critical area of research due to its significant applications in maritime operations, such as search and rescue and environmental monitoring. However, challenges such as communication delays and dynamic topologies often hinder stable cooperative control in practical scenarios. This study addresses these challenges by developing a formation control method based on consensus theory, focusing on both formation control and time delay. First, a simplified ASV characteristic model is established, and a basic consensus control algorithm is designed and analyzed for stability, considering different communication topologies. Then, to handle delays, the formation control method is extended, and the stability of the revised algorithm is rigorously proven using the Lyapunov function. Simulation results demonstrate that the proposed control strategy effectively maintains formations, even in the presence of communication delays. In the end, comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed controller. Simulation results demonstrate that the proposed control strategy effectively maintains formations, even in the presence of communication delays, with a convergence time of approximately 100 s and a formation error stabilizing at around 7 m. This research lays a foundation for more reliable cooperative control systems for ships, with potential applications in a variety of maritime and autonomous systems. Full article
Show Figures

Figure 1

23 pages, 9429 KiB  
Article
Practical Fixed-Time Robust Containment Control of Multi-ASVs with Collision Avoidance
by Tao Wu, Zhengjiang Liu and Guoyou Shi
J. Mar. Sci. Eng. 2024, 12(12), 2363; https://doi.org/10.3390/jmse12122363 - 23 Dec 2024
Viewed by 898
Abstract
A practical fixed-time robust containment control method for multiple autonomous surface vehicles (multi-ASVs) is proposed in this study. This method addresses the containment control problem of multi-ASVs, considering both collision risks and external disturbances. This control scheme improves the cooperative performance of the [...] Read more.
A practical fixed-time robust containment control method for multiple autonomous surface vehicles (multi-ASVs) is proposed in this study. This method addresses the containment control problem of multi-ASVs, considering both collision risks and external disturbances. This control scheme improves the cooperative performance of the formation and guarantees safe collision avoidance behavior. First, to enable the online estimation of unknown time-varying disturbances from the external environment, a fixed-time disturbance observer (FNDO) is designed based on fixed-time control theory. Second, the distributed kinematic controller is modified to include the partial derivatives of the artificial potential energy function (APEF), thereby preventing collisions among multi-ASVs. Third, by applying fixed-time theory, graph theory, and fixed-time dynamic surface control techniques, a practical fixed-time robust containment controller for multi-ASVs is proposed. Additionally, the entire closed-loop control system is guaranteed to be practical and fixed-time stable through stability analysis. Finally, the proposed control strategy has been validated by simulation results. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 2184 KiB  
Review
Floating Photovoltaic Plant Monitoring: A Review of Requirements and Feasible Technologies
by Silvia Bossi, Luciano Blasi, Giacomo Cupertino, Ramiro dell’Erba, Angelo Cipollini, Saverio De Vito, Marco Santoro, Girolamo Di Francia and Giuseppe Marco Tina
Sustainability 2024, 16(19), 8367; https://doi.org/10.3390/su16198367 - 26 Sep 2024
Cited by 3 | Viewed by 3704
Abstract
Photovoltaic energy (PV) is considered one of the pillars of the energy transition. However, this energy source is limited by a power density per unit surface lower than 200 W/m2, depending on the latitude of the installation site. Compared to fossil [...] Read more.
Photovoltaic energy (PV) is considered one of the pillars of the energy transition. However, this energy source is limited by a power density per unit surface lower than 200 W/m2, depending on the latitude of the installation site. Compared to fossil fuels, such low power density opens a sustainability issue for this type of renewable energy in terms of its competition with other land uses, and forces us to consider areas suitable for the installation of photovoltaic arrays other than farmlands. In this frame, floating PV plants, installed in internal water basins or even offshore, are receiving increasing interest. On the other hand, this kind of installation might significantly affect the water ecosystem environment in various ways, such as by the effects of solar shading or of anchorage installation. As a result, monitoring of floating PV (FPV) plants, both during the ex ante site evaluation phase and during the operation of the PV plant itself, is therefore necessary to keep such effects under control. This review aims to examine the technical and academic literature on FPV plant monitoring, focusing on the measurement and discussion of key physico-chemical parameters. This paper also aims to identify the additional monitoring features required for energy assessment of a floating PV system compared to a ground-based PV system. Moreover, due to the intrinsic difficulty in the maintenance operations of PV structures not installed on land, novel approaches have introduced autonomous solutions for monitoring the environmental impacts of FPV systems. Technologies for autonomous mapping and monitoring of water bodies are reviewed and discussed. The extensive technical literature analyzed in this review highlights the current lack of a cohesive framework for monitoring these impacts. This paper concludes that there is a need to establish general guidelines and criteria for standardized water quality monitoring (WQM) and management in relation to FPV systems. Full article
(This article belongs to the Special Issue Sustainable Energy Systems and Applications)
Show Figures

Figure 1

22 pages, 14210 KiB  
Article
A-Star (A*) with Map Processing for the Global Path Planning of Autonomous Underwater and Surface Vehicles Operating in Large Areas
by Rafał Kot, Piotr Szymak, Paweł Piskur and Krzysztof Naus
Appl. Sci. 2024, 14(17), 8015; https://doi.org/10.3390/app14178015 - 7 Sep 2024
Cited by 6 | Viewed by 2068
Abstract
The global path planning system is one of the basic systems ensuring the autonomous operation of unmanned underwater vehicles (UUVs) and unmanned surface vehicles (USVs) in a complex aquatic environment. The A* path planning algorithm is one of the most well-known algorithms used [...] Read more.
The global path planning system is one of the basic systems ensuring the autonomous operation of unmanned underwater vehicles (UUVs) and unmanned surface vehicles (USVs) in a complex aquatic environment. The A* path planning algorithm is one of the most well-known algorithms used to obtain an almost optimal path, avoiding obstacles even in a complex environment containing objects with specific shapes and non-uniform arrangements. The main disadvantage of this algorithm is the computational cost of path calculation. This article presents a new approach based on the image processing of the map before determining the path using A*. The results of numerical research based on a large-sized map expressing the port area confirm the proposed method’s effectiveness, which reduces the calculation time by over 500 times with a slight increase in the path length compared to the basic version of the A* algorithm. Based on the obtained results, the proposed approach also increases the path’s safety by designating narrow and risky areas as closed to vehicle movement. For this reason, the method seems suitable for use in global path planning for autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) operating in large areas. Full article
(This article belongs to the Special Issue Modeling, Guidance and Control of Marine Robotics)
Show Figures

Figure 1

15 pages, 1699 KiB  
Article
Optimizing Pilotage Efficiency with Autonomous Surface Vehicle Assistance
by Yiyao Chu and Qinggong Zheng
Electronics 2024, 13(16), 3152; https://doi.org/10.3390/electronics13163152 - 9 Aug 2024
Viewed by 1116
Abstract
Efficient pilotage planning is essential, particularly due to the increasing demand for skilled pilots amid frequent vessel traffic. Addressing pilot shortages and ensuring navigational safety, this study presents an innovative pilot-ASV scheduling strategy. This approach utilizes autonomous surface vehicles (ASVs) to assist or [...] Read more.
Efficient pilotage planning is essential, particularly due to the increasing demand for skilled pilots amid frequent vessel traffic. Addressing pilot shortages and ensuring navigational safety, this study presents an innovative pilot-ASV scheduling strategy. This approach utilizes autonomous surface vehicles (ASVs) to assist or replace junior pilots in specific tasks, thereby alleviating pilot resource constraints and upholding safety standards. We develop a comprehensive mathematical model that accommodates pilot work time windows, various pilot levels, and ASV battery limitations. An improved artificial bee colony algorithm is proposed to solve this model effectively, integrating breadth-first and depth-first search strategies to enhance solution quality and efficiency uniquely. Extensive numerical experiments corroborate the model’s effectiveness, showing that our integrated optimization approach decreases vessel waiting times by an average of 9.18% compared to traditional methods without ASV integration. The findings underscore the potential of pilot-ASV scheduling to significantly improve both the efficiency and safety of vessel pilotages. Full article
Show Figures

Figure 1

17 pages, 8581 KiB  
Article
Oil Spill Mitigation with a Team of Heterogeneous Autonomous Vehicles
by André Dias, Ana Mucha, Tiago Santos, Alexandre Oliveira, Guilherme Amaral, Hugo Ferreira, Alfredo Martins, José Almeida and Eduardo Silva
J. Mar. Sci. Eng. 2024, 12(8), 1281; https://doi.org/10.3390/jmse12081281 - 30 Jul 2024
Cited by 1 | Viewed by 2161
Abstract
This paper presents the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). This solution is based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for [...] Read more.
This paper presents the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). This solution is based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for in situ release of autochthonous microorganisms (bioaugmentation) and nutrients (biostimulation). By doing so, these systems can be applied as the first line of the response to pollution incidents from several origins that may occur inside ports, around industrial and extraction facilities, or in the open sea during transport activities in a fast, efficient, and low-cost way. The paper describes the work done in the development of a team of autonomous vehicles able to carry as payload, native organisms to naturally degrade oil spills (avoiding the introduction of additional chemical or biological additives), and the development of a multi-robot framework for efficient oil spill mitigation. Field tests have been performed in Portugal and Spain’s harbors, with a simulated oil spill, and the coordinate oil spill task between the autonomous surface vehicle (ASV) ROAZ and the unmanned aerial vehicle (UAV) STORK has been validated. Full article
Show Figures

Figure 1

22 pages, 4648 KiB  
Article
Obstacle Avoidance Control for Autonomous Surface Vehicles Using Elliptical Obstacle Model Based on Barrier Lyapunov Function and Model Predictive Control
by Pengfei Zhang, Yuanpei Ding and Shuxin Du
J. Mar. Sci. Eng. 2024, 12(6), 1035; https://doi.org/10.3390/jmse12061035 - 20 Jun 2024
Cited by 2 | Viewed by 1826
Abstract
This study explores positioning and obstacle avoidance control for autonomous surface vehicles (ASVs) by considering equivalent elliptical-shaped obstacles. Firstly, compared to most Barrier Lyapunov function (BLF) methods that approximate obstacles as circles, a novel BLF is improved by introducing an elliptical obstacle model. [...] Read more.
This study explores positioning and obstacle avoidance control for autonomous surface vehicles (ASVs) by considering equivalent elliptical-shaped obstacles. Firstly, compared to most Barrier Lyapunov function (BLF) methods that approximate obstacles as circles, a novel BLF is improved by introducing an elliptical obstacle model. This improvement uses ellipses instead of traditional circles to equivalent obstacles, effectively resolving the issue of excessive conservatism caused by over-expanded areas during the obstacle equivalence process. Secondly, unlike traditional obstacle avoidance approaches based on BLF, to achieve constraint control of angle and angular velocity, a method based on model predictive control (MPC) is introduced to optimize local angle planning. By incorporating angular error constraints, this ensures that the directional error of the ASV remains within a restricted range. Furthermore, an auxiliary function of directional error is introduced into the ASV’s linear velocity, ensuring that the ASV parks and adjusts its direction when the deviation in angle becomes too large. This innovation guarantees the linearization of the ASV system, addressing the complexity of traditional MPC methods when dealing with nonlinear second-order ASV systems. Ultimately, the efficacy of our proposed approach is validated through rigorous experimental simulations conducted on the MATLAB platform. Full article
(This article belongs to the Special Issue Unmanned Marine Vehicles: Perception, Planning, Control and Swarm)
Show Figures

Figure 1

24 pages, 9206 KiB  
Article
Lake Environmental Data Harvester (LED) for Alpine Lake Monitoring with Autonomous Surface Vehicles (ASVs)
by Angelo Odetti, Gabriele Bruzzone, Roberta Ferretti, Simona Aracri, Federico Carotenuto, Carolina Vagnoli, Alessandro Zaldei and Ivan Scagnetto
Remote Sens. 2024, 16(11), 1998; https://doi.org/10.3390/rs16111998 - 1 Jun 2024
Cited by 6 | Viewed by 1887
Abstract
This article introduces the Lake Environmental Data Harvester (LED) System, a robotic platform designed for the development of an innovative solution for monitoring remote alpine lakes. LED is intended as the first step in creating portable robotic tools that are lightweight, cost-effective, and [...] Read more.
This article introduces the Lake Environmental Data Harvester (LED) System, a robotic platform designed for the development of an innovative solution for monitoring remote alpine lakes. LED is intended as the first step in creating portable robotic tools that are lightweight, cost-effective, and highly reliable for monitoring remote water bodies. The LED system is based on the Shallow-Water Autonomous Multipurpose Platform (SWAMP), a groundbreaking Autonomous Surface Vehicle (ASV) originally designed for monitoring wetlands. The objective of LED is to achieve the comprehensive monitoring of remote lakes by outfitting the SWAMP with a suite of sensors, integrating an IoT infrastructure, and adhering to FAIR principles for structured data management. SWAMP’s modular design and open architecture facilitate the easy integration of payloads, while its compact size and construction with a reduced weight ensure portability. Equipped with four azimuth thrusters and a flexible hull structure, SWAMP offers a high degree of maneuverability and position-keeping ability for precise surveys in the shallow waters that are typical of remote lakes. In this project, SWAMP was equipped with a suite of sensors, including a single-beam dual-frequency echosounder, water-quality sensors, a winch for sensor deployment, and AirQino, a low-cost air quality analysis system, along with an RTK-GNSS (Global Navigation Satellite System) receiver for precise positioning. Utilizing commercial off-the-shelf (COTS) components, a Multipurpose Data-Acquisition System forms the basis for an Internet of Things (IoT) infrastructure, enabling data acquisition, storage, and long-range communication. This data-centric system design ensures that acquired variables from both sensors and the robotic platform are structured and managed according to the FAIR principles. Full article
Show Figures

Graphical abstract

37 pages, 4479 KiB  
Review
A Review of Path Planning Methods for Marine Autonomous Surface Vehicles
by Yubing Wu, Tao Wang and Shuo Liu
J. Mar. Sci. Eng. 2024, 12(5), 833; https://doi.org/10.3390/jmse12050833 - 16 May 2024
Cited by 17 | Viewed by 5534
Abstract
A marine autonomous surface vehicle (ASV) is a kind of autonomous marine robot with intelligent and flexible use advantages. They are mainly divided into two categories: unmanned vessels and unmanned sailboats. Marine ASVs are essential in marine science, industry, environmental protection, and national [...] Read more.
A marine autonomous surface vehicle (ASV) is a kind of autonomous marine robot with intelligent and flexible use advantages. They are mainly divided into two categories: unmanned vessels and unmanned sailboats. Marine ASVs are essential in marine science, industry, environmental protection, and national defense. One of the primary challenges faced by marine ASVs is autonomously planning paths in an intricate marine environment. Numerous research findings have surfaced in recent years, including the combination with popular machine learning. However, a systematic literature review is still lacking, primarily a comprehensive comparison of two types of ASV path planning methods. This review first introduces the problem and evaluation indicators of path planning for ASVs. Then, aiming at unmanned vessels and sailboats, respectively, it sorts out various path planning algorithms proposed in the existing literature, including the advantages and limitations of both kinds of ASVs, and discusses them in combination with evaluation indicators. Also, this paper explores how marine environmental factors affect path planning and its corresponding treatment methods. Finally, this review summarizes the challenges of unmanned ship path planning, proposes potential technical solutions and future development directions, and aims to provide references for further development in this field. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 6990 KiB  
Article
Testing and Analysis of Selected Navigation Parameters of the GNSS/INS System for USV Path Localization during Inland Hydrographic Surveys
by Mariusz Specht
Sensors 2024, 24(8), 2418; https://doi.org/10.3390/s24082418 - 10 Apr 2024
Cited by 3 | Viewed by 2294
Abstract
One of the main methods of the path localization of moving objects is positioning using Global Navigation Satellite Systems (GNSSs) in cooperation with Inertial Navigation Systems (INSs). Its basic task is to provide high availability, in particular in areas with limited access to [...] Read more.
One of the main methods of the path localization of moving objects is positioning using Global Navigation Satellite Systems (GNSSs) in cooperation with Inertial Navigation Systems (INSs). Its basic task is to provide high availability, in particular in areas with limited access to satellite signals such as forests, tunnels or urban areas. The aim of the article is to carry out the testing and analysis of selected navigation parameters (3D position coordinates (Northing, Easting, and height) and Euler angles (pitch and roll)) of the GNSS/INS system for Unmanned Surface Vehicle (USV) path localization during inland hydrographic surveys. The research used the Ellipse-D GNSS/INS system working in the Real Time Kinematic (RTK) mode in order to determine the position of the “HydroDron” Autonomous Surface Vehicle (ASV). Measurements were conducted on four representative routes with a parallel and spiral arrangement of sounding profiles on Lake Kłodno (Poland). Based on the obtained research results, position accuracy measures of the “HydroDron” USV were determined using the Ellipse-D GNSS/INS system. Additionally, it was determined whether USV path localization using a GNSS/INS system working in the RTK mode meets the positioning requirements for inland hydrographic surveys. Research has shown that the Ellipse-D system operating in the RTK mode can be successfully used to position vessels when carrying out inland hydrographic surveys in all International Hydrographic Organization (IHO) Orders (Exclusive, Special, 1a/1b and 2) even when it does not work 100% correctly, e.g., loss of RTK corrections for an extended period of time. In an area with limited coverage of the mobile network operator (30–40% of the time the receiver operated in the differential mode), the positioning accuracy of the “HydroDron” USV using the Ellipse-D GNSS/INS system working in the RTK mode was from 0.877 m to 0.941 m for the R95(2D) measure, depending on the route travelled. Moreover, research has shown that if the Ellipse-D system performed GNSS/INS measurements using the RTK method, the pitch and roll error values amounted to approx. 0.06°, which is almost identical to that recommended by the device manufacturer. However, when working in the differential mode, the pitch and roll error values increased from 0.06° to just over 0.2°. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

21 pages, 3341 KiB  
Article
A Novel, Finite-Time, Active Fault-Tolerant Control Framework for Autonomous Surface Vehicle with Guaranteed Performance
by Xuerao Wang, Yuncheng Ouyang, Xiao Wang and Qingling Wang
J. Mar. Sci. Eng. 2024, 12(2), 347; https://doi.org/10.3390/jmse12020347 - 17 Feb 2024
Cited by 5 | Viewed by 1621
Abstract
In this paper, a finite-time, active fault-tolerant control (AFTC) scheme is proposed for a class of autonomous surface vehicles (ASVs) with component faults. The designed AFTC framework is based on an integrated design of fault detection (FD), fault estimation (FE), and controller reconfiguration. [...] Read more.
In this paper, a finite-time, active fault-tolerant control (AFTC) scheme is proposed for a class of autonomous surface vehicles (ASVs) with component faults. The designed AFTC framework is based on an integrated design of fault detection (FD), fault estimation (FE), and controller reconfiguration. First, a nominal controller based on the Barrier Lyapunov function is presented, which guarantees that the tracking error converges to the predefined performance constraints within a settling time. Then, a performance-based monitoring function with low complexity is designed to supervise the tracking behaviors and detect the fault. Different from existing results where the fault is bounded by a known scalar, the FE in this study is implemented by a finite-time estimator without requiring any prioir information of fault. Furthermore, under the proposed finite-time AFTC scheme, both the transient and steady-state performance of the ASV can be guaranteed regardless of the occurrence of faults. Finally, a simulation example on CyberShip II is given to confirm the effectiveness of the proposed AFTC method. Full article
(This article belongs to the Special Issue Maritime Autonomous Surface Ships)
Show Figures

Figure 1

22 pages, 2471 KiB  
Article
Distributed Swarm Trajectory Planning for Autonomous Surface Vehicles in Complex Sea Environments
by Anqing Wang, Longwei Li, Haoliang Wang, Bing Han and Zhouhua Peng
J. Mar. Sci. Eng. 2024, 12(2), 298; https://doi.org/10.3390/jmse12020298 - 7 Feb 2024
Cited by 3 | Viewed by 1768
Abstract
In this paper, a swarm trajectory-planning method is proposed for multiple autonomous surface vehicles (ASVs) in an unknown and obstacle-rich environment. Specifically, based on the point cloud information of the surrounding environment obtained from local sensors, a kinodynamic path-searching method is used to [...] Read more.
In this paper, a swarm trajectory-planning method is proposed for multiple autonomous surface vehicles (ASVs) in an unknown and obstacle-rich environment. Specifically, based on the point cloud information of the surrounding environment obtained from local sensors, a kinodynamic path-searching method is used to generate a series of waypoints in the discretized control space at first. Next, after fitting B-spline curves to the obtained waypoints, a nonlinear optimization problem is formulated to optimize the B-spline curves based on gradient-based local planning. Finally, a numerical optimization method is used to solve the optimization problems in real time to obtain collision-free, smooth and dynamically feasible trajectories relying on a shared network. The simulation results demonstrate the effectiveness and efficiency of the proposed swarm trajectory-planning method for a network of ASVs. Full article
Show Figures

Figure 1

27 pages, 25084 KiB  
Review
Exploring Autonomous and Remotely Operated Vehicles in Offshore Structure Inspections
by Maricruz Fun Sang Cepeda, Marcos de Souza Freitas Machado, Fabrício Hudson Sousa Barbosa, Douglas Santana Souza Moreira, Maria José Legaz Almansa, Marcelo Igor Lourenço de Souza and Jean-David Caprace
J. Mar. Sci. Eng. 2023, 11(11), 2172; https://doi.org/10.3390/jmse11112172 - 15 Nov 2023
Cited by 15 | Viewed by 7345
Abstract
Operators of offshore production units (OPUs) employ risk-based assessment (RBA) techniques in order to minimise inspection expenses while maintaining risks at an acceptable level. However, when human divers and workers are involved in inspections conducted at high heights, the operational risks can be [...] Read more.
Operators of offshore production units (OPUs) employ risk-based assessment (RBA) techniques in order to minimise inspection expenses while maintaining risks at an acceptable level. However, when human divers and workers are involved in inspections conducted at high heights, the operational risks can be significant. Recently, there has been a growing trend towards the use of unmanned aerial vehicles (UAVs), autonomous surface vehicles (ASVs), remotely operated vehicles (ROVs), and autonomous underwater vehicles (AUVs) for inspections of offshore structures as a means to reduce exposure to human risk. This article provides an analysis of these vehicle inspection capabilities and their potential to enhance robustness and safety within the oil and gas industry. The review assesses both the advantages and the drawbacks associated with these innovative systems, providing valuable comparisons and assessments on their potential use as viable alternatives to conventional inspection methods. Full article
Show Figures

Figure 1

Back to TopTop