Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = all closed hot air circulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4125 KiB  
Article
Heat and Mass Transfer in Shrimp Hot-Air Drying: Experimental Evaluation and Numerical Simulation
by Jhony T. Teleken, Suélen M. Amorim, Sarah S. S. Rodrigues, Thailla W. P. de Souza, João P. Ferreira and Bruno A. M. Carciofi
Foods 2025, 14(3), 428; https://doi.org/10.3390/foods14030428 - 28 Jan 2025
Viewed by 1415
Abstract
Shrimp is one of the most popular and widely consumed seafood products worldwide. It is highly perishable due to its high moisture content. Thus, dehydration is commonly used to extend its shelf life, mostly via air drying, leading to a temperature increase, moisture [...] Read more.
Shrimp is one of the most popular and widely consumed seafood products worldwide. It is highly perishable due to its high moisture content. Thus, dehydration is commonly used to extend its shelf life, mostly via air drying, leading to a temperature increase, moisture removal, and matrix shrinkage. In this study, a mathematical model was developed to describe the changes in moisture and temperature distribution in shrimp during hot-air drying. The model considered the heat and mass transfer in an irregular-shaped computational domain and was solved using the finite element method. Convective heat and mass transfer coefficients (57.0–62.9 W/m2∙K and 0.007–0.008 m/s, respectively) and the moisture effective diffusion coefficient (6.5 × 10−10–8.5 × 10−10 m2/s) were determined experimentally and numerically. The shrimp temperature and moisture numerical solution were validated using a cabinet dryer with a forced air circulation at 60 and 70 °C. The model predictions demonstrated close agreement with the experimental data (R2 0.95 for all conditions) and revealed three distinct drying stages: initial warming up, constant drying rate, and falling drying rate at the end. Initially, the shrimp temperature increased from 25 °C to around 46 °C and 53 °C for the process at 60 °C and 70 °C. Thus, it presented a constant drying rate, around 0.04 kg/kg min at 60 °C and 0.05 kg/kg min at 70 °C. During this stage, the process is controlled by the heat transferred from the surroundings. Subsequently, the internal resistance to mass transfer becomes the dominant factor, leading to a decrease in the drying rate and an increase in temperatures. A numerical analysis indicated that considering the irregular shape of the shrimp provides more realistic moisture and temperature profiles compared to the simplified finite cylinder geometry. Furthermore, a sensitivity analysis was performed using the validated model to assess the impact of the mass and heat transfer parameters and relative humidity inside the cavity on the drying process. The proposed model accurately described the drying, allowing the further evaluation of the quality and safety aspects and optimizing the process. Full article
Show Figures

Graphical abstract

11 pages, 3987 KiB  
Article
A Rectangular Spiral Inward–Outward Alternating-Flow Polymer Thermal Collector for a Solar Water Heating System—A Preliminary Investigation in the Climate of Seri Iskandar, Malaysia
by Taib Iskandar Mohamad and Mohammad Danish Shareeman Mohd Shaifudeen
Appl. Sci. 2024, 14(23), 11045; https://doi.org/10.3390/app142311045 - 27 Nov 2024
Cited by 1 | Viewed by 1159
Abstract
A flat-plate unglazed solar water heater (SWH) with a polymer thermal absorber was developed and experimented with. Polymer thermal absorbers could be a viable alternative to metal thermal absorbers for SWH systems. The performance of this polymer SWH system was measured based on [...] Read more.
A flat-plate unglazed solar water heater (SWH) with a polymer thermal absorber was developed and experimented with. Polymer thermal absorbers could be a viable alternative to metal thermal absorbers for SWH systems. The performance of this polymer SWH system was measured based on inlet and outlet water temperature, water flow rate, ambient air temperature and solar irradiance. The polymer thermal absorbers were hollow Polyvinyl Chloride (PVC) tubes with a 20 mm external diameter and 3 mm thickness and were painted black to enhance radiation absorption. The pipes are arranged in a rectangular spiral inward–outward alternating-flow (RSioaf) pattern. The collector pipes were placed in a 1 m × 1 m enclosure with bottom insulation and a reflective surface for maximized radiation absorption. Water circulated through a closed loop with an uninsulated 16 L storage tank, driven by a pump and controlled by two valves to maintain a mass flow rate of 0.0031 to 0.0034 kg·s−1. The test was conducted under a partially clouded sky from 9 a.m. to 5 p.m., with solar irradiance between 105 and 1003 W·m−2 and an ambient air temperature of 27–36 °C. This SWH system produced outlet hot water at 65 °C by midday and maintained the storage temperature at 63 °C until the end of the test period. Photothermal energy conversion was recorded, showing a maximum value of 23%. Results indicate that a flat-plate solar water heater with a polymer thermal absorber in an RSioaf design can be an effective alternative to an SWH with a metal thermal absorber. Its performance can be improved with glazing and optimized tube sizing. Full article
(This article belongs to the Special Issue Advanced Solar Energy Materials: Methods and Applications)
Show Figures

Figure 1

16 pages, 11973 KiB  
Article
Spatial Fluctuations of Optical Turbulence Strength in a Laboratory Turbulence Simulator
by Yanling Li, Haiping Mei, Shuran Ye, Zhiwei Tao, Hanling Deng, Xiaoqing Wu and Ruizhong Rao
Photonics 2024, 11(3), 229; https://doi.org/10.3390/photonics11030229 - 1 Mar 2024
Cited by 4 | Viewed by 1832
Abstract
Controlled turbulence simulators in the laboratory have been extensively employed to investigate turbulence effects on light propagation in the atmosphere, driven by some advanced optical engineering such as remote sensing, energy-delivery systems, and free-space optical communication systems. Many studies have achieved rich results [...] Read more.
Controlled turbulence simulators in the laboratory have been extensively employed to investigate turbulence effects on light propagation in the atmosphere, driven by some advanced optical engineering such as remote sensing, energy-delivery systems, and free-space optical communication systems. Many studies have achieved rich results on the optical turbulence intensity, scintillation index, and power spectral density characteristics of the light propagation path in the center of a turbulence simulator, but a comprehensive analysis of the optical turbulence characteristics for different spatial locations is still lacking. We simulate turbulence with air as the medium in a classical convective Rayleigh–Bénard turbulence simulator through high-resolution computational fluid dynamics methods, the three-dimensional refractive index distribution is obtained, and the optical properties are analyzed comprehensively. It is found that the hot and cold plumes and the large-scale circulation strongly influence the inhomogeneity of Cn2 in the turbulence tank, making it weak in the middle and strong near the boundary. The refractive index power spectral density at different heights is centrally symmetric, with the slope gradually deviating from the −5/3 scaling power with increasing distance from the central region. Under the log-log plot, the variation of the refractive index variance with height exhibits a three-segmented feature, showing in order: a stable region, a logarithmic profile, and a power-law profile, in the region close to the boundary. These results will contribute to the construction of a suitable turbulence simulator for optical engineering applications. Full article
Show Figures

Figure 1

16 pages, 14698 KiB  
Article
Connection of Compound Extremes of Air Temperature and Precipitation with Atmospheric Circulation Patterns in Eastern Europe
by Olga Sukhonos and Elena Vyshkvarkova
Climate 2023, 11(5), 98; https://doi.org/10.3390/cli11050098 - 29 Apr 2023
Cited by 4 | Viewed by 2447
Abstract
Recent studies show an increase in the frequency of compound extremes in air temperature and precipitation in many parts of the world, especially under dry and hot conditions. Compound extremes have a significant impact on all spheres of human activity, such as health, [...] Read more.
Recent studies show an increase in the frequency of compound extremes in air temperature and precipitation in many parts of the world, especially under dry and hot conditions. Compound extremes have a significant impact on all spheres of human activity, such as health, agriculture, and energy. Features of atmospheric circulation are closely related to the occurrence of anomalies in air temperature and precipitation. The article analyzes the relationship of atmospheric circulation modes with compound extremes that have had the greatest impact on the Atlantic–European region over the territory of Eastern Europe over the past 60 years on extreme air temperature and precipitation. Combinations of extreme temperature and humidity conditions (indices)—cold-dry (CD), cold-wet (CW), warm-dry (WD) and warm-wet (WW)—were used as compound extremes. Indices of compound extremes were calculated according to the E-OBS reanalysis data. Estimates of the relationship between two time series were carried out using standard correlation and composite analyses, as well as cross wavelet analysis. Phase relationships and time intervals for different climatic indices were different. The period of most fluctuations in the indices of compound extremes was from 4 to 12 years and was observed during 1970–2000. The coherent fluctuations in the time series of the WD and WW indices and the North Atlantic oscillation (NAO) index occurred rather in phase, those in the time series of the CD and WD indices and the Arctic oscillation (AO) index occurred in antiphase, and those in the time series of the WD and WW indices and the Scandinavia pattern (SCAND) index occurred in antiphase. Statistically significant increase in the number of warm compound extremes was found for the northern parts of the study region in the winter season with positive NAO and AO phases. Full article
Show Figures

Figure 1

10 pages, 3400 KiB  
Communication
Climate Network Analysis Detects Hot Spots under Anthropogenic Climate Change
by Haiming Kuai, Ping Yu, Wenqi Liu, Yongwen Zhang and Jingfang Fan
Atmosphere 2023, 14(4), 692; https://doi.org/10.3390/atmos14040692 - 7 Apr 2023
Cited by 3 | Viewed by 2987
Abstract
Anthropogenic climate change poses a significant threat to both natural and social systems worldwide. In this study, we aim to identify regions most impacted by climate change using the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP-NCAR) reanalysis [...] Read more.
Anthropogenic climate change poses a significant threat to both natural and social systems worldwide. In this study, we aim to identify regions most impacted by climate change using the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP-NCAR) reanalysis of near-surface daily air temperature data spanning 73 years (1948–2020). We develop a novel climate network framework to identify “hot spots”, regions that exhibit significant impact or impacted characteristics. Specifically, we use the node degree, a fundamental feature of the network, to measure the influence of each region and analyze its trend over time using the Mann–Kendall test. Our findings reveal that the majority of land areas experiencing increasing degrees are more closely connected to other regions, while the ocean shows the opposite trend due to weakened oceanic circulations. In particular, the degree in the central Pacific Ocean’s El Niño region is significantly reduced. Notably, we identify three “hot spots” in East Asia, South America, and North Africa, respectively, with intensive increasing network degree fields. Additionally, we find that the hot spot in East Asia is teleconnected to remote regions, such as the South Pacific, Siberia, and North America, with stronger teleconnections in recent years. This provides a new perspective for assessing the planetary impacts of anthropogenic global warming. By using a novel climate network framework, our study highlights regions that are most vulnerable to the effects of climate change and emphasizes the importance of understanding network structures to assess the global impacts of anthropogenic climate change. Full article
(This article belongs to the Special Issue New Approaches to Complex Climate Systems)
Show Figures

Figure 1

15 pages, 1640 KiB  
Article
Design and Temperature Modeling Simulation of the Full Closed Hot Air Circulation Tobacco Bulk Curing Barn
by Haipeng Liu, Shaomi Duan and Huilong Luo
Symmetry 2022, 14(7), 1300; https://doi.org/10.3390/sym14071300 - 23 Jun 2022
Cited by 9 | Viewed by 3094
Abstract
For now, the open humidification method is applied in the tobacco bulk curing barn, which has some disadvantages, such as the loss of the oil content and aroma components of the tobacco leaves and the waste heat loss of the exhaust air flow. [...] Read more.
For now, the open humidification method is applied in the tobacco bulk curing barn, which has some disadvantages, such as the loss of the oil content and aroma components of the tobacco leaves and the waste heat loss of the exhaust air flow. In this context, a tobacco bulk curing barn with totally closed hot air circulation is designed to perfect the curing quality of tobacco and avoid the loss of residual heat in the bulk curing barn. Meanwhile, due to the balance and symmetry of input and output of the curing barn temperature, according to the law of conservation of energy, a mathematical model of the temperature control system of the closed hot air circulation tobacco bulk curing barn is established, and the temperature transfer function of the system is obtained. On this basis, 10 algorithms are used to optimize the full closed hot air circulation tobacco bulk curing barn temperature control system PID parameters. The result of the sobol sequence seeker optimization algorithm (SSOA) is better than the other algorithms. So, the PID control strategy based on the SSOA is used to simulate and experiment the temperature control system of tobacco bulk curing barn. The simulation and experimental results show that for the tobacco bulk curing barn temperature control system, the sobol sequence seeker optimization algorithm PID control has better dynamic characteristics compared with fuzzy PID control, and the temperature control system of tobacco bulk curing barn has fast adjustment and small overshoot. Therefore, the new baking barn with proper PID parameters can improve the tobacco’s curing quality and save energy by reducing the residual heat. Full article
Show Figures

Figure 1

24 pages, 4734 KiB  
Article
Possible Roles of Permafrost Melting, Atmospheric Transport, and Solar Irradiance in the Development of Major Coronavirus and Influenza Pandemics
by Anne M. Hofmeister, James M. Seckler and Genevieve M. Criss
Int. J. Environ. Res. Public Health 2021, 18(6), 3055; https://doi.org/10.3390/ijerph18063055 - 16 Mar 2021
Cited by 10 | Viewed by 6012
Abstract
Major pandemics involving respiratory viruses develop semi-regularly and require a large flux of novel viruses, yet their origination is equivocal. This paper explores how natural processes could give rise to this puzzling combination of characteristics. Our model is based on available data regarding [...] Read more.
Major pandemics involving respiratory viruses develop semi-regularly and require a large flux of novel viruses, yet their origination is equivocal. This paper explores how natural processes could give rise to this puzzling combination of characteristics. Our model is based on available data regarding the emergence of historic influenzas, early COVID-19 cases and spreading, the microbiome of permafrost, long-distance airborne transport of viruses reaching stratospheric levels, ultraviolet immunosuppression, sunlight variations, weather patterns, Arctic thawing, and global warming. Atmospheric conveyance is supported by hemispheric distribution disparities, ties of COVID-19 cases to air pollution particulate concentrations, and contemporaneous animal infections. The following sequence is proposed: (1) virus emergence after hot Arctic summers, predominantly near solar irradiance maxima or involving wildfires, indicates release of large amounts of ancient viruses during extensive permafrost melting, which are then incorporated in autumn polar air circulation, where cold storage and little sunlight permit survival. (2) Pandemics onset in winter to spring at rather few locations: from climate data on Wuhan, emergence occurs where the North Polar Jet stream hovers while intersecting warmer, moist air, producing rain which deposits particulates with the viral harvest on a vulnerable human population. (3) Spring and summer increases in COVID-19 cases link to high solar irradiance, implicating ultraviolet immune suppression as one means of amplification. (4) Viruses multiplied by infected humans at close range being incorporated in atmospheric circulation explains rapid global spread, periodic case surges (waves), and multi-year durations. Pollution and wind geography affect uptake and re-distribution. Our model can be tested, e.g., against permafrost stored in laboratories as well as Artic air samples, and suggests mitigating actions. Full article
(This article belongs to the Collection Outbreak of a Novel Coronavirus: A Global Health Threat)
Show Figures

Figure 1

Back to TopTop