Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = all-trans retinoic acid (tRA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6294 KiB  
Article
Vitamin D and Retinoic Acid Require Protein Kinase C Activity and Reactive Oxygen Species as Opposing Signals Regulating PEIG-1/GPRC5A Expression in Caco-2 and T84 Colon Carcinoma Cells
by Pablo A. Iglesias González, Consuelo Mori, Ángel G. Valdivieso and Tomás A. Santa Coloma
Biomolecules 2025, 15(5), 711; https://doi.org/10.3390/biom15050711 - 13 May 2025
Viewed by 792
Abstract
PEIG-1/GPRC5A (phorbol ester induced gene-1/G-protein Coupled Receptor Class C Group 5 Member A) was the first identified member of the orphan G protein-coupled receptor family GPRC5. Deregulation of its expression is associated with the development and progression of various types of tumours, particularly [...] Read more.
PEIG-1/GPRC5A (phorbol ester induced gene-1/G-protein Coupled Receptor Class C Group 5 Member A) was the first identified member of the orphan G protein-coupled receptor family GPRC5. Deregulation of its expression is associated with the development and progression of various types of tumours, particularly colon carcinoma. In this work, we study the effects of vitamin D (VD, cholecalciferol) and retinoic acid (RA) on GPRC5A mRNA expression in the colorectal cancer cell lines Caco-2 and T84. Both VD (10 µM) and all-trans retinoic acid (ATRA, atRA, RA) (10 µM) increased GPRC5A mRNA levels. Protein kinase C (PKC) inhibition with Gö6983 (10 µM) completely abolished the effects of VD and RA on GPRC5A expression. In parallel, VD and RA increased cytosolic and mitochondrial ROS levels (cROS and mtROS). However, the antioxidants NAC (10 mM) and MitoTEMPO (10 µM) raised GPRC5A gene expression levels in the presence of VD or RA, suggesting that elevated ROS may inhibit GPRC5A expression. In conclusion, both VD and RA stimulate GPRC5A expression. The mechanisms involve a common and essential PKC signalling pathway, as Gö6983 inhibited both VD- and RA-induced signalling. Full article
Show Figures

Graphical abstract

15 pages, 961 KiB  
Review
Pharmaceutical/Clinical Strategies in the Treatment of Acute Promyelocytic Leukemia: All-Trans Retinoic Acid Encapsulation by Spray-Drying Technology as an Innovative Approach–Comprehensive Overview
by Antónia Gonçalves, Fernando Rocha and Berta N. Estevinho
Pharmaceuticals 2023, 16(2), 180; https://doi.org/10.3390/ph16020180 - 24 Jan 2023
Cited by 3 | Viewed by 2895
Abstract
Acute promyelocytic leukemia (APL) is phenotypically characterized by the accumulation of dysplastic promyelocytes, resulting from a cytogenetic condition due to the balanced chromosomal translocation t(15;17)(q22;q21). Current first-line treatment of APL includes all-trans retinoic acid (all-trans RA), with or without arsenic trioxide, combined with [...] Read more.
Acute promyelocytic leukemia (APL) is phenotypically characterized by the accumulation of dysplastic promyelocytes, resulting from a cytogenetic condition due to the balanced chromosomal translocation t(15;17)(q22;q21). Current first-line treatment of APL includes all-trans retinoic acid (all-trans RA), with or without arsenic trioxide, combined with chemotherapy, and a chemotherapy-free approach wherein arsenic trioxide is used alone or in combination with all-trans RA. The usage of all-trans RA revolutionized the treatment of APL, with survival rates of 80 to 90% being achieved. The mechanism of action of all-trans RA is based on regulation of gene transcription, promoting the differentiation of leukemic promyelocytes. Encapsulation technology has been explored as an innovative strategy to overcome the major drawbacks related to the all-trans RA oral administration in the APL treatment. The most recently published works on this subject highlight the development and optimization of carrier-based delivery systems based in microparticle formulations obtained by spray-drying to be used in the treatment of APL. The ultimate goal is to obtain a controlled delivery system for RA oral administration capable of providing a slow release of this bioactive compound in the intestinal lumen. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

25 pages, 7401 KiB  
Article
Combination Treatment of Retinoic Acid Plus Focal Adhesion Kinase Inhibitor Prevents Tumor Growth and Breast Cancer Cell Metastasis
by Ana Carla Castro-Guijarro, Fiorella Vanderhoeven, Joselina Magali Mondaca, Analía Lourdes Redondo, Felipe Carlos Martin Zoppino, Juan Manuel Fernandez-Muñoz, Angel Matias Sanchez and Marina Inés Flamini
Cells 2022, 11(19), 2988; https://doi.org/10.3390/cells11192988 - 26 Sep 2022
Cited by 8 | Viewed by 3007
Abstract
All-trans retinoic acid (RA), the primary metabolite of vitamin A, controls the development and homeostasis of organisms and tissues. RA and its natural and synthetic derivatives, both known as retinoids, are promising agents in treating and chemopreventing different neoplasias, including breast cancer (BC). [...] Read more.
All-trans retinoic acid (RA), the primary metabolite of vitamin A, controls the development and homeostasis of organisms and tissues. RA and its natural and synthetic derivatives, both known as retinoids, are promising agents in treating and chemopreventing different neoplasias, including breast cancer (BC). Focal adhesion kinase (FAK) is a crucial regulator of cell migration, and its overexpression is associated with tumor metastatic behavior. Thus, pharmaceutical FAK inhibitors (FAKi) have been developed to counter its action. In this work, we hypothesize that the RA plus FAKi (RA + FAKi) approach could improve the inhibition of tumor progression. By in silico analysis and its subsequent validation by qPCR, we confirmed RARA, SRC, and PTK2 (encoding RARα, Src, and FAK, respectively) overexpression in all breast cells tested. We also showed a different pattern of genes up/down-regulated between RA-resistant and RA-sensitive BC cells. In addition, we demonstrated that both RA-resistant BC cells (MDA-MB-231 and MDA-MB-468) display the same behavior after RA treatment, modulating the expression of genes involved in Src-FAK signaling. Furthermore, we demonstrated that although RA and FAKi administered separately decrease viability, adhesion, and migration in mammary adenocarcinoma LM3 cells, their combination exerts a higher effect. Additionally, we show that both drugs individually, as well as in combination, induce the expression of apoptosis markers such as active-caspase-3 and cleaved-PARP1. We also provided evidence that RA effects are extrapolated to other cancer cells, including T-47D BC and the human cervical carcinoma HeLa cells. In an orthotopic assay of LM3 tumor growth, whereas RA and FAKi administered separately reduced tumor growth, the combined treatment induced a more potent inhibition increasing mice survival. Moreover, in an experimental metastatic assay, RA significantly reduced metastatic lung dissemination of LM3 cells. Overall, these results indicate that RA resistance could reflect deregulation of most RA-target genes, including genes encoding components of the Src-FAK pathway. Our study demonstrates that RA plays an essential role in disrupting BC tumor growth and metastatic dissemination in vitro and in vivo by controlling FAK expression and localization. RA plus FAKi exacerbate these effects, thus suggesting that the sensitivity to RA therapies could be increased with FAKi coadministration in BC tumors. Full article
(This article belongs to the Section Cell Motility and Adhesion)
Show Figures

Figure 1

17 pages, 3267 KiB  
Article
Retinoic Acid-Containing Liposomes for the Induction of Antigen-Specific Regulatory T Cells as a Treatment for Autoimmune Diseases
by Daniëlle ter Braake, Naomi Benne, Chun Yin Jerry Lau, Enrico Mastrobattista and Femke Broere
Pharmaceutics 2021, 13(11), 1949; https://doi.org/10.3390/pharmaceutics13111949 - 17 Nov 2021
Cited by 12 | Viewed by 4107
Abstract
The current treatment of autoimmune and chronic inflammatory diseases entails systemic immune suppression, which is associated with increased susceptibility to infections. To restore immune tolerance and reduce systemic side effects, a targeted approach using tolerogenic dendritic cells (tolDCs) is being explored. tolDCs are [...] Read more.
The current treatment of autoimmune and chronic inflammatory diseases entails systemic immune suppression, which is associated with increased susceptibility to infections. To restore immune tolerance and reduce systemic side effects, a targeted approach using tolerogenic dendritic cells (tolDCs) is being explored. tolDCs are characterized by the expression of CD11c, the major histocompatibility complex (MHC)II and low levels of co-stimulatory molecules CD40 and CD86. In this study, tolDCs were generated using a human-proteoglycan-derived peptide (hPG) and all-trans retinoic acid (RA). RA-tolDCs not only display a tolerogenic phenotype but also can induce an antigen-specific regulatory T cell (Treg) response in vitro. However, further analysis showed that RA-tolDCs make up a heterogeneous population of DCs, with only a small proportion being antigen-associated tolDCs. To increase the homogeneity of this population, 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG)-containing liposomes were used to encapsulate the relevant antigen together with RA. These liposomes greatly enhanced the proportion of antigen-associated tolDCs in culture. In addition, in mice, we showed that the liposomal co-delivery of antigen and RA can be a more targeted approach to induce antigen-specific tolerance compared to the injection of RA-tolDCs, and that these liposomes can stimulate the generation of antigen-specific Tregs. This work highlights the importance of the co-delivery of an antigen and immunomodulator to minimize off-target effects and systemic side effects and provides new insights in the use of RA for antigen-specific immunotherapy for autoimmune and chronic inflammatory diseases. Full article
(This article belongs to the Collection Drug Delivery in The Netherlands)
Show Figures

Graphical abstract

19 pages, 6503 KiB  
Article
Targeting Angiogenesis by Blocking the ATM–SerRS–VEGFA Pathway for UV-Induced Skin Photodamage and Melanoma Growth
by Yadong Song, Hongyan Lu, Qiong Wang and Rong Xiang
Cancers 2019, 11(12), 1847; https://doi.org/10.3390/cancers11121847 - 22 Nov 2019
Cited by 14 | Viewed by 4123
Abstract
Retinoic acid (RA) has been widely used to protect skin from photo damage and skin carcinomas caused by solar ultraviolet (UV) irradiation, yet the mechanism remains elusive. Here, we report that all-trans retinoic acid (tRA) can directly induce the expression of [...] Read more.
Retinoic acid (RA) has been widely used to protect skin from photo damage and skin carcinomas caused by solar ultraviolet (UV) irradiation, yet the mechanism remains elusive. Here, we report that all-trans retinoic acid (tRA) can directly induce the expression of a newly identified potent anti-angiogenic factor, seryl tRNA synthetase (SerRS), whose angiostatic role can, however, be inhibited by UV-activated ataxia telangiectasia mutated (ATM) kinase. In both a human epidermal cell line, HaCaT, and a mouse melanoma B16F10 cell line, we found that tRA could activate SerRS transcription through binding with the SerRS promoter. However, UV irradiation induced activation of ATM-phosphorylated SerRS, leading to the inactivation of SerRS as a transcriptional repressor of vascular endothelial growth factor A (VEGFA), which dampened the effect of tRA. When combined with ATM inhibitor KU-55933, tRA showed a greatly enhanced efficiency in inhibiting VEGFA expression and a much better protection of mouse skin from photo damage. Also, we found the combination greatly inhibited tumor angiogenesis and growth in mouse melanoma xenograft in vivo. Taken together, tRA combined with an ATM inhibitor can greatly enhance the anti-angiogenic activity of SerRS under UV irradiation and could be a better strategy in protecting skin from angiogenesis-associated skin damage and melanoma caused by UV radiation. Full article
Show Figures

Graphical abstract

15 pages, 2040 KiB  
Review
Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity
by Paulo Czarnewski, Srustidhar Das, Sara M. Parigi and Eduardo J. Villablanca
Nutrients 2017, 9(1), 68; https://doi.org/10.3390/nu9010068 - 13 Jan 2017
Cited by 76 | Viewed by 14447
Abstract
Vitamin A (VA) is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans [...] Read more.
Vitamin A (VA) is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA) has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs) and innate lymphoid cells (ILCs). Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs. Full article
(This article belongs to the Special Issue Vitamin A Update 2016)
Show Figures

Figure 1

Back to TopTop