Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = atmospheric turbulence pool

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4892 KiB  
Article
Design and Investigation of a Novel Local Shielding Gas Concept for Laser Metal Deposition with Coaxial Wire Feeding
by Christian Bernauer, Lukas Meinzinger, Avelino Zapata, Xiao Fan Zhao, Siegfried Baehr and Michael F. Zaeh
Appl. Sci. 2023, 13(8), 5121; https://doi.org/10.3390/app13085121 - 20 Apr 2023
Cited by 8 | Viewed by 3804
Abstract
Laser metal deposition with coaxial wire feeding is a directed energy deposition process in which a metal wire is fed to a laser-induced melt pool. Oxidation occurring during the process is a major challenge as it significantly influences the mechanical properties of the [...] Read more.
Laser metal deposition with coaxial wire feeding is a directed energy deposition process in which a metal wire is fed to a laser-induced melt pool. Oxidation occurring during the process is a major challenge as it significantly influences the mechanical properties of the produced part. Therefore, an inert gas atmosphere is required in the high temperature process zone, whereby local shielding offers significant cost advantages over an inert gas chamber. In this work, a novel local shielding gas nozzle was developed based on basic methods of fluid mechanics. A gas flow-optimized prototype incorporating internal cooling channels was additively manufactured by laser-powder bed fusion and tested for its effectiveness via deposition experiments. Using the developed local shielding gas concept, an unwanted mixing with the atmosphere due to turbulence was avoided and an oxide-free deposition was achieved when processing a stainless steel ER316LSi wire. Furthermore, the effects of the shielding gas flow rate were investigated, where a negative correlation with the melt pool temperature as well as the weld bead width was demonstrated. Finally, a solid cuboid was successfully built up without oxide inclusions. Overheating of the nozzle due to reflected laser radiation could be avoided by the internal cooling system. The concept, which can be applied to most commercially available coaxial wire deposition heads, represents an important step for the economical application of laser metal deposition. Full article
Show Figures

Figure 1

12 pages, 2934 KiB  
Article
Laboratory Measurements of the Influence of Turbulence Intensity on the Instantaneous-Fading Reciprocity of Bidirectional Atmospheric Laser Propagation Link
by Yi Liu, Zhi Liu, Yidi Chang, Yang Liu and Huilin Jiang
Appl. Sci. 2021, 11(8), 3499; https://doi.org/10.3390/app11083499 - 14 Apr 2021
Cited by 2 | Viewed by 2146
Abstract
The reciprocity of the atmospheric turbulence channel in the bidirectional atmospheric laser propagation link is experimentally tested. The bidirectional transceiving coaxial atmospheric laser propagation link is built by using a hot air convection-type atmospheric turbulence emulation device with adjustable turbulence intensity. The influence [...] Read more.
The reciprocity of the atmospheric turbulence channel in the bidirectional atmospheric laser propagation link is experimentally tested. The bidirectional transceiving coaxial atmospheric laser propagation link is built by using a hot air convection-type atmospheric turbulence emulation device with adjustable turbulence intensity. The influence of different turbulence intensities on the instantaneous-fading correlation of channel is analyzed by the spot characteristics. When there is no atmospheric turbulence in the bidirectional transceiving coaxial atmospheric laser propagation link, the value of channel instantaneous fading correlation coefficient was merely 0.023, which indicates we did not find any reciprocity in the optical channel. With the increment in turbulence intensity, the channel instantaneous fading correlation coefficient presented a constant increasing trend and then tended to be stable around 0.9 in the end. At this moment, the similarity of the instantaneous change trends for these two receiving terminal optical signals, and the consistency of their probability density function, indicates that there is good reciprocity between the bidirectional atmospheric turbulence optical channels. With the increase in the optical signal scintillation factor, we can obtain the result where the correlation coefficient value decreases accordingly. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

17 pages, 4586 KiB  
Article
Experimental and Numerical Evaluation of Toxic Pool Evaporation
by Benjamin Truchot, André Carrau, Véronique Debuy, Thibauld Penelon and Jean-Pierre Bertrand
Appl. Sci. 2020, 10(23), 8448; https://doi.org/10.3390/app10238448 - 26 Nov 2020
Viewed by 2325
Abstract
To date, safety distances to toxic pool evaporation as measured by known models have been quoted in hundreds of meters, without a deeper study of the time variation of the evaporation rate. In order to evaluate this specific aspect, we designed an experimental [...] Read more.
To date, safety distances to toxic pool evaporation as measured by known models have been quoted in hundreds of meters, without a deeper study of the time variation of the evaporation rate. In order to evaluate this specific aspect, we designed an experimental study. This study included small-scale tests with a 0.1 m2 evaporating pool, and medium-scale tests with 1 and 2 m2 evaporating pools. For both small- and medium-scale tests, the experimental vertical velocity profile was built to reproduce an atmospheric profile after applying the Froude scaling procedure. The scope of this study focused on ammonia pool evaporation, with each test lasting long enough to highlight the time evolution of the evaporation rate. While many other parameters may have strongly influenced the evaporation rate, the influence of the most classical parameters was tested, including pool concentration, wind velocity, and ambient turbulence. During these tests, the metrology was designed to enable the measuring of evaporation rates with great precision, but other important components were also measured. This series of tests clearly showed a strong variation of the evaporation rate in the first 30 minutes after the release—the evaporation rate dropped to 20% of its initial value after this 30-min period. It is therefore obvious that such reactions should strongly influence the toxic consequences of the vapor atmospheric dispersion. The known influence of other parameters was also confirmed—typically, the higher the pool concentration and/or wind velocity, the higher the evaporation rate. The surrounding turbulence effect was also taken into consideration and was proven to have a lower influence on the evaporation rate. In light of these experiments, we present below a physical model named EVAP-Tox used to estimate the time variation of the evaporation rate of an ammonia solution. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

23 pages, 5389 KiB  
Article
Understanding the Role of Organic Matter Cycling for the Spatio-Temporal Structure of PCBs in the North Sea
by Ute Daewel, Evgeniy V. Yakushev, Corinna Schrum, Luca Nizzetto and Elena Mikheeva
Water 2020, 12(3), 817; https://doi.org/10.3390/w12030817 - 14 Mar 2020
Cited by 8 | Viewed by 4207
Abstract
Using the North Sea as a case scenario, a combined three-dimensional hydrodynamic-biogeochemical-pollutant model was applied for simulating the seasonal variability of the distribution of hydrophobic chemical pollutants in a marine water body. The model was designed in a nested framework including a hydrodynamic [...] Read more.
Using the North Sea as a case scenario, a combined three-dimensional hydrodynamic-biogeochemical-pollutant model was applied for simulating the seasonal variability of the distribution of hydrophobic chemical pollutants in a marine water body. The model was designed in a nested framework including a hydrodynamic block (Hamburg Shelf Ocean Model (HAMSOM)), a biogeochemical block (Oxygen Depletion Model (OxyDep)), and a pollutant-partitioning block (PolPar). Pollutants can be (1) transported via advection and turbulent diffusion, (2) get absorbed and released by a dynamic pool of particulate and dissolved organic matter, and (3) get degraded. Our model results indicate that the seasonality of biogeochemical processes, including production, sinking, and decay, favors the development of hot spots with particular high pollutant concentrations in intermediate waters of biologically highly active regions and seasons, and it potentially increases the exposure of feeding fish to these pollutants. In winter, however, thermal convection homogenizes the water column and destroys the vertical stratification of the pollutant. A significant fraction of the previously exported pollutants is then returned to the water surface and becomes available for exchange with the atmosphere, potentially turning the ocean into a secondary source for pollutants. Moreover, we could show that desorption from aging organic material in the upper aphotic zone is expected to retard pollutants transfer and burial into sediments; thus, it is considerably limiting the effectiveness of the biological pump for pollutant exports. Full article
(This article belongs to the Special Issue Marine Biogeochemical Modeling)
Show Figures

Figure 1

14 pages, 2887 KiB  
Article
Fire Size of Gasoline Pool Fires
by Iveta Marková, Jozef Lauko, Linda Makovická Osvaldová, Vladimír Mózer, Jozef Svetlík, Mikuláš Monoši and Michal Orinčák
Int. J. Environ. Res. Public Health 2020, 17(2), 411; https://doi.org/10.3390/ijerph17020411 - 8 Jan 2020
Cited by 12 | Viewed by 5497
Abstract
This article presents an experimental investigation of the flame characteristics of the gasoline pool fire. A series of experiments with different pool sizes and mixture contents were conducted to study the combustion behavior of pool fires in atmospheric conditions. The initial pool area [...] Read more.
This article presents an experimental investigation of the flame characteristics of the gasoline pool fire. A series of experiments with different pool sizes and mixture contents were conducted to study the combustion behavior of pool fires in atmospheric conditions. The initial pool area of 0.25 m2, 0.66 m2, and 2.8 m2, the initial volume of fuel and time of burning process, and the initial gasoline thickness of 20 mm were determined in each experiment. The fire models are defined by the European standard EN 3 and were used to model fire of the class MB (model liquid fire for the fire area 0.25 m2), of the class 21B (model liquid fire for the fire area 0.66 m2), and 89B (model liquid fire for the fire area 2.8 m2). The fire models were used to class 21B and 89B for fuel by Standard EN 3. The flame geometrical characteristics were recorded by a CCD (charge-coupled device) digital camera. The results show turbulent flame with constant loss burning rate per area, different flame height, and different heat release rate. Regression rate increases linearly with increasing pans diameter. The results show a linear dependence of the HRR (heat release rate) depending on the fire area (average 2.6 times). Full article
(This article belongs to the Special Issue Environmental Issues in Aerospace and their Impact on Public Health)
Show Figures

Figure 1

32 pages, 3552 KiB  
Article
Does Marine Surface Tension Have Global Biogeography? Addition for the OCEANFILMS Package
by Scott Elliott, Susannah Burrows, Philip Cameron-Smith, Forrest Hoffman, Elizabeth Hunke, Nicole Jeffery, Yina Liu, Mathew Maltrud, Zachary Menzo, Oluwaseun Ogunro, Luke Van Roekel, Shanlin Wang, Michael Brunke, Meibing Jin, Robert Letscher, Nicholas Meskhidze, Lynn Russell, Isla Simpson, Dale Stokes and Oliver Wingenter
Atmosphere 2018, 9(6), 216; https://doi.org/10.3390/atmos9060216 - 4 Jun 2018
Cited by 10 | Viewed by 7177
Abstract
We apply principles of Gibbs phase plane chemistry across the entire ocean-atmosphere interface to investigate aerosol generation and geophysical transfer issues. Marine surface tension differences comprise a tangential pressure field controlling trace gas fluxes, primary organic inputs, and sea spray salt injections, in [...] Read more.
We apply principles of Gibbs phase plane chemistry across the entire ocean-atmosphere interface to investigate aerosol generation and geophysical transfer issues. Marine surface tension differences comprise a tangential pressure field controlling trace gas fluxes, primary organic inputs, and sea spray salt injections, in addition to heat and momentum fluxes. Mapping follows from the organic microlayer composition, now represented in ocean system models. Organic functional variations drive the microforcing, leading to (1) reduced turbulence and (by extension) laminar gas-energy diffusion; plus (2) altered bubble film mass emission into the boundary layer. Interfacial chemical behaviors are, therefore, closely reviewed as the background. We focus on phase transitions among two dimensional “solid, liquid, and gaseous” states serving as elasticity indicators. From the pool of dissolved organic carbon (DOC) only proteins and lipids appear to occupy significant atmospheric interfacial areas. The literature suggests albumin and stearic acid as the best proxies, and we distribute them through ecodynamic simulation. Consensus bulk distributions are obtained to control their adsorptive equilibria. We devise parameterizations for both the planar free energy and equation of state, relating excess coverage to the surface pressure and its modulus. Constant settings for the molecular surrogates are drawn from laboratory study and successfully reproduce surfactant solid-to-gas occurrence in compression experiments. Since DOC functionality measurements are rare, we group them into super-ecological province tables to verify aqueous concentration estimates. Outputs are then fed into a coverage, tension, elasticity code. The resulting two dimensional pressure contours cross a critical range for the regulation of precursor piston velocity, bubble breakage, and primary aerosol sources plus ripple damping. Concepts extend the water-air adsorption theory currently embodied in our OCEANFILMS aerosol emissions package, and the two approaches could be inserted into Earth System Models together. Uncertainties in the logic include kinetic and thermochemical factors operating at multiple scales. Full article
(This article belongs to the Special Issue Ocean Contributions to the Marine Boundary Layer Aerosol Budget)
Show Figures

Figure 1

Back to TopTop