Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = asphyxial cardiac arrest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1040 KiB  
Article
Diabetes Worsens Outcomes After Asphyxial Cardiac Arrest in Rats
by Matthew B. Barajas, Takuro Oyama, Masakazu Shiota, Zhu Li, Maximillian Zaum, Ilija Zecevic and Matthias L. Riess
Diabetology 2025, 6(8), 78; https://doi.org/10.3390/diabetology6080078 - 1 Aug 2025
Viewed by 172
Abstract
Background: Diabetes mellitus is associated with worse outcomes after cardiac arrest. Hyperglycemia, diabetes treatments and other long-term sequalae may contribute to this association. We sought to determine the acute effect of diabetes on the return of spontaneous circulation (ROSC) and post-arrest cardiac function [...] Read more.
Background: Diabetes mellitus is associated with worse outcomes after cardiac arrest. Hyperglycemia, diabetes treatments and other long-term sequalae may contribute to this association. We sought to determine the acute effect of diabetes on the return of spontaneous circulation (ROSC) and post-arrest cardiac function in a rat cardiac arrest model. Methods: Eighteen male Wistar rats were utilized, and 12 underwent the induction of type II diabetes for 10 weeks through a high-fat diet and the injection of streptozotocin. The carotid artery flow and femoral arterial pressure were measured. Seven minutes of asphyxial cardiac arrest was induced. An external cardiac compression was performed via an automated piston. Post-ROSC, epinephrine was titrated to a mean arterial pressure (MAP) of 70 mmHg. Data was analyzed using the Mann–Whitney test. The significance was set at p ≤ 0.05. Results: The rate of the ROSC was significantly lower in animals with diabetes, 50% compared to 100% in non-diabetics. Additionally, it took significantly longer to achieve the ROSC in diabetics, p = 0.034. In animals who survived, the cardiac function was reduced, as indicated by an increased epinephrine requirement, p = 0.041, and a decreased cardiac output at the end of the experiment, p = 0.017. The lactate, venous and arterial pressures, heart rate and carotid flow did not differ between groups at 2 h. Conclusions: Diabetes negatively affects the survival from cardiac arrest. Here, the critical difference was the rate of the conversion to a life-sustaining rhythm and the achievement of the ROSC. The post-ROSC cardiac function was depressed in diabetic animals. Interventions targeted at improving defibrillation success may be important in diabetics. Full article
Show Figures

Graphical abstract

9 pages, 2199 KiB  
Communication
Ischemic Post-Conditioning in a Rat Model of Asphyxial Cardiac Arrest
by Matthew B. Barajas, Takuro Oyama, Masakazu Shiota, Zhu Li, Maximillian Zaum, Ilija Zecevic and Matthias L. Riess
Cells 2024, 13(12), 1047; https://doi.org/10.3390/cells13121047 - 17 Jun 2024
Cited by 1 | Viewed by 1265
Abstract
Background: Ischemic post-conditioning (IPoC) has been shown to improve outcomes in limited pre-clinical models. As down-time is often unknown, this technique needs to be investigated over a range of scenarios. As this tool limits reperfusion injury, there may be limited benefit or even [...] Read more.
Background: Ischemic post-conditioning (IPoC) has been shown to improve outcomes in limited pre-clinical models. As down-time is often unknown, this technique needs to be investigated over a range of scenarios. As this tool limits reperfusion injury, there may be limited benefit or even harm after short arrest and limited ischemia-reperfusion injury. Methods: Eighteen male Wistar rats underwent 7 min of asphyxial arrest. Animals randomized to IPoC received a 20 s pause followed by 20 s of compressions, repeated four times, initiated 40 s into cardiopulmonary resuscitation. If return of spontaneous circulation (ROSC) was achieved, epinephrine was titrated to mean arterial pressure (MAP) of 70 mmHg. Data were analyzed using t-test or Mann–Whitney test. Significance set at p ≤ 0.05. Results: The rate of ROSC was equivalent in both groups, 88%. There was no statistically significant difference in time to ROSC, epinephrine required post ROSC, carotid flow, or peak lactate at any timepoint. There was a significantly elevated MAP with IPoC, 90.7 mmHg (SD 13.9), as compared to standard CPR, 76.7 mmHg (8.5), 2 h after ROSC, p = 0.03. Conclusions: IPoC demonstrated no harm in a model of short arrest using a new arrest etiology for CPR based IPoC intervention in a rat model. Full article
Show Figures

Figure 1

9 pages, 2073 KiB  
Article
Neurological Improvement via Lysophosphatidic Acid Administration in a Rodent Model of Cardiac Arrest-Induced Brain Injury
by Mitsuaki Nishikimi, Rishabh C. Choudhary, Muhammad Shoaib, Tsukasa Yagi, Lance B. Becker and Junhwan Kim
Int. J. Mol. Sci. 2023, 24(24), 17451; https://doi.org/10.3390/ijms242417451 - 14 Dec 2023
Cited by 2 | Viewed by 1378
Abstract
Lysophosphatidic acid (LPA) serves as a fundamental constituent of phospholipids. While prior studies have shown detrimental effects of LPA in a range of pathological conditions, including brain ischemia, no studies have explored the impact of LPA in the context of cardiac arrest (CA). [...] Read more.
Lysophosphatidic acid (LPA) serves as a fundamental constituent of phospholipids. While prior studies have shown detrimental effects of LPA in a range of pathological conditions, including brain ischemia, no studies have explored the impact of LPA in the context of cardiac arrest (CA). The aim of this study is to evaluate the effects of the intravenous administration of an LPA species containing oleic acid, LPA (18:1) on the neurological function of rats (male, Sprague Dawley) following 8 min of asphyxial CA. Baseline characteristics, including body weight, surgical procedure time, and vital signs before cardiac arrest, were similar between LPA (18:1)-treated (n = 10) and vehicle-treated (n = 10) groups. There was no statistically significant difference in 24 h survival between the two groups. However, LPA (18:1)-treated rats exhibited significantly improved neurological function at 24 h examination (LPA (18:1), 85.4% ± 3.1 vs. vehicle, 74.0% ± 3.3, p = 0.045). This difference was most apparent in the retention of coordination ability in the LPA (18:1) group (LPA (18:1), 71.9% ± 7.4 vs. vehicle, 25.0% ± 9.1, p < 0.001). Overall, LPA (18:1) administration in post-cardiac arrest rats significantly improved neurological function, especially coordination ability at 24 h after cardiac arrest. LPA (18:1) has the potential to serve as a novel therapeutic in cardiac arrest. Full article
(This article belongs to the Special Issue Lysophosphatidic Acid Signaling in Health and Disease)
Show Figures

Figure 1

23 pages, 4445 KiB  
Article
Multi-Drug Cocktail Therapy Improves Survival and Neurological Function after Asphyxial Cardiac Arrest in Rodents
by Rishabh C. Choudhary, Muhammad Shoaib, Kei Hayashida, Tai Yin, Santiago J. Miyara, Cristina d’Abramo, William G. Heuser, Koichiro Shinozaki, Nancy Kim, Ryosuke Takegawa, Mitsuaki Nishikimi, Timmy Li, Casey Owens, Ernesto P. Molmenti, Mingzhu He, Sonya Vanpatten, Yousef Al-Abed, Junhwan Kim and Lance B. Becker
Cells 2023, 12(11), 1548; https://doi.org/10.3390/cells12111548 - 5 Jun 2023
Cited by 4 | Viewed by 3450
Abstract
Background: Cardiac arrest (CA) can lead to neuronal degeneration and death through various pathways, including oxidative, inflammatory, and metabolic stress. However, current neuroprotective drug therapies will typically target only one of these pathways, and most single drug attempts to correct the multiple dysregulated [...] Read more.
Background: Cardiac arrest (CA) can lead to neuronal degeneration and death through various pathways, including oxidative, inflammatory, and metabolic stress. However, current neuroprotective drug therapies will typically target only one of these pathways, and most single drug attempts to correct the multiple dysregulated metabolic pathways elicited following cardiac arrest have failed to demonstrate clear benefit. Many scientists have opined on the need for novel, multidimensional approaches to the multiple metabolic disturbances after cardiac arrest. In the current study, we have developed a therapeutic cocktail that includes ten drugs capable of targeting multiple pathways of ischemia–reperfusion injury after CA. We then evaluated its effectiveness in improving neurologically favorable survival through a randomized, blind, and placebo-controlled study in rats subjected to 12 min of asphyxial CA, a severe injury model. Results: 14 rats were given the cocktail and 14 received the vehicle after resuscitation. At 72 h post-resuscitation, the survival rate was 78.6% among cocktail-treated rats, which was significantly higher than the 28.6% survival rate among vehicle-treated rats (log-rank test; p = 0.006). Moreover, in cocktail-treated rats, neurological deficit scores were also improved. These survival and neurological function data suggest that our multi-drug cocktail may be a potential post-CA therapy that deserves clinical translation. Conclusions: Our findings demonstrate that, with its ability to target multiple damaging pathways, a multi-drug therapeutic cocktail offers promise both as a conceptual advance and as a specific multi-drug formulation capable of combatting neuronal degeneration and death following cardiac arrest. Clinical implementation of this therapy may improve neurologically favorable survival rates and neurological deficits in patients suffering from cardiac arrest. Full article
Show Figures

Figure 1

12 pages, 1469 KiB  
Article
Differences in Cerebral Oxygenation in Cardiogenic and Respiratory Cardiac Arrest Before, During, and After Cardiopulmonary Resuscitation
by Yasuaki Koyama, Akira Ouchi, Nobutake Shimojo and Yoshiaki Inoue
J. Clin. Med. 2023, 12(8), 2923; https://doi.org/10.3390/jcm12082923 - 18 Apr 2023
Viewed by 2118
Abstract
We compared the changes in cerebral oxygen saturation (ScO2) levels during cardiac arrest (CA) events using porcine models of ventricular fibrillation CA (VF-CA) and asphyxial CA (A-CA). Twenty female pigs were randomly divided into VF-CA and A-CA groups. We initiated cardiopulmonary [...] Read more.
We compared the changes in cerebral oxygen saturation (ScO2) levels during cardiac arrest (CA) events using porcine models of ventricular fibrillation CA (VF-CA) and asphyxial CA (A-CA). Twenty female pigs were randomly divided into VF-CA and A-CA groups. We initiated cardiopulmonary resuscitation (CPR) 4 min after CA and measured the cerebral tissue oxygenation index (TOI) using near-infrared spectroscopy (NIRS) before, during, and after CPR. In both groups, the TOI was the lowest at 3–4 min after pre-CPR phase initiation (VF-CA group: 3.4 min [2.8–3.9]; A-CA group: 3.2 min [2.9–4.6]; p = 0.386). The increase in TOI differed between the groups in the CPR phase (p < 0.001); it increased more rapidly in the VF-CA group (16.6 [5.5–32.6] vs. 1.1 [0.6–3.3] %/min; p < 0.001). Seven pigs surviving for 60 min after the return of spontaneous circulation in the VF-CA group recovered limb movement, whereas only one in the A-CA group (p = 0.023) achieved movement recovery. The increase in the TOI did not differ significantly between the groups in the post-CPR phase (p = 0.341). Therefore, it is better to monitor ScO2 concomitantly with CPR initiation using NIRS to assess the responsiveness to CPR in clinical settings. Full article
(This article belongs to the Special Issue Ventricular Arrhythmias and Sudden Cardiac Death (SCD))
Show Figures

Figure 1

13 pages, 2497 KiB  
Article
Randomized Trial of 21% versus 100% Oxygen during Chest Compressions Followed by Gradual versus Abrupt Oxygen Titration after Return of Spontaneous Circulation in Neonatal Lambs
by Deepika Sankaran, Evan M. Giusto, Amy L. Lesneski, Morgan E. Hardie, Houssam M. Joudi, Emily C. A. Lane, Victoria L. Hammitt, Kirstie C. Tully, Payam Vali and Satyan Lakshminrusimha
Children 2023, 10(3), 575; https://doi.org/10.3390/children10030575 - 17 Mar 2023
Cited by 4 | Viewed by 2262
Abstract
The combination of perinatal acidemia with postnatal hyperoxia is associated with a higher incidence of hypoxic-ischemic encephalopathy (HIE) in newborn infants. In neonatal cardiac arrest, current International Liaison Committee on Resuscitation (ILCOR) and Neonatal Resuscitation Program (NRP) guidelines recommend increasing inspired O2 [...] Read more.
The combination of perinatal acidemia with postnatal hyperoxia is associated with a higher incidence of hypoxic-ischemic encephalopathy (HIE) in newborn infants. In neonatal cardiac arrest, current International Liaison Committee on Resuscitation (ILCOR) and Neonatal Resuscitation Program (NRP) guidelines recommend increasing inspired O2 to 100% during chest compressions (CC). Following the return of spontaneous circulation (ROSC), gradual weaning from 100% O2 based on pulse oximetry (SpO2) can be associated with hyperoxia and risk for cerebral tissue injury owing to oxidative stress. We hypothesize that compared to gradual weaning from 100% O2 with titration based on preductal SpO2, abrupt or rapid weaning of inspired O2 to 21% after ROSC or use of 21% O2 during CC followed by upward titration of inspired O2 to achieve target SpO2 after ROSC will limit hyperoxia after ROSC. Nineteen lambs were randomized before delivery and asphyxial arrest was induced by umbilical cord occlusion. There was no difference in oxygenation during chest compressions between the three groups. Gradual weaning of inspired O2 from 100% O2 after ROSC resulted in supraphysiological PaO2 and higher cerebral oxygen delivery compared to 21% O2 during CC or 100% O2 during CC followed by abrupt weaning to 21% O2 after ROSC. The use of 21% O2 during CC was associated with very low PaO2 after ROSC and higher brain tissue lactic acid compared to other groups. Our findings support the current recommendations to use 100% O2 during CC and additionally suggest the benefit of abrupt decrease in inspired oxygen to 21% O2 after ROSC. Clinical studies are warranted to investigate optimal oxygen titration after chest compressions and ROSC during neonatal resuscitation. Full article
(This article belongs to the Special Issue Stabilization and Resuscitation of Newborns: 2nd Edition)
Show Figures

Figure 1

19 pages, 4464 KiB  
Article
Therapeutic Hypothermia after Cardiac Arrest Attenuates Hindlimb Paralysis and Damage of Spinal Motor Neurons and Astrocytes through Modulating Nrf2/HO-1 Signaling Pathway in Rats
by Ji Hyeon Ahn, Tae-Kyeong Lee, Dae Won Kim, Myoung Cheol Shin, Jun Hwi Cho, Jae-Chul Lee, Hyun-Jin Tae, Joon Ha Park, Seongkweon Hong, Choong-Hyun Lee, Moo-Ho Won and Yang Hee Kim
Cells 2023, 12(3), 414; https://doi.org/10.3390/cells12030414 - 26 Jan 2023
Cited by 6 | Viewed by 2587
Abstract
Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis [...] Read more.
Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis after resuscitation in a rat model of CA induced by asphyxia. In this study, we investigated roles of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the lumbar spinal cord protected by therapeutic hypothermia in a rat model of asphyxial CA. Male Sprague-Dawley rats were subjected to seven minutes of asphyxial CA (induced by injection of 2 mg/kg vecuronium bromide) and hypothermia (four hours of cooling, 33 ± 0.5 °C). Survival rate, hindlimb motor function, histopathology, western blotting, and immunohistochemistry were examined at 12, 24, and 48 h after CA/ROSC. The rats of the CA/ROSC and hypothermia-treated groups had an increased survival rate and showed an attenuated hindlimb paralysis and a mild damage/death of motor neurons located in the anterior horn of the lumbar spinal cord compared with those of the CA/ROSC and normothermia-treated groups. In the CA/ROSC and hypothermia-treated groups, expressions of cytoplasmic and nuclear Nrf2 and HO-1 were significantly higher in the anterior horn compared with those of the CA/ROSC and normothermia-treated groups, showing that cytoplasmic and nuclear Nrf2 was expressed in both motor neurons and astrocytes. Moreover, in the CA/ROSC and hypothermia-treated group, interleukin-1β (IL-1β, a pro-inflammatory cytokine) expressed in the motor neurons was significantly reduced, and astrocyte damage was apparently attenuated compared with those found in the CA/ROSC and normothermia group. Taken together, our results indicate that hypothermic therapy after CA/ROSC attenuates CA-induced hindlimb paralysis by protecting motor neurons in the lumbar spinal cord via activating the Nrf2/HO-1 signaling pathway and attenuating pro-inflammation and astrocyte damage (reactive astrogliosis). Full article
Show Figures

Figure 1

16 pages, 3336 KiB  
Article
Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury
by Ze Ou, Yu Guo, Payam Gharibani, Ariel Slepyan, Denis Routkevitch, Anastasios Bezerianos, Romergryko G. Geocadin and Nitish V. Thakor
Brain Sci. 2023, 13(1), 2; https://doi.org/10.3390/brainsci13010002 - 20 Dec 2022
Cited by 7 | Viewed by 2625
Abstract
Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. Nonetheless, their potential [...] Read more.
Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. Nonetheless, their potential in the acute recovery phase, where the injury is reversible, has not been tested. We hypothesize that time-frequency (TF) analysis of HFOs can determine arousal recovery in the acute recovery phase. To test our hypothesis, eleven adult male Wistar rats were subjected to asphyxial CA (five with 3-min mild and six with 7-min moderate to severe CA) and SSEPs were recorded for 60 min post-resuscitation. Arousal level was quantified by the neurological deficit scale (NDS) at 4 h. Our results demonstrated that continuous wavelet transform (CWT) of SSEPs localizes HFOs in the TF domain under baseline conditions. The energy dispersed immediately after injury and gradually recovered. We proposed a novel TF-domain measure of HFO: the total power in the normal time-frequency space (NTFS) of HFO. We found that the NTFS power significantly separated the favorable and unfavorable outcome groups. We conclude that the NTFS power of HFOs provides earlier and objective determination of arousal recovery after CA. Full article
(This article belongs to the Special Issue Advances in EEG Brain Dynamics)
Show Figures

Figure 1

13 pages, 2352 KiB  
Article
Therapeutic Administration of Oxcarbazepine Saves Cerebellar Purkinje Cells from Ischemia and Reperfusion Injury Induced by Cardiac Arrest through Attenuation of Oxidative Stress
by Yang Hee Kim, Tae-Kyeong Lee, Jae-Chul Lee, Dae Won Kim, Seongkweon Hong, Jun Hwi Cho, Myoung Cheol Shin, Soo Young Choi, Moo-Ho Won and Il Jun Kang
Antioxidants 2022, 11(12), 2450; https://doi.org/10.3390/antiox11122450 - 12 Dec 2022
Cited by 9 | Viewed by 2157
Abstract
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar [...] Read more.
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA. Full article
Show Figures

Graphical abstract

11 pages, 1138 KiB  
Article
Chest Compression Rates of 90/min versus 180/min during Neonatal Cardiopulmonary Resuscitation: A Randomized Controlled Animal Trial
by Marlies Bruckner, Mattias Neset, Catalina Garcia-Hidalgo, Tze-Fun Lee, Megan O’Reilly, Po-Yin Cheung and Georg M. Schmölzer
Children 2022, 9(12), 1838; https://doi.org/10.3390/children9121838 - 28 Nov 2022
Cited by 8 | Viewed by 2736
Abstract
Background: To compare chest compression (CC) rates of 90/min with 180/min and their effect on the time to return of spontaneous circulation (ROSC), survival, hemodynamic, and respiratory parameters. We hypothesized that asphyxiated newborn piglets that received CC at 180/min vs. 90/min during cardiopulmonary [...] Read more.
Background: To compare chest compression (CC) rates of 90/min with 180/min and their effect on the time to return of spontaneous circulation (ROSC), survival, hemodynamic, and respiratory parameters. We hypothesized that asphyxiated newborn piglets that received CC at 180/min vs. 90/min during cardiopulmonary resuscitation would have a shorter time to ROSC. Methods: Newborn piglets (n = 7/group) were anesthetized, intubated, instrumented and exposed to 45 min normocapnic hypoxia followed by asphyxia and cardiac arrest. Piglets were randomly allocated to a CC rate of 180/min or 90/min. CC was performed using an automated chest compression machine using CC superimposed with sustained inflation. Hemodynamic and respiratory parameters and applied compression force were continuously measured. Results: The mean (SD) time to ROSC was 91 (34) and 256 (97) s for CC rates of 180/min and 90/min, respectively (p = 0.08). The number of piglets that achieved ROSC was 7 (100%) and 5 (71%) with 180/min and 90/min CC rates, respectively (p = 0.46). Hemodynamic parameters (i.e., diastolic and mean blood pressure, carotid blood flow, stroke volume, end-diastolic volume, left ventricular contractile function) and respiratory parameters (i.e., minute ventilation, peak inflation and peak expiration flow) were all improved with a CC rate of 180/min. Conclusion: Time to ROSC and hemodynamic and respiratory parameters were not statistical significant different between CC rates of 90/min and 180/min. Higher CC rates during neonatal resuscitation warrant further investigation. Full article
(This article belongs to the Special Issue Stabilization and Resuscitation of Newborns: 2nd Edition)
Show Figures

Figure 1

11 pages, 963 KiB  
Article
A Randomized, Controlled Animal Study: 21% or 100% Oxygen during Cardiopulmonary Resuscitation in Asphyxiated Infant Piglets
by Solomon Nyame, Po-Yin Cheung, Tez-Fun Lee, Megan O’Reilly and Georg M. Schmölzer
Children 2022, 9(11), 1601; https://doi.org/10.3390/children9111601 - 22 Oct 2022
Cited by 5 | Viewed by 2059
Abstract
Background: During pediatric cardiopulmonary resuscitation (CPR), resuscitation guidelines recommend 100% oxygen (O2); however, the most effective O2 concentration for infants unknown. Aim: We aimed to determine if 21% O2 during CPR with either chest compression (CC) during sustained inflation [...] Read more.
Background: During pediatric cardiopulmonary resuscitation (CPR), resuscitation guidelines recommend 100% oxygen (O2); however, the most effective O2 concentration for infants unknown. Aim: We aimed to determine if 21% O2 during CPR with either chest compression (CC) during sustained inflation (SI) (CC + SI) or continuous chest compression with asynchronized ventilation (CCaV) will reduce time to return of spontaneous circulation (ROSC) compared to 100% O2 in infant piglets with asphyxia-induced cardiac arrest. Methods: Piglets (20–23 days of age, weighing 6.2–10.2 kg) were anesthetized, intubated, instrumented, and exposed to asphyxia. Cardiac arrest was defined as mean arterial blood pressure < 25 mmHg with bradycardia. After cardiac arrest, piglets were randomized to CC + SI or CCaV with either 21% or 100% O2 or the sham. Heart rate, arterial blood pressure, carotid blood flow, and respiratory parameters were continuously recorded. Main results: Baseline parameters, duration, and degree of asphyxiation were not different. Median (interquartile range) time to ROSC was 107 (90–440) and 140 (105–200) s with CC + SI 21% and 100% O2, and 600 (50–600) and 600 (95–600) s with CCaV 21% and 100% O2 (p = 0.27). Overall, six (86%) and six (86%) piglets with CC + SI 21% and 100% O2, and three (43%) and three (43%) piglets achieved ROSC with CCaV 21% and 100% O2 (p = 0.13). Conclusions: In infant piglets resuscitated with CC + SI, time to ROSC reduced and survival improved compared to CCaV. The use of 21% O2 had similar time to ROSC, short-term survival, and hemodynamic recovery compared to 100% oxygen. Clinical studies comparing 21% with 100% O2 during infant CPR are warranted. Full article
Show Figures

Figure 1

13 pages, 2074 KiB  
Review
Role of Volume Replacement during Neonatal Resuscitation in the Delivery Room
by Deepika Sankaran, Emily C. A. Lane, Rebecca Valdez, Amy L. Lesneski and Satyan Lakshminrusimha
Children 2022, 9(10), 1484; https://doi.org/10.3390/children9101484 - 28 Sep 2022
Cited by 2 | Viewed by 9177
Abstract
Volume expanders are indicated in the delivery room when an asphyxiated neonate is not responding to the steps of neonatal resuscitation and has signs of shock or a history of acute blood loss. Fetal blood loss (e.g., feto-maternal hemorrhage) may contribute to perinatal [...] Read more.
Volume expanders are indicated in the delivery room when an asphyxiated neonate is not responding to the steps of neonatal resuscitation and has signs of shock or a history of acute blood loss. Fetal blood loss (e.g., feto-maternal hemorrhage) may contribute to perinatal asphyxia. Cord compression or a tight nuchal cord can selectively occlude a thin-walled umbilical vein, resulting in feto-placental transfusion and neonatal hypovolemia. For severe bradycardia or cardiac arrest secondary to fetal blood loss, Neonatal Resuscitation Program (NRP) recommends intravenous volume expanders (crystalloids such as normal saline or packed red blood cells) infused over 5 to 10 min. Failure to recognize hypovolemia and subsequent delay in volume replacement may result in unsuccessful resuscitation due to lack of adequate cardiac preload. However, excess volume load in the presence of myocardial dysfunction from hypoxic–ischemic injury may precipitate pulmonary edema and intraventricular hemorrhage (especially in preterm infants). Emergent circumstances and ethical concerns preclude the performance of prospective clinical studies evaluating volume replacement during neonatal resuscitation. Translational studies, observational data from registries and clinical trials are needed to investigate and understand the role of volume replacement in the delivery room in term and preterm neonates. This article is a narrative review of the causes and consequences of acute fetal blood loss and available evidence on volume replacement during neonatal resuscitation of asphyxiated neonates. Full article
(This article belongs to the Special Issue Stabilization and Resuscitation of Newborns: 2nd Edition)
Show Figures

Figure 1

15 pages, 3350 KiB  
Communication
PHLPP Inhibitor NSC74429 Is Neuroprotective in Rodent Models of Cardiac Arrest and Traumatic Brain Injury
by Travis C. Jackson, Cameron Dezfulian, Vincent A. Vagni, Jason Stezoski, Keri Janesko-Feldman and Patrick M. Kochanek
Biomolecules 2022, 12(10), 1352; https://doi.org/10.3390/biom12101352 - 23 Sep 2022
Cited by 4 | Viewed by 2746
Abstract
Pleckstrin homology domain and leucine rich repeat protein phosphatase (PHLPP) knockout mice have improved outcomes after a stroke, traumatic brain injury (TBI), and decreased maladaptive vascular remodeling following vascular injury. Thus, small-molecule PHLPP inhibitors have the potential to improve neurological outcomes in a [...] Read more.
Pleckstrin homology domain and leucine rich repeat protein phosphatase (PHLPP) knockout mice have improved outcomes after a stroke, traumatic brain injury (TBI), and decreased maladaptive vascular remodeling following vascular injury. Thus, small-molecule PHLPP inhibitors have the potential to improve neurological outcomes in a variety of conditions. There is a paucity of data on the efficacy of the known experimental PHLPP inhibitors, and not all may be suited for targeting acute brain injury. Here, we assessed several PHLPP inhibitors not previously explored for neuroprotection (NSC13378, NSC25247, and NSC74429) that had favorable predicted chemistries for targeting the central nervous system (CNS). Neuronal culture studies in staurosporine (apoptosis), glutamate (excitotoxicity), and hydrogen peroxide (necrosis/oxidative stress) revealed that NSC74429 at micromolar concentrations was the most neuroprotective. Subsequent testing in a rat model of asphyxial cardiac arrest, and in a mouse model of severe TBI, showed that serial dosing of 1 mg/kg of NSC74429 over 3 days improved hippocampal survival in both models. Taken together, NSC74429 is neuroprotective across multiple insult mechanisms. Future pharmacokinetic and pharmacodynamic (PK/PD) studies are warranted to optimize dosing, and mechanistic studies are needed to determine the percentage of neuroprotection mediated by PHLPP1/2 inhibition, or potentially from the modulation of PHLPP-independent targets. Full article
Show Figures

Figure 1

15 pages, 3771 KiB  
Article
Olanzapine-Induced Therapeutic Hypothermia Attenuates Renal Injury in Rats after Asphyxial Cardiac Arrest and Resuscitation
by Tsendsuren Tungalag, Yeo-Jin Yoo, Hyun-Jin Tae and Dong Kwon Yang
Antioxidants 2022, 11(3), 443; https://doi.org/10.3390/antiox11030443 - 23 Feb 2022
Cited by 7 | Viewed by 2698
Abstract
Return of spontaneous circulation (ROSC) through cardiopulmonary resuscitation (CPR) after cardiac arrest (CA) causes post-cardiac arrest syndrome (PCAS) due to dysfunction in various organs, which provokes acute kidney injury because of renal ischemia-reperfusion injury. Therapeutic hypothermia (TH) can reduce PCAS after CA and [...] Read more.
Return of spontaneous circulation (ROSC) through cardiopulmonary resuscitation (CPR) after cardiac arrest (CA) causes post-cardiac arrest syndrome (PCAS) due to dysfunction in various organs, which provokes acute kidney injury because of renal ischemia-reperfusion injury. Therapeutic hypothermia (TH) can reduce PCAS after CA and ROSC. However, it needs to be more sophisticated and effective. Hence, we aimed to elucidate the protective effects of olanzapine-induced TH against renal injury in asphyxial CA-induced rats. Every rat’s body temperature was maintained at 33 °C for 6 h after administering olanzapine post-CA and ROSC. Olanzapine-induced TH dramatically increased the survival rate of the rats and ameliorated renal tissue damage. Moreover, it suppressed oxidative stress responses through preservation of mitochondrial function and endoplasmic reticulum stress as the main contributor of oxidative stress. Notably, these actions of olanzapine-induced TH were mediated through the Sirt3-related signaling pathway, including the maintenance of Sirt3 and FOXO3a protein expression and the activation of AMPKα and superoxide dismutase 1 (SOD2, a mitochondrial antioxidant). This study is the first to disclose the protective effects of olanzapine-induced TH against renal injury after CA and ROSC, suggesting that olanzapine-induced TH could be utilized for treating CA followed by ROSC. Full article
Show Figures

Figure 1

15 pages, 2632 KiB  
Article
Therapeutic Effects of Risperidone against Spinal Cord Injury in a Rat Model of Asphyxial Cardiac Arrest: A Focus on Body Temperature, Paraplegia, Motor Neuron Damage, and Neuroinflammation
by Tae-Kyeong Lee, Jae-Chul Lee, Hyun-Jin Tae, Hyung-Il Kim, Myoung Cheol Shin, Ji Hyeon Ahn, Joon Ha Park, Dae Won Kim, Seongkweon Hong, Soo Young Choi, Jun Hwi Cho and Moo-Ho Won
Vet. Sci. 2021, 8(10), 230; https://doi.org/10.3390/vetsci8100230 - 13 Oct 2021
Cited by 7 | Viewed by 3689
Abstract
Cardiac arrest (CA) causes severe spinal cord injury and evokes spinal cord disorders including paraplegia. It has been reported that risperidone, an antipsychotic drug, effectively protects neuronal cell death from transient ischemia injury in gerbil brains. However, until now, studies on the effects [...] Read more.
Cardiac arrest (CA) causes severe spinal cord injury and evokes spinal cord disorders including paraplegia. It has been reported that risperidone, an antipsychotic drug, effectively protects neuronal cell death from transient ischemia injury in gerbil brains. However, until now, studies on the effects of risperidone on spinal cord injury after asphyxial CA (ACA) and cardiopulmonary resuscitation (CPR) are not sufficient. Therefore, this study investigated the effect of risperidone on hind limb motor deficits and neuronal damage/death in the lumbar part of the spinal cord following ACA in rats. Mortality, severe motor deficits in the hind limbs, and the damage/death (loss) of motor neurons located in the anterior horn were observed two days after ACA/CPR. These symptoms were significantly alleviated by risperidone (an atypical antipsychotic) treatment after ACA. In vehicle-treated rats, the immunoreactivities of tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1β), as pro-inflammatory cytokines, were increased, and the immunoreactivities of IL-4 and IL-13, as anti-inflammatory cytokines, were reduced with time after ACA/CPR. In contrast, in risperidone-treated rats, the immunoreactivity of the pro-inflammatory cytokines was significantly decreased, and the anti-inflammatory cytokines were enhanced compared to vehicle-treated rats. In brief, risperidone treatment after ACA/CPR in rats significantly improved the survival rate and attenuated paralysis, the damage/death (loss) of motor neurons, and inflammation in the lumbar anterior horn. Thus, risperidone might be a therapeutic agent for paraplegia by attenuation of the damage/death (loss) of spinal motor neurons and neuroinflammation after ACA/CPR. Full article
(This article belongs to the Special Issue Addressing New Therapeutic Strategies Using Models)
Show Figures

Figure 1

Back to TopTop