Room-Temperature Synthesis of Tubular Hexagonal Boron Nitride under Pressure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. In Situ High-Pressure Raman Spectroscopy
3.2. Morphology and Structural Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naclerio, A.E.; Kidambi, P.R. A Review of Scalable Hexagonal Boron Nitride (h-BN) Synthesis for Present and Future Applications. Adv. Mater. 2023, 35, 2207374. [Google Scholar] [CrossRef]
- Xu, H.; Ding, B.; Xu, Y.; Huang, Z.; Wei, D.; Chen, S.; Liu, B. Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride. Nat. Nanotechnol. 2022, 17, 1091–1096. [Google Scholar] [CrossRef]
- Ramezani, F.; Parvez, S.; Fix, J.P.; Battaglin, A.; Whyte, S.; Borys, N.J.; Whitaker, B.M. Automatic detection of multilayer hexagonal boron nitride in optical images using deep learning-based computer vision. Sci. Rep. 2023, 13, 1595. [Google Scholar] [CrossRef]
- Kim, M.; Pallecchi, E.; Ge, R.; Ge, R.; Wu, X.; Ducournau, G.; Lee, J.C.; Akinwande, D. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems. Nat. Electron. 2020, 3, 479–485. [Google Scholar] [CrossRef]
- Moon, S.; Kim, J.; Park, J.; Im, S.; Kim, J.; Hwang, I.; Kim, J.K. Hexagonal Boron Nitride for Next-Generation Photonics and Electronics. Adv. Mater. 2023, 35, 2204161. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Kim, D.P.; Moon, K.T.; Kho, J.G.; Economy, J.; Gervais, C.; Babonneau, F. Synthesis and characterization of poly (aminoborane) as a new boron nitride precursor. Polym. Adv. Technol. 1999, 10, 702–712. [Google Scholar] [CrossRef]
- Xue, L.; Lu, B.; Wu, Z.S.; Ge, C.; Wang, P.; Zhang, R.; Zhang, X.D. Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants. Chem. Eng. J. 2014, 243, 494–499. [Google Scholar] [CrossRef]
- Hubáček, M.; Ueki, M.; Sato, T.; Brožek, V. High-temperature behaviour of hexagonal boron nitride. Thermochim. Acta 1996, 282, 359–367. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Gao, F.; Dai, M.; Hu, Y.; Chen, H.; Zhang, J.; Qiu, Y.; Jia, D.; Zhou, Y.; et al. Shape evolution of two-dimensional hexagonal boron nitride single domains on Cu/Ni alloy and its applications in ultraviolet detection. Nanotechnology 2019, 30, 245706. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, G.; Guo, Y.; Wang, L.; Tan, B.; Zhang, S.; Zhang, X.; Zhang, J.; Shuai, Y.; Lin, J.; et al. Growth of wafer-scale graphene–hexagonal boron nitride vertical heterostructures with clear interfaces for obtaining atomically thin electrical analogs. Nanoscale 2022, 14, 4204–4215. [Google Scholar] [CrossRef]
- Tan, B.; Yang, H.; Hu, Y.; Gao, F.; Wang, L.; Dai, M.; Zhang, S.; Shang, H.; Chen, H.; Hu, P. Synthesis of high-quality multilayer hexagonal boron nitride films on Au foils for ultrahigh rejection ratio solar-blind photodetection. ACS Appl. Mater. Interfaces 2020, 12, 28351–28359. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, B.; Jiang, L.; Chen, J.; Li, Y.; Guo, W.; Hu, P.; Liu, Y. Growth and etching of monolayer hexagonal boron nitride. Adv. Mater. 2015, 27, 4858–4864. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Gao, J.; Nie, Y.; Gao, T.; Sun, J.; Ma, D.; Li, Q.; Chen, Y.; Jin, C.; Bachmatiuk, A.; et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 2015, 8, 3164–3176. [Google Scholar] [CrossRef]
- Taniguchi, T.; Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 2007, 303, 525–529. [Google Scholar]
- Zhigadlo, N.D. Crystal growth of hexagonal boron nitride (hBN) from Mg-B-N solvent system under high pressure. J. Cryst. Growth 2014, 402, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Zheng, M.; Liu, Y.; Xu, Z. Low-temperature synthesis and growth of hexagonal boron-nitride in a lithium bromide melt. J. Am. Ceram. Soc. 2007, 90, 1589–1591. [Google Scholar] [CrossRef]
- Chen, L.; Gu, Y.; Li, Z.; Qian, Y.; Yang, Z.; Ma, J. Low-temperature synthesis and benzene-thermal growth of nanocrystalline boron nitride. J. Cryst. Growth 2005, 273, 646–650. [Google Scholar] [CrossRef]
- Sun, J.; Lu, C.; Song, Y.; Ji, Q.; Song, X.; Li, Q.; Zhang, Y.; Zhang, L.; Kong, J.; Liu, Z. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 2018, 47, 4242–4257. [Google Scholar] [CrossRef]
- Heck, A.J.R.; Chandler, D.W. Imaging techniques for the study of chemical reaction dynamics. Annu. Rev. Phy. Chem. 1995, 46, 335–372. [Google Scholar]
- Zhang, L.; Wang, Y.; Lv, J.; Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2017, 2, 17005. [Google Scholar] [CrossRef]
- Utsumi, W.; Yagi, T. Light-transparent phase formed by room-temperature compression of graphite. Science 1991, 252, 1542–1544. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, X.; Tang, X.; Zheng, H.; Li, K.; Lin, X.; Fang, L.; Sun, G.; Chen, X.; Xie, L.; et al. Pressure-Induced Diels-Alder Reactions in C6H6-C6F6 Cocrystal towards Graphane Structure. Angew. Chem. Int. Ed. 2019, 58, 1468–1473. [Google Scholar]
- Li, X.; Wang, T.; Duan, P.; Baldini, M.; Huang, H.T.; Chen, B.; Juhl, S.J.; Koeplinger, D.; Crespi, V.H.; Schmidt-Rohr, K.; et al. Carbon nitride nanothread crystals derived from pyridine. J. Am. Chem. Soc. 2018, 140, 4969–4972. [Google Scholar] [CrossRef] [PubMed]
- Decker, D.L.; Bassett, W.A.; Merrill, L.; Hall, H.T.; Barnett, J.D. High-pressure calibration: A critical review. J. Phys. Chem. Ref. Data 1972, 1, 773–836. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.C.; Shen, F.R.; Hou, X.Y.; Chen, L.-Y.; Hu, K.; Li, X.; Liu, R.; Tao, Q.; Zhu, P.-W.; Liu, Z.-D.; et al. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press. Chin. Phys. Lett. 2020, 37, 080701. [Google Scholar] [CrossRef]
- Liu, Z.; Irifune, T.; Nishi, M.; Tange, Y.; Arimoto, T.; Shinmei, T. Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys. Earth Planet. Inter. 2016, 257, 18–27. [Google Scholar] [CrossRef]
- Liu, Z.; Nishi, M.; Ishii, T.; Fei, H.; Miyajima, N.; Ballaran, T.B.; Ohfuji, H.; Sakai, T.; Wang, L.; Shcheka, S.; et al. Phase relations in the system MgSiO3-Al2O3 up to 2300 K at lower mantle pressures. J. Geophys. Res-Sol. Ea. 2017, 122, 7775–7788. [Google Scholar] [CrossRef]
- Wu, X.; Cui, H.; Zhang, J.; Cong, R.; Zhu, H.; Cui, Q. High pressure synchrotron x-ray diffraction and Raman scattering studies of ammonium azide. Appl. Phy. Lett. 2013, 102, 121902. [Google Scholar] [CrossRef]
- Kuzuba, T.; Era, K.; Ishii, T.; Sato, T. A low frequency Raman-active vibration of hexagonal boron nitride. Solid State Commun. 1978, 25, 863–865. [Google Scholar]
- Saha, S.; Muthu, D.V.S.; Golberg, D.; Tang, C.; Zhi, C.; Bando, Y.; Sood, A.K. Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride. Chem. Phys. Lett. 2006, 421, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Cuscó, R.; Pellicer-Porres, J.; Edgar, J.H.; Li, J.; Segura, A.; Artús, L. Pressure dependence of the interlayer and intralayer E2g Raman-active modes of hexagonal BN up to the wurtzite phase transition. Phys. Rev. B 2020, 102, 075206. [Google Scholar]
- Machon, D.; Bousige, C.; Alencar, R.; Torres-Dias, A.; Balima, F.; Nicolle, J.; de Sousa Pinheiro, G.; Souza Filho, A.G.; San-Miguel, A. Raman scattering studies of graphene under high pressure. J. Raman Spectrosc. 2018, 49, 121–129. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, H.; Ninet, S.; Zhu, H.; Liu, C.; Itié, J.P.; Gao, C.; Datchi, F. Crystal structure and stability of ammonium azide under high pressure. J. Phys. Chem. C 2019, 124, 135–142. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, H.; Ninet, S.; Zhu, H.; Beneut, K.; Liu, C.; Mezouar, M.; Gao, C.; Datchi, F. Transformation of Ammonium Azide at High Pressure and Temperature. Materials 2020, 13, 4102. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Mao, H.K.; Eng, P.J.; Trainor, T.P.; Newville, M.; Hu, M.Y.; Kao, C.; Shu, J.; Hausermann, D.; Hemley, R.J. The formation of sp3 bonding in compressed BN. Nat. Mater. 2004, 3, 111–114. [Google Scholar]
- Ungar, T. Microstructural parameters from X-ray diffraction peak broadening. Scr. Mater. 2004, 51, 777–781. [Google Scholar] [CrossRef]
- Harris KD, M.; Tremayne, M.; Kariuki, B.M. Contemporary advances in the use of powder X-ray diffraction for structure determination. Angew. Chem. Int. 2001, 40, 1626–1651. [Google Scholar] [CrossRef]
- Jiang, H.X.; Lin, J.Y. Hexagonal boron nitride epilayers: Growth; optical properties and device applications. ECS J. Solid State Sci. Technol. 2016, 6, Q3012. [Google Scholar] [CrossRef]
- Arenal, R.; Stephan, O.; Cochon, J.L.; Loiseau, A. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J. Am. Chem. Soc. 2007, 129, 16183–16189. [Google Scholar] [CrossRef]
- Lourie, O.R.; Jones, C.R.; Bartlett, B.M.; Gibbons, P.C.; Ruoff, R.S.; Buhro, W.E. CVD growth of boron nitride nanotubes. Chem. Mater. 2000, 12, 1808–1810. [Google Scholar] [CrossRef]
- Ma, R.; Bando, Y.; Sato, T.; Kurashima, K. Growth, morphology, and structure of boron nitride nanotubes. Chem. Mater. 2001, 13, 2965–2971. [Google Scholar] [CrossRef]
- Xiong, J.; Di, J.; Zhu, W.; Li, H. Hexagonal boron nitride adsorbent: Synthesis, performance tailoring and applications. J. Energy Chem. 2020, 40, 99–111. [Google Scholar]
- Songfeng, E.; Wu, L.; Li, C.; Zhu, Z.; Long, X.; Geng, R.; Zhang, J.; Li, Z.; Lu, W.; Yao, Y. Growth of boron nitride nanotubes from magnesium diboride catalysts. Nanoscale 2018, 10, 13895–13901. [Google Scholar]
- Otten, C.J.; Lourie, O.R.; Yu, M.F.; Cowley, J.M.; Dyer, M.J.; Ruoff, R.S.; Buhro, W.E. Crystalline boron nanowires. J. Am. Chem. Soc. 2002, 124, 4564–4565. [Google Scholar] [CrossRef]
- Huang, J.Y.; Yasuda, H.; Mori, H. HRTEM and EELS studies on the amorphization of hexagonal boron nitride induced by ball milling. J. Am. Ceram. Soc. 2000, 83, 403–409. [Google Scholar] [CrossRef]
- Berzina, B.; Trinkler, L.; Krutohvostov, R.; Williams, R.T.; Carroll, D.L.; Czerw, R.; Shishonok, E. Photoluminescence excitation spectroscopy in boron nitride nanotubes compared to microcrystalline h-BN and c-BN. Phys. Status Solidi C 2005, 2, 318–321. [Google Scholar]
Element | Atomic Ratio (Red Area) | Atomic Ratio (Yellow Area) |
---|---|---|
B | 46.9 ± 0.8% | 90.4 ± 0.7% |
N | 53.1 ± 0.8% | 9.6 ± 0.7% |
Total | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jia, D.; Niu, G.; Mu, P.; Gou, H. Room-Temperature Synthesis of Tubular Hexagonal Boron Nitride under Pressure. Crystals 2023, 13, 1201. https://doi.org/10.3390/cryst13081201
Li J, Jia D, Niu G, Mu P, Gou H. Room-Temperature Synthesis of Tubular Hexagonal Boron Nitride under Pressure. Crystals. 2023; 13(8):1201. https://doi.org/10.3390/cryst13081201
Chicago/Turabian StyleLi, Junkai, Donghan Jia, Guoliang Niu, Peiyang Mu, and Huiyang Gou. 2023. "Room-Temperature Synthesis of Tubular Hexagonal Boron Nitride under Pressure" Crystals 13, no. 8: 1201. https://doi.org/10.3390/cryst13081201