Pharmaceutical/Clinical Strategies in the Treatment of Acute Promyelocytic Leukemia: All-Trans Retinoic Acid Encapsulation by Spray-Drying Technology as an Innovative Approach–Comprehensive Overview
Abstract
:1. Introduction
2. Identification and Diagnosis of APL
3. Treatment of APL
4. Mechanisms of Action of All-Trans RA
5. Encapsulation Technology as an Ally in the Treatment of APL
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillestad, L.K. Acute Promyelocytc Leukemia. Acta Med. Scand. 2009, 159, 189–194. [Google Scholar] [CrossRef]
- Zhou, G.-B.; Zhao, W.-L.; Wang, Z.-Y.; Chen, S.-J.; Chen, Z. Retinoic Acid and Arsenic for Treating Acute Promyelocytic Leukemia. PLoS Med. 2005, 2, e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.-Y.; Chen, Z. Acute Promyelocytic Leukemia: From Highly Fatal to Highly Curable. Blood 2008, 111, 2505–2515. [Google Scholar] [CrossRef] [Green Version]
- Lo-Coco, F.; Cicconi, L.; Breccia, M. Current Standard Treatment of Adult Acute Promyelocytic Leukaemia. Br. J. Haematol. 2016, 172, 841–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanada, M. Treatment for Relapsed Acute Promyelocytic Leukemia. Ann. Hematol. 2022, 101, 2575–2582. [Google Scholar] [CrossRef]
- Dinmohamed, A.G.; Visser, O. Incidence of Acute Promyelocytic Leukemia across Europe: Results of RARECAREnet—A Population-Based Study. Stem Cell Investig. 2019, 6, 37. [Google Scholar] [CrossRef]
- Ferrara, F.; Molica, M.; Bernardi, M. Drug Treatment Options for Acute Promyelocytic Leukemia. Expert Opin. Pharmacother. 2022, 23, 117–127. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Jain, N.; Garcia-Manero, G.; Welch, M.A.; Ravandi, F.; Wierda, W.G.; Jabbour, E.J. The Cure of Leukemia through the Optimist’s Prism. Cancer 2022, 128, 240–259. [Google Scholar] [CrossRef]
- Osman, A.E.G.; Anderson, J.; Churpek, J.E.; Christ, T.N.; Curran, E.; Godley, L.A.; Liu, H.; Thirman, M.J.; Odenike, T.; Stock, W.; et al. Treatment of Acute Promyelocytic Leukemia in Adults. J. Oncol. Pract. 2018, 14, 649–657. [Google Scholar] [CrossRef]
- Korsos, V.; Miller Jr, W.H. How Retinoic Acid and Arsenic Transformed Acute Promyelocytic Leukemia Therapy. J. Mol. Endocrinol. 2022, 69, T69–T83. [Google Scholar] [CrossRef]
- Teng-Fei, S.; Diyaer, A.; Hong-Ming, Z.; Xin-Jie, C.; Wen-Fang, W.; Yu-Bing, Z.; Xiao-Jing, L.; Wen-Yan, C.; Yang, S. Evolving of Treatment Paradigms and Challenges in Acute Promyelocytic Leukaemia: A Real-World Analysis of 1105 Patients over the Last Three Decades. Transl. Oncol. 2022, 25, 101522. [Google Scholar] [CrossRef]
- Brown, G.; Marcinkowska, E. Acute Myeloid Leukaemia: New Targets and Therapies. Int. J. Mol. Sci. 2017, 18, 2577. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.P.P.; Chng, W.J.; Khan, M. Curcumin Sensitizes Acute Promyelocytic Leukemia Cells to Unfolded Protein Response-Induced Apoptosis by Blocking the Loss of Misfolded N-CoR Protein. Mol. Cancer Res. 2011, 9, 878–888. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, G.A.; Kats, L.; Pandolfi, P.P. Synergy against PML-RARa: Targeting Transcription, Proteolysis, Differentiation, and Self-Renewal in Acute Promyelocytic Leukemia. J. Exp. Med. 2013, 210, 2793–2802. [Google Scholar] [CrossRef]
- Sirulnik, A.; Melnick, A.; Zelent, A.; Licht, J.D. Molecular Pathogenesis of Acute Promyelocytic Leukaemia and APL Variants. Best Pract. Res. Clin. Haematol. 2003, 16, 387–408. [Google Scholar] [CrossRef]
- Rowley, J.; Golomb, H.; Dougherty, C. 15/17 TRANSLOCATION, A CONSISTENT CHROMOSOMAL CHANGE IN ACUTE PROMYELOCYTIC LEUKAEMIA. Lancet 1977, 309, 549–550. [Google Scholar] [CrossRef]
- Sehgal, T.; Sharma, P. Auer Rods and Faggot Cells: A Review of the History, Significance and Mimics of Two Morphological Curiosities of Enduring Relevance. Eur. J. Haematol. 2023, 110, 14–23. [Google Scholar] [CrossRef]
- Cingam, S.R.; Koshy, N.V. Acute Promyelocytic Leukemia; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- McCulloch, D.; Brown, C.; Iland, H. Retinoic Acid and Arsenic Trioxide in the Treatment of Acute Promyelocytic Leukemia: Current Perspectives. Onco. Targets. Ther. 2017, 10, 1585–1601. [Google Scholar] [CrossRef] [Green Version]
- Kunak, R.L.; Rojiani, A.; Savage, N.M. Educational Case: Acute Promyelocytic Leukemia With PML-RARA. Acad. Pathol. 2019, 6, 2374289519875647. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, K.; Ahmad, S.; Sherwani, R.K. Acute Promyelocytic Leukemia, Hypogranular Variant: A Rare Presentation. Clin. Pract. 2011, 1, e11. [Google Scholar] [CrossRef]
- Verma, S.; Singhal, P.; Singh, S.; Das, S. Atypical Morphology and Aberrant Immunophenotypic Expression: A Diagnostic Dilemma in Acute Promyelocytic Leukemia. J. Appl. Hematol. 2022, 13, 63. [Google Scholar] [CrossRef]
- Orfao, A.; Chillón, M.C.; Bortoluci, A.M.; López-Berges, M.C.; García-Sanz, R.; Gonzalez, M.; Tabernero, M.D.; García-Marcos, M.A.; Rasillo, A.I.; Hernández-Rivas, J.; et al. The Flow Cytometric Pattern of CD34, CD15 and CD13 Expression in Acute Myeloblastic Leukemia Is Highly Characteristic of the Presence of PML-RARalpha Gene Rearrangements. Haematologica 1999, 84, 405–412. [Google Scholar] [PubMed]
- Fang, H.; Wang, S.A.; Hu, S.; Konoplev, S.N.; Mo, H.; Liu, W.; Zuo, Z.; Xu, J.; Jorgensen, J.L.; Yin, C.C.; et al. Acute Promyelocytic Leukemia: Immunophenotype and Differential Diagnosis by Flow Cytometry. Cytom. Part B Clin. Cytom. 2022, 102, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Cicconi, L.; Lo-Coco, F. Current Management of Newly Diagnosed Acute Promyelocytic Leukemia. Ann. Oncol. 2016, 27, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.M.; Kumeda, C.A.; Velloso, E.D.R.P. Características Genéticas Da Leucemia Promielocítica Aguda de Novo TT—Genetics Characteristics of de Novo Acute Promyelocytic Leukemia. Rev. Bras. Hematol. Hemoter. 2009, 31, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Guarnera, L.; Ottone, T.; Fabiani, E.; Divona, M.; Savi, A.; Travaglini, S.; Falconi, G.; Panetta, P.; Rapanotti, M.C.; Voso, M.T. Atypical Rearrangements in APL-Like Acute Myeloid Leukemias: Molecular Characterization and Prognosis. Front. Oncol. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Sanz, M.A.; Barragán, E. History of Acute Promyelocytic Leukemia. Clin. Hematol. Int. 2021, 3, 142. [Google Scholar] [CrossRef]
- Bernard, J.; Weil, M.; Boiron, M.; Jacquillat, C.; Flandrin, G.; Gemon, M.-F. Acute Promyelocytic Leukemia: Results of Treatment by Daunorubicin. Blood 1973, 41, 489–496. [Google Scholar] [CrossRef]
- Head, D.; Kopecky, K.; Weick, J.; Files, J.; Ryan, D.; Foucar, K.; Montiel, M.; Bickers, J.; Fishleder, A.; Miller, M. Effect of Aggressive Daunomycin Therapy on Survival in Acute Promyelocytic Leukemia. Blood 1995, 86, 1717–1728. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.-L.; Huang, X.-J. Therapeutic Approaches for Acute Promyelocytic Leukaemia: Moving Towards an Orally Chemotherapy-Free Era. Front. Oncol. 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Breitman, T.; Collins, S.; Keene, B. Terminal Differentiation of Human Promyelocytic Leukemic Cells in Primary Culture in Response to Retinoic Acid. Blood 1981, 57, 1000–1004. [Google Scholar] [CrossRef] [Green Version]
- Breitman, T.R.; Selonick, S.E.; Collins, S.J. Induction of Differentiation of the Human Promyelocytic Leukemia Cell Line (HL-60) by Retinoic Acid. Proc. Natl. Acad. Sci. USA 1980, 77, 2936–2940. [Google Scholar] [CrossRef] [Green Version]
- Huang, E.J.; Ye, Y.C.; Chen, S.R.; Chai, J.R.; Lu, J.X.; Zhoa, L.; Gu, L.J.; Wang, Z.Y. Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic Leukemia. Blood 1988, 72, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, J.J.; Chale, R.S.; Abad, A.C.; Schally, A.V. Acute Promyelocytic Leukemia (APL): A Review of the Literature. Oncotarget 2020, 11, 992–1003. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.A.; Montesinos, P.; Rayón, C.; Holowiecka, A.; de la Serna, J.; Milone, G.; de Lisa, E.; Brunet, S.; Rubio, V.; Ribera, J.M.; et al. Risk-Adapted Treatment of Acute Promyelocytic Leukemia Based on All-Trans Retinoic Acid and Anthracycline with Addition of Cytarabine in Consolidation Therapy for High-Risk Patients: Further Improvements in Treatment Outcome. Blood 2010, 115, 5137–5146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, M.A.; Martín, G.; Rayón, C.; Esteve, J.; González, M.; Díaz-Mediavilla, J.; Bolufer, P.; Barragán, E.; Terol, M.J.; González, J.D.; et al. A Modified AIDA Protocol with Anthracycline-Based Consolidation Results in High Antileukemic Efficacy and Reduced Toxicity in Newly Diagnosed PML/RARalpha-Positive Acute Promyelocytic Leukemia. PETHEMA Group. Blood 1999, 94, 3015–3021. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, F.; Diverio, D.; Avvisati, G.; Luciano, A.; Barbui, T.; Bernasconi, C.; Broccia, G.; Cerri, R.; Falda, M.; Fioritoni, G.; et al. Molecular Remission in PML/RAR Alpha-Positive Acute Promyelocytic Leukemia by Combined All-Trans Retinoic Acid and Idarubicin (AIDA) Therapy. Gruppo Italiano-Malattie Ematologiche Maligne Dell’Adulto and Associazione Italiana Di Ematologia Ed Oncologia Pe. Blood 1997, 90, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Lo Coco, F.; Martin, G.; Avvisati, G.; Rayon, C.; Barbui, T.; Diaz-Mediavilla, J.; Fioritoni, G.; Gonzalez, J.D.; Liso, V.; et al. Definition of Relapse Risk and Role of Nonanthracycline Drags for Consolidation in Patients with Acute Promyelocytic Leukemia: A Joint Study of the PETHEMA and GIMEMA Cooperative Groups. Blood 2000, 96, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Breccia, M.; Gallo, E.; Rambaldi, A.; Paoloni, F.; Fioritoni, G.; Ferrara, F.; Specchia, G.; et al. Front-Line Treatment of Acute Promyelocytic Leukemia with AIDA Induction Followed by Risk-Adapted Consolidation for Adults Younger than 61 Years: Results of the AIDA-2000 Trial of the GIMEMA Group. Blood 2010, 116, 3171–3179. [Google Scholar] [CrossRef]
- Shen, Z.X.; Shi, Z.Z.; Fang, J.; Gu, B.W.; Li, J.M.; Zhu, Y.M.; Shi, J.Y.; Zheng, P.Z.; Yan, H.; Liu, Y.F.; et al. All-Trans Retinoic Acid/AS2O3 Combination Yields a High Quality Remission and Survival in Newly Diagnosed Acute Promyelocytic Leukemia. Proc. Natl. Acad. Sci. USA 2004, 101, 5328–5335. [Google Scholar] [CrossRef] [Green Version]
- Powell, B.L.; Moser, B.; Stock, W.; Gallagher, R.E.; Willman, C.L.; Stone, R.M.; Rowe, J.M.; Coutre, S.; Feusner, J.H.; Gregory, J.; et al. Arsenic Trioxide Improves Event-Free and Overall Survival for Adults with Acute Promyelocytic Leukemia: North American Leukemia Intergroup Study C9710. Blood 2010, 116, 3751–3757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iland, H.J.; Collins, M.; Bradstock, K.; Supple, S.G.; Catalano, A.; Hertzberg, M.; Browett, P.; Grigg, A.; Firkin, F.; Campbell, L.J.; et al. Use of Arsenic Trioxide in Remission Induction and Consolidation Therapy for Acute Promyelocytic Leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4 Study: A Non-Randomised Phase 2 Trial. Lancet Haematol. 2015, 2, e357–e366. [Google Scholar] [CrossRef] [PubMed]
- Mathews, V.; George, B.; Chendamarai, E.; Lakshmi, K.M.; Desire, S.; Balasubramanian, P.; Viswabandya, A.; Thirugnanam, R.; Abraham, A.; Shaji, R.V.; et al. Single-Agent Arsenic Trioxide in the Treatment of Newly Diagnosed Acute Promyelocytic Leukemia: Long-Term Follow-up Data. J. Clin. Oncol. 2010, 28, 3866–3871. [Google Scholar] [CrossRef] [PubMed]
- Ghavamzadeh, A.; Alimoghaddam, K.; Rostami, S.; Ghaffari, S.H.; Jahani, M.; Iravani, M.; Mousavi, S.A.; Bahar, B.; Jalili, M. Phase II Study of Single-Agent Arsenic Trioxide for the Front-Line Therapy of Acute Promyelocytic Leukemia. J. Clin. Oncol. 2011, 29, 2753–2757. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Estey, E.; Jones, D.; Faderl, S.; O’Brien, S.; Fiorentino, J.; Pierce, S.; Blamble, D.; Estrov, Z.; Wierda, W.; et al. Effective Treatment of Acute Promyelocytic Leukemia with All-Trans-Retinoic Acid, Arsenic Trioxide, and Gemtuzumab Ozogamicin. J. Clin. Oncol. 2009, 27, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; et al. Retinoic Acid and Arsenic Trioxide for Acute Promyelocytic Leukemia. N. Engl. J. Med. 2013, 369, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Platzbecker, U.; Avvisati, G.; Cicconi, L.; Thiede, C.; Paoloni, F.; Vignetti, M.; Ferrara, F.; Divona, M.; Albano, F.; Efficace, F.; et al. Improved Outcomes with Retinoic Acid and Arsenic Trioxide Compared with Retinoic Acid and Chemotherapy in Non-High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial. J. Clin. Oncol. 2017, 35, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; et al. Management of Acute Promyelocytic Leukemia: Updated Recommendations from an Expert Panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.-B.; Zhang, J.; Wang, Z.-Y.; Chen, S.-J.; Chen, Z. Treatment of Acute Promyelocytic Leukaemia with All-Trans Retinoic Acid and Arsenic Trioxide: A Paradigm of Synergistic Molecular Targeting Therapy. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 959–971. [Google Scholar] [CrossRef] [Green Version]
- Warrell, R.P.; de The, H.; Wang, Z.-Y.; Degos, L. Acute Promyelocytic Leukemia. N. Engl. J. Med. 1993, 329, 177–189. [Google Scholar] [CrossRef]
- Zhu, D.; McCarthy, H.; Ottensmeier, C.H.; Johnson, P.; Hamblin, T.J.; Stevenson, F.K. Acquisition of Potential N-Glycosylation Sites in the Immunoglobulin Variable Region by Somatic Mutation Is a Distinctive Feature of Follicular Lymphoma. Blood 2002, 99, 2562–2568. [Google Scholar] [CrossRef]
- Huen, A.O.; Kim, E.J. The Role of Systemic Retinoids in the Treatment of Cutaneous T-Cell Lymphoma. Dermatol. Clin. 2015, 33, 715–729. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.; Katsanis, N.; Apostolopoulos, N.; Thompson, D.C.; Nebert, D.W.; Vasiliou, V. Genetics and Functions of the Retinoic Acid Pathway, with Special Emphasis on the Eye. Hum. Genomics 2019, 13, 1–15. [Google Scholar] [CrossRef]
- Abdelaal, M.R.; Soror, S.H.; Elnagar, M.R.; Haffez, H. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy. Molecules 2021, 26, 506. [Google Scholar] [CrossRef]
- Marill, J.; Idres, N.; Capron, C.C.; Nguyen, E.; Chabot, G.G. Retinoic Acid Metabolism and Mechanism of Action: A Review. Curr. Drug Metab. 2003, 4, 1–10. [Google Scholar] [CrossRef]
- Hunsu, V.O.; Facey, C.O.B.; Fields, J.Z.; Boman, B.M. Retinoids as Chemo-preventive and Molecular-targeted Anti-cancer Therapies. Int. J. Mol. Sci. 2021, 22, 7731. [Google Scholar] [CrossRef]
- Villa, R.; De Santis, F.; Gutierrez, A.; Minucci, S.; Pelicci, P.G.; Di Croce, L. Epigenetic Gene Silencing in Acute Promyelocytic Leukemia. Biochem. Pharmacol. 2004, 68, 1247–1254. [Google Scholar] [CrossRef]
- Matsushita, H.; Scaglioni, P.P.; Bhaumik, M.; Rego, E.M.; Lu, F.C.; Majid, S.M.; Miyachi, H.; Kakizuka, A.; Miller, W.H.; Pandolfi, P.P. In Vivo Analysis of the Role of Aberrant Histone Deacetylase Recruitment and RARα Blockade in the Pathogenesis of Acute Promyelocytic Leukemia. J. Exp. Med. 2006, 203, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Lo-Coco, F.; Ammatuna, E. The Biology of Acute Promyelocytic Leukemia and Its Impact on Diagnosis and Treatment. Hematology 2006, 2006, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Hormaeche, I.; Licht, J.D. Chromatin Modulation by Oncogenic Transcription Factors: New Complexity, New Therapeutic Targets. Cancer Cell 2007, 11, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Noguera, N.; Catalano, G.; Banella, C.; Divona, M.; Faraoni, I.; Ottone, T.; Arcese, W.; Voso, M. Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies. Cancers 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan Nanoparticles Loaded with Clove Essential Oil: Characterization, Antioxidant and Antibacterial Activities. Carbohydr. Polym. 2020, 236, 116075. [Google Scholar] [CrossRef] [PubMed]
- Ban, Z.; Zhang, J.; Li, L.; Luo, Z.; Wang, Y.; Yuan, Q.; Zhou, B.; Liu, H. Ginger Essential Oil-Based Microencapsulation as an Efficient Delivery System for the Improvement of Jujube (Ziziphus Jujuba Mill.) Fruit Quality. Food Chem. 2020, 306, 125628. [Google Scholar] [CrossRef] [PubMed]
- Vinner, G.; Rezaie-Yazdi, Z.; Leppanen, M.; Stapley, A.; Leaper, M.; Malik, D. Microencapsulation of Salmonella-Specific Bacteriophage Felix O1 Using Spray-Drying in a PH-Responsive Formulation and Direct Compression Tableting of Powders into a Solid Oral Dosage Form. Pharmaceuticals 2019, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juère, E.; Florek, J.; Bouchoucha, M.; Jambhrunkar, S.; Wong, K.Y.; Popat, A.; Kleitz, F. In Vitro Dissolution, Cellular Membrane Permeability, and Anti-Inflammatory Response of Resveratrol-Encapsulated Mesoporous Silica Nanoparticles. Mol. Pharm. 2017, 14, 4431–4441. [Google Scholar] [CrossRef]
- de Abreu Figueiredo, J.; de Paula Silva, C.R.; Oliveira, M.F.S.; Norcino, L.B.; Campelo, P.H.; Botrel, D.A.; Borges, S.V. Microencapsulation by Spray Chilling in the Food Industry: Opportunities, Challenges, and Innovations. Trends Food Sci. Technol. 2022, 120, 274–287. [Google Scholar] [CrossRef]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioactive-Loaded Nanocarriers for Functional Foods: From Designing to Bioavailability. Curr. Opin. Food Sci. 2020, 33, 21–29. [Google Scholar] [CrossRef]
- McClements, D.J. Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides Using Nanoparticle and Microparticle Systems: A Review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef]
- Abuhassira-Cohen, Y.; Livney, Y.D. Enhancing the Bioavailability of Encapsulated Hydrophobic Nutraceuticals: Insights from in Vitro, in Vivo, and Clinical Studies. Curr. Opin. Food Sci. 2022, 45, 100832. [Google Scholar] [CrossRef]
- Shield, J.; Kuler, J.; Gurnani, A. Regulatory Constraints on New Product Development and Approval Procedures in the United States. In Developing New Functional Food and Nutraceutical Products; Elsevier: Amsterdam, The Netherlands, 2017; pp. 123–148. ISBN 9780128027790. [Google Scholar]
- McClements, D.J.; Li, Y. Structured Emulsion-Based Delivery Systems: Controlling the Digestion and Release of Lipophilic Food Components. Adv. Colloid Interface Sci. 2010, 159, 213–228. [Google Scholar] [CrossRef]
- Delshadi, R.; Bahrami, A.; Tafti, A.G.; Barba, F.J.; Williams, L.L. Micro and Nano-Encapsulation of Vegetable and Essential Oils to Develop Functional Food Products with Improved Nutritional Profiles. Trends Food Sci. Technol. 2020, 104, 72–83. [Google Scholar] [CrossRef]
- Soukoulis, C.; Bohn, T. A Comprehensive Overview on the Micro- and Nano-Technological Encapsulation Advances for Enhancing the Chemical Stability and Bioavailability of Carotenoids. Crit. Rev. Food Sci. Nutr. 2018, 58, 1–36. [Google Scholar] [CrossRef]
- Montané, X.; Bajek, A.; Roszkowski, K.; Montornés, J.M.; Giamberini, M.; Roszkowski, S.; Kowalczyk, O.; Garcia-Valls, R.; Tylkowski, B. Encapsulation for Cancer Therapy. Molecules 2020, 25, 1605. [Google Scholar] [CrossRef] [Green Version]
- Reque, P.M.; Brandelli, A. Encapsulation of Probiotics and Nutraceuticals: Applications in Functional Food Industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Gonçalves, A.; Nikmaram, N.; Roohinejad, S.; Estevinho, B.N.B.N.; Rocha, F.; Greiner, R.; McClements, D.J. Production, Properties, and Applications of Solid Self-Emulsifying Delivery Systems (S-SEDS) in the Food and Pharmaceutical Industries. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 538, 108–126. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Methodologies for Simulation of Gastrointestinal Digestion of Different Controlled Delivery Systems and Further Uptake of Encapsulated Bioactive Compounds. Trends Food Sci. Technol. 2021, 114, 510–520. [Google Scholar] [CrossRef]
- Shahidi, F.; Han, X.Q. Encapsulation of Food Ingredients. Crit. Rev. Food Sci. Nutr. 1993, 33, 501–547. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annu. Rev. Food Sci. Technol. 2019, 10, 103–131. [Google Scholar] [CrossRef]
- Di Battista, C.A.; Constenla, D.; Ramírez Rigo, M.V.; Piña, J. Process Analysis and Global Optimization for the Microencapsulation of Phytosterols by Spray Drying. Powder Technol. 2017, 321, 55–65. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Chen, W. Trends of Spray Drying: A Critical Review on Drying of Fruit and Vegetable Juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Arpagaus, C.; Collenberg, A.; Rütti, D.; Assadpour, E.; Jafari, S.M. Nano Spray Drying for Encapsulation of Pharmaceuticals. Int. J. Pharm. 2018, 546, 194–214. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Formulation Approaches for Improved Retinoids Delivery in the Treatment of Several Pathologies. Eur. J. Pharm. Biopharm. 2019, 143, 80–90. [Google Scholar] [CrossRef]
- Bahlool, A.Z.; Fattah, S.; O’Sullivan, A.; Cavanagh, B.; MacLoughlin, R.; Keane, J.; O’Sullivan, M.P.; Cryan, S.-A. Development of Inhalable ATRA-Loaded PLGA Nanoparticles as Host-Directed Immunotherapy against Tuberculosis. Pharmaceutics 2022, 14, 1745. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-R.; Huang, T.-H.; Hu, S.; Alalaiwe, A.; Wang, P.-W.; Lo, P.-C.; Fang, J.-Y.; Yang, S.-C. Laser-Assisted Nanoparticle Delivery to Promote Skin Absorption and Penetration Depth of Retinoic Acid with the Aim for Treating Photoaging. Int. J. Pharm. 2022, 627, 122162. [Google Scholar] [CrossRef] [PubMed]
- Ture, N.; Govardhane, S.; Shende, P. Retinoic Acid Core-Shell Lipoplexes for the Treatment of Colorectal Cancer. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125671. [Google Scholar] [CrossRef]
- Ferreira, R.; Napoli, J.; Enver, T.; Bernardino, L.; Ferreira, L. Advances and Challenges in Retinoid Delivery Systems in Regenerative and Therapeutic Medicine. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Giuli, M.V.; Hanieh, P.N.; Giuliani, E.; Rinaldi, F.; Marianecci, C.; Screpanti, I.; Checquolo, S.; Carafa, M. Current Trends in ATRA Delivery for Cancer Therapy. Pharmaceutics 2020, 12, 707. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Mehta, K. Altered Metabolism of All-Trans-Retinoic Acid in Liposome-Encapsulated Form. Cancer Lett. 1998, 134, 121–128. [Google Scholar] [CrossRef]
- Ozpolat, B.; Mehta, K.; Lopez-Berestein, G. Regulation of a Highly Specific Retinoic Acid-4-Hydroxylase (CYP26A1) Enzyme and All- Trans -Retinoic Acid Metabolism in Human Intestinal, Liver, Endothelial, and Acute Promyelocytic Leukemia Cells. Leuk. Lymphoma 2005, 46, 1497–1506. [Google Scholar] [CrossRef]
- Tiwari, M.D.; Mehra, S.; Jadhav, S.; Bellare, J.R. All-Trans Retinoic Acid Loaded Block Copolymer Nanoparticles Efficiently Induce Cellular Differentiation in HL-60 Cells. Eur. J. Pharm. Sci. 2011, 44, 643–652. [Google Scholar] [CrossRef]
- Silva, E.L.; Lima, F.A.; Carneiro, G.; Ramos, J.P.; Gomes, D.A.; de Souza-Fagundes, E.M.; Miranda Ferreira, L.A. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles. J. Nanosci. Nanotechnol. 2016, 16, 1291–1300. [Google Scholar] [CrossRef]
- Zuccari, G.; Carosio, R.; Fini, A.; Montaldo, P.G.; Orienti, I. Modified Polyvinylalcohol for Encapsulation of All-Trans-Retinoic Acid in Polymeric Micelles. J. Control. Release 2005, 103, 369–380. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Characterization of Biopolymer-Based Systems Obtained by Spray-Drying for Retinoic Acid Controlled Delivery. Powder Technol. 2019, 345, 758–765. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Spray-Drying of Oil-in-Water Emulsions for Encapsulation of Retinoic Acid: Polysaccharide- and Protein-Based Microparticles Characterization and Controlled Release Studies. Food Hydrocoll. 2022, 124, 107193. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of Retinoic Acid by Atomization into Biopolymeric Matrices: Binary and Ternary Blends of Alginic Acid Sodium, Xanthan Gum and Modified Chitosan. Food Hydrocoll. 2022, 124, 107310. [Google Scholar] [CrossRef]
- Gonçalves, A.; Rocha, F.; Estevinho, B.N. Application of Ethyl Cellulose and Ethyl Cellulose + Polyethylene Glycol for the Development of Polymer-Based Formulations Using Spray-Drying Technology for Retinoic Acid Encapsulation. Foods 2022, 11, 2533. [Google Scholar] [CrossRef]
- Gonçalves, A.; Rocha, F.; Estevinho, B.N. Co-Encapsulation of Retinoic Acid, Curcumin and Resveratrol by Spray-Drying of Alginic Acid Sodium-Based Emulsions and Ethyl Cellulose-Based Solutions: Impact on the Co-Delivery Profiles. Int. J. Biol. Macromol. 2023, 224, 1217–1227. [Google Scholar] [CrossRef]
- Tan, T.W.; Tsai, H.R.; Lu, H.F.; Lin, H.L.; Tsou, M.F.; Lin, Y.T.; Tsai, H.Y.; Chen, Y.F.; Chung, J.G. Curcumin-Induced Cell Cycle Arrest and Apoptosis in Human Acute Promyelocytic Leukemia HL-60 Cells via MMP Changes and Caspase-3 Activation. Anticancer Res. 2006, 26, 4361–4371. [Google Scholar]
- Tan, K.L.; Koh, S.B.; Ee, R.P.L.; Khan, M.; Go, M.L. Curcumin Analogues with Potent and Selective Anti-Proliferative Activity on Acute Promyelocytic Leukemia: Involvement of Accumulated Misfolded Nuclear Receptor Co-Repressor (N-CoR) Protein as a Basis for Selective Activity. ChemMedChem 2012, 7, 1567–1579. [Google Scholar] [CrossRef]
- Kini, A.R.; Nagabhushan, M.; Tallman, M.S.; Roychowdhury, S. Curcumin Enhances Differentiation of All-Trans Retinoic Acid (ATRA)-Sensitive and ATRA-Resistant Acute Promyelocytic (APL) Cells. Blood 2005, 106, 4456. [Google Scholar] [CrossRef]
- Cardoso, T.; Gonçalves, A.; Estevinho, B.N.; Rocha, F. Potential Food Application of Resveratrol Microparticles: Characterization and Controlled Release Studies. Powder Technol. 2019, 355, 593–601. [Google Scholar] [CrossRef]
- Czop, M.; Bogucka-Kocka, A.; Kubrak, T.; Knap-Czop, K.; Makuch-Kocka, A.; Galkowski, D.; Wawer, J.; Kocki, T.; Kocki, J. Imaging Flow Cytometric Analysis of Stilbene-Dependent Apoptosis in Drug Resistant Human Leukemic Cell Lines. Molecules 2019, 24, 1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.; Liu, G.J.; Song, J.Y.; Chen, L.; Wang, A.H.; Gao, X.X.; Wang, Z.J. Preliminary Results Indicate Resveratrol Affects Proliferation and Apoptosis of Leukemia Cells by Regulating PTEN/PI3K/AKT Pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4285–4292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.; Rocha, F.; Estevinho, B.N. Pharmaceutical/Clinical Strategies in the Treatment of Acute Promyelocytic Leukemia: All-Trans Retinoic Acid Encapsulation by Spray-Drying Technology as an Innovative Approach–Comprehensive Overview. Pharmaceuticals 2023, 16, 180. https://doi.org/10.3390/ph16020180
Gonçalves A, Rocha F, Estevinho BN. Pharmaceutical/Clinical Strategies in the Treatment of Acute Promyelocytic Leukemia: All-Trans Retinoic Acid Encapsulation by Spray-Drying Technology as an Innovative Approach–Comprehensive Overview. Pharmaceuticals. 2023; 16(2):180. https://doi.org/10.3390/ph16020180
Chicago/Turabian StyleGonçalves, Antónia, Fernando Rocha, and Berta N. Estevinho. 2023. "Pharmaceutical/Clinical Strategies in the Treatment of Acute Promyelocytic Leukemia: All-Trans Retinoic Acid Encapsulation by Spray-Drying Technology as an Innovative Approach–Comprehensive Overview" Pharmaceuticals 16, no. 2: 180. https://doi.org/10.3390/ph16020180
APA StyleGonçalves, A., Rocha, F., & Estevinho, B. N. (2023). Pharmaceutical/Clinical Strategies in the Treatment of Acute Promyelocytic Leukemia: All-Trans Retinoic Acid Encapsulation by Spray-Drying Technology as an Innovative Approach–Comprehensive Overview. Pharmaceuticals, 16(2), 180. https://doi.org/10.3390/ph16020180