Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = antibaryon annihilation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 271 KiB  
Communication
The Formalism of Milky-Way Antimatter-Domains Evolution
by Maxim Yu. Khlopov and Orchidea Maria Lecian
Galaxies 2023, 11(2), 50; https://doi.org/10.3390/galaxies11020050 - 22 Mar 2023
Cited by 2 | Viewed by 2051
Abstract
If baryosynthesis is strongly nonhomogeneous, macroscopic regions with antibaryon excess can be created in the same process from which the baryonic matter is originated. This exotic possibility can become real, if the hints to the existence of antihelium component in cosmic rays are [...] Read more.
If baryosynthesis is strongly nonhomogeneous, macroscopic regions with antibaryon excess can be created in the same process from which the baryonic matter is originated. This exotic possibility can become real, if the hints to the existence of antihelium component in cosmic rays are confirmed in the AMS02 experiment, indicating the existence of primordial antimatter objects in our Galaxy. Possible forms of such objects depend on the parameters of models of baryosynthesis and evolution of antimatter domains. We elaborate the formalism of analysis of evolution of antibaryon domain with the account for baryon-antibaryon annihilation at the domain borders and possible “Swiss cheese” structure of the domain structure. We pay special attention to evolution of various forms of high, very high and ultrahigh density antibaryon domains and deduce equations of their evolution in the expanding Universe. The proposed formalism will provide the creation of evolutionary scenarios, linking the possible forms and properties of antimatter bodies in our Galaxy to the mechanisms of nonhomogeneous baryosynthesis. Full article
(This article belongs to the Special Issue Galactic Structure and Dynamics)
21 pages, 410 KiB  
Article
Antistars or Antimatter Cores in Mirror Neutron Stars?
by Zurab Berezhiani
Universe 2022, 8(6), 313; https://doi.org/10.3390/universe8060313 - 31 May 2022
Cited by 12 | Viewed by 2453
Abstract
The oscillation of the neutron n into mirror neutron n, its partner from the dark mirror sector, can gradually transform an ordinary neutron star into a mixed star consisting in part of mirror dark matter. The implications of the reverse process [...] Read more.
The oscillation of the neutron n into mirror neutron n, its partner from the dark mirror sector, can gradually transform an ordinary neutron star into a mixed star consisting in part of mirror dark matter. The implications of the reverse process taking place in the mirror neutron stars depend on the sign of baryon asymmetry in the mirror sector. Namely, if it is negative, as predicted by certain baryogenesis scenarios, then n¯n¯ transitions create a core of our antimatter gravitationally trapped in the mirror star interior. The annihilation of accreted gas on such antimatter cores could explain the origin of γ-source candidates with an unusual spectrum compatible with baryon–antibaryon annihilation, recently identified in the Fermi LAT catalog. In addition, some part of this antimatter escaping after the mergers of mirror neutron stars can produce the flux of cosmic antihelium and also heavier antinuclei which are hunted in the AMS-02 experiment. Full article
(This article belongs to the Special Issue Focus on Dark Matter)
17 pages, 307 KiB  
Article
Baryon-Antibaryon Annihilation in the Evolution of Antimatter Domains in Baryon-Asymmetric Universe
by Maxim Y. Khlopov and Orchidea Maria Lecian
Universe 2021, 7(9), 347; https://doi.org/10.3390/universe7090347 - 15 Sep 2021
Viewed by 2263
Abstract
Non-trivial baryosynthesis scenarios can lead to the existence of antimatter domains in a baryon-asymmetrical Universe. The consequences of antibaryon-baryon annihilation at the border of antimatter domains is investigated. Low-density antimatter domains are further classified according to the boundary interactions. A similar classification scheme [...] Read more.
Non-trivial baryosynthesis scenarios can lead to the existence of antimatter domains in a baryon-asymmetrical Universe. The consequences of antibaryon-baryon annihilation at the border of antimatter domains is investigated. Low-density antimatter domains are further classified according to the boundary interactions. A similar classification scheme is also proposed for higher-densities antimatter domains. The antiproton-proton annihilation interactions are therefore schematized and evaluated. The antinuclei-nuclei-interaction patterns are investigated. The two-point correlation functions for antimatter domains are studied in the case of baryon-antibaryon boundary interactions, which influence the space and time evolution. The space-time evolution of antimatter domains after the photon thermalization epoch is analyzed. Full article
6 pages, 249 KiB  
Proceeding Paper
Effects of Baryon-Antibaryon Annihilation in the Evolution of Antimatter Domains in Baryon Asymmetrical Universe
by Maxim Yu. Khlopov and Orchidea Maria Lecian
Phys. Sci. Forum 2021, 2(1), 31; https://doi.org/10.3390/ECU2021-09267 - 22 Feb 2021
Cited by 1 | Viewed by 1677
Abstract
The mechanisms of baryosynthesis, which involve the three Sakharov’s conditions, admit a possibility of nonhomogeneous generation of baryon excess. It may take place in the case of spatial variation of CP violating phase or of the baryon generating field in the early Universe. [...] Read more.
The mechanisms of baryosynthesis, which involve the three Sakharov’s conditions, admit a possibility of nonhomogeneous generation of baryon excess. It may take place in the case of spatial variation of CP violating phase or of the baryon generating field in the early Universe. In the extreme case this nonhomogeneity can lead to the change of sign of baryon excess and formation of antibaryon domains in baryon asymmetrical Universe. Surrounded by the baryon matter, evolution of antibaryon domains is strongly influenced by effect of baryon and antibaryon diffusion to the border of domain and their annihilation. It leads to change of size of domains and antibaryon density in them. The consequence of antibaryon-baryon annihilation at the border of antimatter domains in baryon-asymmetrical Universe is investigated. The successive evolution in the expanding Universe strongly depends on antibaryon density within domain. At low density it is not sufficient to provide separation from cosmological expansion. Such separation can, however, be provided by effects of dark matter, which we briefly discuss. Low-density antimatter domains are further classified with the account for the border interactions. Differently, a similar classification scheme is also proposed for higher-densities antimatter domains. The effects of antinuclei-nuclei-interaction-patterns are investigated and taken into account in the analysis of antimatter domain evolution. Full article
(This article belongs to the Proceedings of The 1st Electronic Conference on Universe)
5 pages, 593 KiB  
Proceeding Paper
Bulk Observables within a Hybrid Approach for Heavy Ion Collisions with SMASH Afterburner
by Sangwook Ryu, Jan Staudenmaier and Hannah Elfner
Proceedings 2019, 10(1), 44; https://doi.org/10.3390/proceedings2019010044 - 30 Apr 2019
Viewed by 1473
Abstract
We present a model of the dynamical evolution of relativistic heavy ion collisions, which combines second-order viscous hydrodynamics and microscopic transport. In particular, we present a hybrid approach with MUSIC hydrodynamics, and SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) afterburner. In this work, we [...] Read more.
We present a model of the dynamical evolution of relativistic heavy ion collisions, which combines second-order viscous hydrodynamics and microscopic transport. In particular, we present a hybrid approach with MUSIC hydrodynamics, and SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) afterburner. In this work, we focus on low- p T hadronic observables—identified hadron p T spectra and anisotropic flow coefficients. We also demonstrate how the hadronic chemistry is altered by the hadronic non-equilibrium dynamics, for example by baryon-antibaryon annihilation. The new MUSIC + SMASH hybrid approach is also compared to existing MUSIC + UrQMD results. Full article
Show Figures

Figure 1

Back to TopTop