Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = aurasperone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 910 KiB  
Review
Microbial Natural Products with Antiviral Activities, Including Anti-SARS-CoV-2: A Review
by Andri Frediansyah, Fajar Sofyantoro, Saad Alhumaid, Abbas Al Mutair, Hawra Albayat, Hayyan I. Altaweil, Hani M. Al-Afghani, Abdullah A. AlRamadhan, Mariam R. AlGhazal, Safaa A. Turkistani, Abdulmonem A. Abuzaid and Ali A. Rabaan
Molecules 2022, 27(13), 4305; https://doi.org/10.3390/molecules27134305 - 5 Jul 2022
Cited by 22 | Viewed by 6218
Abstract
The SARS-CoV-2 virus, which caused the COVID-19 infection, was discovered two and a half years ago. It caused a global pandemic, resulting in millions of deaths and substantial damage to the worldwide economy. Currently, only a few vaccines and antiviral drugs are available [...] Read more.
The SARS-CoV-2 virus, which caused the COVID-19 infection, was discovered two and a half years ago. It caused a global pandemic, resulting in millions of deaths and substantial damage to the worldwide economy. Currently, only a few vaccines and antiviral drugs are available to combat SARS-CoV-2. However, there has been an increase in virus-related research, including exploring new drugs and their repurposing. Since discovering penicillin, natural products, particularly those derived from microbes, have been viewed as an abundant source of lead compounds for drug discovery. These compounds treat bacterial, fungal, parasitic, and viral infections. This review incorporates evidence from the available research publications on isolated and identified natural products derived from microbes with anti-hepatitis, anti-herpes simplex, anti-HIV, anti-influenza, anti-respiratory syncytial virus, and anti-SARS-CoV-2 properties. About 131 compounds with in vitro antiviral activity and 1 compound with both in vitro and in vivo activity have been isolated from microorganisms, and the mechanism of action for some of these compounds has been described. Recent reports have shown that natural products produced by the microbes, such as aurasperone A, neochinulin A and B, and aspulvinone D, M, and R, have potent in vitro anti-SARS-CoV-2 activity, targeting the main protease (Mpro). In the near and distant future, these molecules could be used to develop antiviral drugs for treating infections and preventing the spread of disease. Full article
(This article belongs to the Special Issue Antivirals and Antiviral Strategies)
Show Figures

Figure 1

13 pages, 4921 KiB  
Article
Aurasperone A Inhibits SARS CoV-2 In Vitro: An Integrated In Vitro and In Silico Study
by Mai H. ElNaggar, Ghada M. Abdelwahab, Omnia Kutkat, Mohamed GabAllah, Mohamed A. Ali, Mohamed E. A. El-Metwally, Ahmed M. Sayed, Usama Ramadan Abdelmohsen and Ashraf T. Khalil
Mar. Drugs 2022, 20(3), 179; https://doi.org/10.3390/md20030179 - 28 Feb 2022
Cited by 17 | Viewed by 3842
Abstract
Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive [...] Read more.
Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive control remdesivir (IC50 = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC50 = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC50 = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested Mpro to be its primary viral protein target. More potent anti-SARS CoV-2 Mpro inhibitors can be developed according to our findings presented in the present investigation. Full article
(This article belongs to the Special Issue Pharmaceutical Potential of Marine Microorganisms)
Show Figures

Figure 1

8 pages, 1315 KiB  
Article
Assignment of Absolute Configurations of Two Promising Anti-Helicobacter pylori Agents from the Marine Sponge-Derived Fungus Aspergillus niger L14
by Jia Liu, Ronglu Yu, Jia Jia, Wen Gu and Huawei Zhang
Molecules 2021, 26(16), 5061; https://doi.org/10.3390/molecules26165061 - 20 Aug 2021
Cited by 6 | Viewed by 2772
Abstract
A chemical investigation into endozoic fungus Aspergillus niger L14 derived from the marine sponge of Reniera japonica collected off Xinghai Bay (China) resulted in the isolation of two dimeric naphtho-γ-pyrones, fonsecinone A (1) and isoaurasperone A (2). [...] Read more.
A chemical investigation into endozoic fungus Aspergillus niger L14 derived from the marine sponge of Reniera japonica collected off Xinghai Bay (China) resulted in the isolation of two dimeric naphtho-γ-pyrones, fonsecinone A (1) and isoaurasperone A (2). Through a combination of ECD spectra and X-ray diffraction analysis, the chiral axes of compounds 1 and 2 were unambiguously determined as Rα-configurations. Bioassay results indicated that these substances exhibited remarkably inhibitory effects on human pathogens Helicobacter pylori G27 and 159 with MIC values of ≤4 μg/mL, which are similar to those of the positive control, ampicillin sodium. To the best of our knowledge, this is the first report on absolute configuration of 1 and crystallographic data of 2, as well as their potent anti-H. pylori activities. Full article
(This article belongs to the Special Issue Antibacterial Agents 2021)
Show Figures

Figure 1

10 pages, 1335 KiB  
Article
Teratopyrones A–C, Dimeric Naphtho-γ-Pyrones and Other Metabolites from Teratosphaeria sp. AK1128, a Fungal Endophyte of Equisetum arvense
by Ya-Ming Xu, A. Elizabeth Arnold, Jana M. U′Ren, Li-Jiang Xuan, Wen-Qiong Wang and A. A. Leslie Gunatilaka
Molecules 2020, 25(21), 5058; https://doi.org/10.3390/molecules25215058 - 30 Oct 2020
Cited by 4 | Viewed by 3092
Abstract
Bioassay-guided fractionation of a cytotoxic extract derived from a solid potato dextrose agar (PDA) culture of Teratosphaeria sp. AK1128, a fungal endophyte of Equisetum arvense, afforded three new naphtho-γ-pyrone dimers, teratopyrones A–C (13), together with five known naphtho-γ-pyrones, [...] Read more.
Bioassay-guided fractionation of a cytotoxic extract derived from a solid potato dextrose agar (PDA) culture of Teratosphaeria sp. AK1128, a fungal endophyte of Equisetum arvense, afforded three new naphtho-γ-pyrone dimers, teratopyrones A–C (13), together with five known naphtho-γ-pyrones, aurasperone B (4), aurasperone C (5), aurasperone F (6), nigerasperone A (7), and fonsecin B (8), and two known diketopiperazines, asperazine (9) and isorugulosuvine (10). The structures of 13 were determined on the basis of their spectroscopic data. Cytotoxicity assay revealed that nigerasperone A (7) was moderately active against the cancer cell lines PC-3M (human metastatic prostate cancer), NCI-H460 (human non-small cell lung cancer), SF-268 (human CNS glioma), and MCF-7 (human breast cancer), with IC50s ranging from 2.37 to 4.12 μM while other metabolites exhibited no cytotoxic activity up to a concentration of 5.0 μM. Full article
Show Figures

Graphical abstract

10 pages, 962 KiB  
Article
Aromatic Polyketides from a Symbiotic Strain Aspergillus fumigatus D and Characterization of Their Biosynthetic Gene D8.t287
by Yi Hua, Rui Pan, Xuelian Bai, Bin Wei, Jianwei Chen, Hong Wang and Huawei Zhang
Mar. Drugs 2020, 18(6), 324; https://doi.org/10.3390/md18060324 - 20 Jun 2020
Cited by 14 | Viewed by 5036
Abstract
The chemical investigation of one symbiotic strain, Aspergillus fumigatus D, from the coastal plant Edgeworthia chrysantha Lindl led to the isolation of eight compounds (18), which were respectively identified as rubrofusarin B (1), alternariol 9-O-methyl [...] Read more.
The chemical investigation of one symbiotic strain, Aspergillus fumigatus D, from the coastal plant Edgeworthia chrysantha Lindl led to the isolation of eight compounds (18), which were respectively identified as rubrofusarin B (1), alternariol 9-O-methyl ether (2), fonsecinone D (3), asperpyrone A (4), asperpyrone D (5), fonsecinone B (6), fonsecinone A (7), and aurasperone A (8) by a combination of spectroscopic methods (1D NMR and ESI-MS) as well as by comparison with the literature data. An antimicrobial assay showed that these aromatic polyketides exhibited no remarkable inhibitory effect on Escherichia coli, Staphyloccocus aureus and Candida albicans. The genomic feature of strain D was analyzed, as well as its biosynthetic gene clusters, using antibiotics and Secondary Metabolite Analysis Shell 5.1.2 (antiSMASH). Plausible biosynthetic pathways for dimeric naphtho-γ-pyrones 38 were first proposed in this work. A non-reducing polyketide synthase (PKS) gene D8.t287 responsible for the biosynthesis of these aromatic polyketides 18 was identified and characterized by target gene knockout experiment and UPLC-MS analysis. Full article
(This article belongs to the Special Issue Aromatic Marine Natural Products: Chemistry and Bioactivity)
Show Figures

Figure 1

15 pages, 1532 KiB  
Article
Naphtho-Gamma-Pyrones Produced by Aspergillus tubingensis G131: New Source of Natural Nontoxic Antioxidants
by Quentin Carboué, Marc Maresca, Gaëtan Herbette, Sevastianos Roussos, Rayhane Hamrouni and Isabelle Bombarda
Biomolecules 2020, 10(1), 29; https://doi.org/10.3390/biom10010029 - 24 Dec 2019
Cited by 13 | Viewed by 3444
Abstract
Seven naphtho-gamma-pyrones (NγPs), including asperpyrone E, aurasperone A, dianhydroaurasperone C, fonsecin, fonsecinone A, fonsecin B, and ustilaginoidin A, were isolated from Aspergillus tubingensis G131, a non-toxigenic strain. The radical scavenging activity of these NγPs was evaluated using ABTS assay. The Trolox equivalent antioxidant [...] Read more.
Seven naphtho-gamma-pyrones (NγPs), including asperpyrone E, aurasperone A, dianhydroaurasperone C, fonsecin, fonsecinone A, fonsecin B, and ustilaginoidin A, were isolated from Aspergillus tubingensis G131, a non-toxigenic strain. The radical scavenging activity of these NγPs was evaluated using ABTS assay. The Trolox equivalent antioxidant capacity on the seven isolated NγPs ranged from 2.4 to 14.6 μmol L−1. The toxicity and ability of the NγPs to prevent H2O2-mediated cell death were evaluated using normal/not cancerous cells (CHO cells). This cell-based assay showed that NγPs: (1) Are not toxic or weakly toxic towards cells and (2) are able to protect cells from oxidant injuries with an IC50 on H2O2-mediated cell death ranging from 2.25 to 1800 μmol mL−1. Our data show that A. tubingensis G131 strain is able to produce various NγPs possessing strong antioxidant activities and low toxicities, making this strain a good candidate for antioxidant applications in food and cosmetic industries. Full article
(This article belongs to the Special Issue 2019 Feature Papers by Biomolecules’ Editorial Board Members)
Show Figures

Figure 1

8 pages, 3331 KiB  
Article
Asperpyrone-Type Bis-Naphtho-γ-Pyrones with COX-2–Inhibitory Activities from Marine-Derived Fungus Aspergillus niger
by Wei Fang, Xiuping Lin, Jianjiao Wang, Yonghong Liu, Huaming Tao and Xuefeng Zhou
Molecules 2016, 21(7), 941; https://doi.org/10.3390/molecules21070941 - 20 Jul 2016
Cited by 24 | Viewed by 7582
Abstract
Bis-naphtho-γ-pyrones (BNPs) are an important group of aromatic polyketides derived from fungi, and asperpyrone-type BNPs are produced primarily by Aspergillus species. The fungal strain Aspergillus niger SCSIO Jcsw6F30, isolated from a marine alga, Sargassum sp., and identified according to its morphological traits and [...] Read more.
Bis-naphtho-γ-pyrones (BNPs) are an important group of aromatic polyketides derived from fungi, and asperpyrone-type BNPs are produced primarily by Aspergillus species. The fungal strain Aspergillus niger SCSIO Jcsw6F30, isolated from a marine alga, Sargassum sp., and identified according to its morphological traits and the internal transcribed spacer (ITS) region sequence, was studied for BNPs secondary metabolisms. After HPLC/MS analysis of crude extract of the fermentation broth, 11 asperpyrone-type BNPs were obtained directly and quickly by chromatographic separation in the extract, and those isolated asperpyrone-type BNPs were structurally identified by NMR and MS analyses. All of the BNPs showed weak cytotoxicities against 10 human tumor cells (IC50 > 30 μM). However, three of them, aurasperone F (3), aurasperone C (6) and asperpyrone A (8), exhibited obvious COX-2–inhibitory activities, with the IC50 values being 11.1, 4.2, and 6.4 μM, respectively. This is the first time the COX-2–inhibitory activities of BNPs have been reported. Full article
(This article belongs to the Special Issue Natural Products and Inflammation)
Show Figures

Graphical abstract

Back to TopTop