Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = atmosphere-wave-chemistry coupled models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 13133 KB  
Article
Assessing Sea-State Effects on Sea-Salt Aerosol Modeling in the Lower Atmosphere Using Lidar and In-Situ Measurements
by George Varlas, Eleni Marinou, Anna Gialitaki, Nikolaos Siomos, Konstantinos Tsarpalis, Nikolaos Kalivitis, Stavros Solomos, Alexandra Tsekeri, Christos Spyrou, Maria Tsichla, Anna Kampouri, Vassilis Vervatis, Elina Giannakaki, Vassilis Amiridis, Nikolaos Mihalopoulos, Anastasios Papadopoulos and Petros Katsafados
Remote Sens. 2021, 13(4), 614; https://doi.org/10.3390/rs13040614 - 9 Feb 2021
Cited by 18 | Viewed by 8734
Abstract
Atmospheric-chemical coupled models usually parameterize sea-salt aerosol (SSA) emissions using whitecap fraction estimated considering only wind speed and ignoring sea state. This approach may introduce inaccuracies in SSA simulation. This study aims to assess the impact of sea state on SSA modeling, applying [...] Read more.
Atmospheric-chemical coupled models usually parameterize sea-salt aerosol (SSA) emissions using whitecap fraction estimated considering only wind speed and ignoring sea state. This approach may introduce inaccuracies in SSA simulation. This study aims to assess the impact of sea state on SSA modeling, applying a new parameterization for whitecap fraction estimation based on wave age, calculated by the ratio between wave phase velocity and wind speed. To this end, the new parameterization was incorporated in the coupled Chemical Hydrological Atmospheric Ocean wave modeling System (CHAOS). CHAOS encompasses the wave model (WAM) two-way coupled through the OASIS3-MCT coupler with the Advanced Weather Research and Forecasting model coupled with Chemistry (WRF-ARW-Chem) and, thus, enabling the concurrent simulation of SSAs, wind speed and wave phase velocity. The simulation results were evaluated against in-situ and lidar measurements at 2 stations in Greece (Finokalia on 4 and 15 July 2014 and Antikythera-PANGEA on 15 September 2018). The results reveal significant differences between the parameterizations with the new one offering a more realistic representation of SSA levels in some layers of the lower atmosphere. This is attributed to the enhancement of the bubble-bursting mechanism representation with air-sea processes controlling whitecap fraction. Our findings also highlight the contribution of fresh wind-generated waves to SSA modeling. Full article
Show Figures

Graphical abstract

15 pages, 4270 KB  
Article
Evaluation of the Antarctic Circumpolar Wave Simulated by CMIP5 and CMIP6 Models
by Zhichao Lu, Tianbao Zhao and Weican Zhou
Atmosphere 2020, 11(9), 931; https://doi.org/10.3390/atmos11090931 - 30 Aug 2020
Cited by 5 | Viewed by 3776
Abstract
As a coupled large-scale oceanic and atmospheric pattern in the Southern Ocean, the Antarctic circumpolar wave (ACW) has substantial impacts on the global climate. In this study, using the European Centre for Medium-Range Weather Forecasts ERA5 dataset and historical experiment outputs from 24 [...] Read more.
As a coupled large-scale oceanic and atmospheric pattern in the Southern Ocean, the Antarctic circumpolar wave (ACW) has substantial impacts on the global climate. In this study, using the European Centre for Medium-Range Weather Forecasts ERA5 dataset and historical experiment outputs from 24 models of the Coupled Model Intercomparison Project Phase 5 and Phase 6 (CMIP5/CMIP6) spanning the 1980s and 1990s, the simulation capability of models for sea-level pressure (SLP) and sea surface temperature (SST) variability of the ACW is evaluated. It is shown that most models can capture well the 50-month period of the ACW. However, many simulations show a weak amplitude, but with various phase differences. Selected models can simulate SLP better than SST, and CMIP6 models generally perform better than the CMIP5 models. The best model for SLP simulation is the CanESM5 model from CMIP6, whereas the best model for SST simulation is the ACCESS1.3 model from CMIP5. It seems that the SST simulation benefits from the inclusion of both a carbon cycle process and a chemistry module, while the SLP simulation benefits from only the chemistry module. When both SLP and SST are taken into consideration, the CanESM5 model performs the best among all the selected models. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

20 pages, 6576 KB  
Article
Numerical Sensitivity Tests of Volatile Organic Compounds Emission to PM2.5 Formation during Heat Wave Period in 2018 in Two Southeast Korean Cities
by Geum-Hee Yang, Yu-Jin Jo, Hyo-Jung Lee, Chang-Keun Song and Cheol-Hee Kim
Atmosphere 2020, 11(4), 331; https://doi.org/10.3390/atmos11040331 - 29 Mar 2020
Cited by 13 | Viewed by 4186
Abstract
A record-breaking severe heat wave was recorded in southeast Korea from 11 July to 15 August 2018, and the numerical sensitivity simulations of volatile organic compound (VOC) to secondarily generated particulate matter with diameter of less than 2.5 µm (PM2.5) concentrations were studied [...] Read more.
A record-breaking severe heat wave was recorded in southeast Korea from 11 July to 15 August 2018, and the numerical sensitivity simulations of volatile organic compound (VOC) to secondarily generated particulate matter with diameter of less than 2.5 µm (PM2.5) concentrations were studied in the Busan and Ulsan metropolitan areas in southeast Korea. A weather research and forecasting (WRF) model coupled with chemistry (WRF-Chem) was employed, and we carried out VOC emission sensitivity simulations to investigate variations in PM2.5 concentrations during the heat wave period that occurred from 11 July to 15 August 2018. In our study, when anthropogenic VOC emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport Experiment-2015 (CREATE-2015) inventory were increased by approximately a factor of five in southeast Korea, a better agreement with observations of PM2.5 mass concentrations was simulated, implying an underestimation of anthropogenic VOC emissions over southeast Korea. The simulated secondary organic aerosol (SOA) fraction, in particular, showed greater dominance during high temperature periods such as 19–21 July, 2018, with the SOA fractions of 42.3% (in Busan) and 34.3% (in Ulsan) among a sub-total of seven inorganic and organic components. This is considerably higher than observed annual mean organic carbon (OC) fraction (28.4 ± 4%) among seven components, indicating the enhancement of secondary organic aerosols induced by photochemical reactions during the heat wave period in both metropolitan areas. The PM2.5 to PM10 ratios were 0.69 and 0.74, on average, during the study period in the two cities. These were also significantly higher than the typical range in those cities, which was 0.5–0.6 in 2018. Our simulations implied that extremely high temperatures with no precipitation are significantly important to the secondary generation of PM2.5 with higher secondary organic aerosol fraction via photochemical reactions in southeastern Korean cities. Other possible relationships between anthropogenic VOC emissions and temperature during the heat wave episode are also discussed in this study. Full article
(This article belongs to the Special Issue Recent Advances of Air Pollution Studies in South Korea)
Show Figures

Graphical abstract

17 pages, 5853 KB  
Article
Influence of Wave State and Sea Spray on the Roughness Length: Feedback on Medicanes
by Umberto Rizza, Elisa Canepa, Antonio Ricchi, Davide Bonaldo, Sandro Carniel, Mauro Morichetti, Giorgio Passerini, Laura Santiloni, Franciano Scremin Puhales and Mario Marcello Miglietta
Atmosphere 2018, 9(8), 301; https://doi.org/10.3390/atmos9080301 - 1 Aug 2018
Cited by 33 | Viewed by 6210
Abstract
Occasionally, storms that share many features with tropical cyclones, including the presence of a quasi-circular “eye” a warm core and strong winds, are observed in the Mediterranean. Generally, they are known as Medicanes, or tropical-like cyclones (TLC). Due to the intense wind forcings [...] Read more.
Occasionally, storms that share many features with tropical cyclones, including the presence of a quasi-circular “eye” a warm core and strong winds, are observed in the Mediterranean. Generally, they are known as Medicanes, or tropical-like cyclones (TLC). Due to the intense wind forcings and the consequent development of high wind waves, a large number of sea spray droplets—both from bubble bursting and spume tearing processes—are likely to be produced at the sea surface. In order to take into account this process, we implemented an additional Sea Spray Source Function (SSSF) in WRF-Chem, model version 3.6.1, using the GOCART (Goddard Chemistry Aerosol Radiation and Transport) aerosol sectional module. Traditionally, air-sea momentum fluxes are computed through the classical Charnock relation that does not consider the wave-state and sea spray effects on the sea surface roughness explicitly. In order to take into account these forcing, we implemented a more recent parameterization of the sea surface aerodynamic roughness within the WRF surface layer model, which may be applicable to both moderate and high wind conditions. The implemented SSSF and sea surface roughness parameterization have been tested using an operative model sequence based on COAWST (Coupled Ocean Atmosphere Wave Sediment Transport) and WRF-Chem. The third-generation wave model SWAN (Simulating Waves Nearshore), two-way coupled with the WRF atmospheric model in the COAWST framework, provided wave field parameters. Numerical simulations have been integrated with the WRF-Chem chemistry package, with the aim of calculating the sea spray generated by the waves and to include its effect in the Charnock roughness parametrization together with the sea state effect. A single case study is performed, considering the Medicane that affected south-eastern Italy on 26 September 2006. Since this Medicane is one of the most deeply analysed in literature, its investigation can easily shed some light on the feedbacks between sea spray and drag coefficients. Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))
Show Figures

Graphical abstract

Back to TopTop