Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = autoclaved aerated concrete (AAC) panel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8403 KiB  
Article
Experimental Study on the Seismic Performance of Confined High Walls of Autoclaved Aerated Concrete Panels Used in Subway Stations
by Xiaowei Li, Qidi Zhang, Han Bao, Yong Yao and Zhaoqiang Zhang
Buildings 2025, 15(3), 416; https://doi.org/10.3390/buildings15030416 - 28 Jan 2025
Viewed by 800
Abstract
This study addresses the unique challenge of the partition walls in subway stations, featuring high height, fire prevention, and located outside the main frames, by introducing a confined autoclaved aerated concrete (AAC) panel wall system. Different from studies on a main frame with [...] Read more.
This study addresses the unique challenge of the partition walls in subway stations, featuring high height, fire prevention, and located outside the main frames, by introducing a confined autoclaved aerated concrete (AAC) panel wall system. Different from studies on a main frame with infill walls, this study aimed to explore the seismic performance of partition walls, which were fabricated with confined high AAC panel walls and located outside the main frames. A custom-designed partition wall, measuring 6600 mm in height, 3400 mm in width, and 200 mm in thickness, underwent cyclic testing. A detailed analysis of specimen’s failure modes was conducted, focusing on seismic behavior such as hysteresis curves, envelope curves, ductility, stiffness degradation, and energy-dissipation capacity. Additionally, the study delved into shear deformation, relative slippage between AAC panels, and reinforcement strains within the specimen. Finally, the D-value method for calculating the initial stiffness of the confined high AAC panel walls and the weak sub-structural approach for determining the load-bearing capacity of confined high AAC panel walls were proposed and validated. The results indicate that the strength degradation factor of the confined high AAC panel walls ranges from 0.971 to 0.716. The drift of its upper portion accounts for 76.94–83.63% of the total drift, while the energy dissipation factor of its upper portion is 0.8–4.8% higher than that of the entire specimen. The yield and ultimate drift rotations of the entire confined high AAC panel wall and its upper portions satisfy the elastic and elastic-plastic inter-story drift rotation limits specified in the Chinese code. The calculated initial stiffness of the confining frame, obtained using the D-value method, closely aligns with experimental results, with a deviation of only 2.48%. Additionally, the load-bearing capacity calculated using the weak sub-structural approach deviates from the experimental average by just 4.30%. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 10354 KiB  
Article
Material Properties and Mechanical Performances of Manufactured Factory-Produced Glass Fiber-Reinforced Autoclaved Aerated Concrete Panel
by Pei Song, Xiaoxuan Peng, Rengeng Zheng and Jun Xia
Buildings 2024, 14(9), 2895; https://doi.org/10.3390/buildings14092895 - 13 Sep 2024
Cited by 1 | Viewed by 1592
Abstract
Autoclaved aerated concrete (AAC) has gained widespread acceptance in construction as a lightweight solution for exterior and interior walls. However, traditional steel-reinforced autoclaved aerated concrete (SR-AAC) has limitations, including concerns over its ductility and difficulty in cutting during installation. The steel reinforcement also [...] Read more.
Autoclaved aerated concrete (AAC) has gained widespread acceptance in construction as a lightweight solution for exterior and interior walls. However, traditional steel-reinforced autoclaved aerated concrete (SR-AAC) has limitations, including concerns over its ductility and difficulty in cutting during installation. The steel reinforcement also has high embodied carbon that does not align with the actions in the construction section to reach carbon neutrality shortly. This study investigated the material properties and mechanical performances of factory-produced fiber-reinforced autoclaved aerated concrete (FR-AAC) panels, aiming to examine their potential as an alternative solution. Full-scale FR-AAC panels with thicknesses of 100 mm, 150 mm, and 200 mm were manufactured and tested. Some panels were down-sampled to determine the dry density, water absorption, compressive strength, and flexural strength of the material, while the mechanical performances were evaluated through static and impact loading tests. The results showed that the average dry density and absorption of the FR-AAC material are 533 kg/m3 and 63%, respectively, with compressive strengths up to 3.79 MPa and flexural strengths reaching 0.97 MPa. All six panels tested under static uniformly distributed loading exceeded the self-weight limit by a factor of 1.5, satisfying standard requirements for load-bearing capacity. However, the brittle failure modes observed in some tests raise potential health and safety concerns. In contrast, the impact tests revealed that the panels have acceptable performances with the inclusion of fibers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 7148 KiB  
Article
Seismic Performance of Full-Scale Autoclaved Aerated Concrete Panel-Assembled Walls: Experimental Study and Numerical Modeling
by Xiaowei Li, Dongwen Ma, Qidi Zhang, Zhaoqiang Zhang, Han Bao and Yong Yao
Buildings 2024, 14(5), 1333; https://doi.org/10.3390/buildings14051333 - 8 May 2024
Cited by 1 | Viewed by 1583
Abstract
Prefabricated panel-assembled wall systems, comprising a confining frame and infill lightweight panels of autoclaved aerated concrete (AAC), are widely employed in framed structures. Different from studies on a main frame with infill walls, this study aimed to explore the seismic performance of partition [...] Read more.
Prefabricated panel-assembled wall systems, comprising a confining frame and infill lightweight panels of autoclaved aerated concrete (AAC), are widely employed in framed structures. Different from studies on a main frame with infill walls, this study aimed to explore the seismic performance of partition walls, which were fabricated with AAC panel-assembled walls and located outside of the main frames. Two full-scale specimens, one with a door opening and the other without, were constructed and cyclic loading tests were executed to examine the failure modes, hysteresis characteristics, envelope curves, ductility, strength and stiffness degradation, as well as energy dissipation capacity of the AAC panel-assembled walls. Additionally, a restoring-force model for the panel-assembled walls was developed and a method for predicting the lateral load-bearing capacity of the AAC panel-assembled walls was proposed. The findings indicated that the panels enhanced the system’s lateral resistance, energy dissipation capacity, and deformation capability. The door frame increased the initial stiffness, peak lateral load and energy dissipation capacity of the AAC panel-assembled wall compared to the wall without a door frame. Compared to the specimen without a door frame, the peak lateral load of the specimen with a door frame increased by 19.7–30.1%. The deformation capacity of the panel-assembled walls aligned with the requirements for concrete framed structures. Full article
(This article belongs to the Special Issue Recent Study on Seismic Performance of Building Structures)
Show Figures

Figure 1

19 pages, 7981 KiB  
Article
Experimental Study on the Seismic Performance of New Energy Dissipation Connectors in an Autoclaved Aerated Concrete Panel with Assembled Steel Frame
by Kaili Wang, Kewei Ding and Tian Yang
Appl. Sci. 2022, 12(24), 13035; https://doi.org/10.3390/app122413035 - 19 Dec 2022
Cited by 4 | Viewed by 2620
Abstract
This study proposes a new energy dissipation connector (NEDC) to connect an external autoclaved aerated concrete (AAC) wall panel with an assembled steel frame. To investigate the seismic performance and working mechanism of the NEDC under seismic action, horizontal low-cyclic loading tests were [...] Read more.
This study proposes a new energy dissipation connector (NEDC) to connect an external autoclaved aerated concrete (AAC) wall panel with an assembled steel frame. To investigate the seismic performance and working mechanism of the NEDC under seismic action, horizontal low-cyclic loading tests were conducted on two sets of steel frames with different connectors using an MTS actuator. Similarly, the seismic performance and working mechanism of the AAC wall panels were elucidated using horizontal low-cyclic loading tests. Test results revealed that the NEDC increased ductility by 10.69–21.12% and energy consumption by 101.14% when compared to those obtained using hook bolt connectors. Overall, the NEDC provides good seismic performance, large deformability, and high energy consumption capacity, thereby rendering it ideal for assembled steel buildings. Furthermore, the NEDC can reduce wall panel damage during earthquake action and enhance the seismic performance of composite frames. Full article
Show Figures

Figure 1

23 pages, 11252 KiB  
Article
Low-Velocity Impact Experiments and Modeling of TRC Skin-Aerated Concrete Core Sandwich Composites
by Chidchanok Pleesudjai, Anling Li, Vikram Dey and Barzin Mobasher
Materials 2021, 14(2), 390; https://doi.org/10.3390/ma14020390 - 14 Jan 2021
Cited by 9 | Viewed by 3111
Abstract
Mechanical response of textile-reinforced aerated concrete sandwich panels was investigated using instrumented three-point bending tests under quasi-static and low-velocity impact loads. Two types of core material were compared in the sandwich composite consisting of plain autoclaved aerated concrete (AAC) and fiber-reinforced aerated concrete [...] Read more.
Mechanical response of textile-reinforced aerated concrete sandwich panels was investigated using instrumented three-point bending tests under quasi-static and low-velocity impact loads. Two types of core material were compared in the sandwich composite consisting of plain autoclaved aerated concrete (AAC) and fiber-reinforced aerated concrete (FRAC), and the stress skins were alkali-resistant glass (ARG) and textile reinforced concrete (TRC). The textile-reinforced layer promoted distributed cracking mechanisms and resulted in significant improvement in the flexural strength and ductility. Digital Image Correlation (DIC) was used to study the distributed cracking mechanism and obtain impact force-crack width response at different drop heights. A constitutive material model was also developed based on a multi-linear tension/compression strain hardening model for the stress-skin and an elastic, perfectly plastic compression model for the core. A detailed parametric study was used to address the effect of model parameters on the flexural response. The model was further applied to simulate the experimental flexural data from the static and impact tests on the plain aerated concrete and sandwich composite beams. Full article
(This article belongs to the Special Issue Mineral-Bonded Composites for Enhanced Structural Impact Safety)
Show Figures

Figure 1

24 pages, 8104 KiB  
Article
Testing Joints between Walls Made of AAC Masonry Units
by Radosław Jasiński and Iwona Galman
Buildings 2020, 10(4), 69; https://doi.org/10.3390/buildings10040069 - 2 Apr 2020
Cited by 8 | Viewed by 5135
Abstract
Joints between walls are very important for structural analysis of each masonry building at the global and local level. This issue has often been neglected in the case of traditional joints and relatively squat walls. At present, the issue of wall joints is [...] Read more.
Joints between walls are very important for structural analysis of each masonry building at the global and local level. This issue has often been neglected in the case of traditional joints and relatively squat walls. At present, the issue of wall joints is becoming particularly important due to the continuous drive for simplifying structures, introducing new technologies and materials. Eurocode 6 and other standards (American, Canadian, Chinese, and Japanese) recommend inspecting joints between walls, but no detailed procedures have been specified. This paper presents our own tests on joints between walls made of autoclaved aerated concrete (AAC) masonry units. Tests included reference models composed of two wall panels joined perpendicularly with a standard masonry bond (six models), with classic steel and modified connectors (twelve models). The shape and size of test models and the structure of a test stand were determined on the basis of the analysis of the current knowledge, pilot studies and numerical FEM (Finite Element Method) - based analyses. The analyses referred to the morphology and failure mechanism of models. Load-displacement relationships for different types of joints were compared and obtained results were related to results for reference models. The mechanisms of cracking and failure was found to vary, and clear differences in the behaviour and load capacity of each type of joint were observed. The individual working phases of joints were determined and defined, and an empirical approach was proposed for the determination of forces and displacement of wall joints. Full article
(This article belongs to the Special Issue Architecture and Engineering: the Challenges - Trends - Achievements)
Show Figures

Figure 1

Back to TopTop