Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = alkali microcrystalline cellulose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7393 KiB  
Article
Fractionation of Aspen Wood to Produce Microcrystalline, Microfibrillated and Nanofibrillated Celluloses, Xylan and Ethanollignin
by Boris N. Kuznetsov, Anna I. Chudina, Aleksandr S. Kazachenko, Olga Yu. Fetisova, Valentina S. Borovkova, Sergei A. Vorobyev, Anton A. Karacharov, Elena V. Gnidan, Elena V. Mazurova, Andrey M. Skripnikov and Oxana P. Taran
Polymers 2023, 15(12), 2671; https://doi.org/10.3390/polym15122671 - 13 Jun 2023
Cited by 3 | Viewed by 2241
Abstract
A new method for extractive-catalytic fractionation of aspen wood to produce microcrystalline (MCC), microfibrillated (MFC), nanofibrilllated (NFC) celluloses, xylan, and ethanollignin is suggested in order to utilize all of the main components of wood biomass. Xylan is obtained with a yield of 10.2 [...] Read more.
A new method for extractive-catalytic fractionation of aspen wood to produce microcrystalline (MCC), microfibrillated (MFC), nanofibrilllated (NFC) celluloses, xylan, and ethanollignin is suggested in order to utilize all of the main components of wood biomass. Xylan is obtained with a yield of 10.2 wt.% via aqueous alkali extraction at room temperature. Ethanollignin was obtained with a yield of 11.2 wt.% via extraction with 60% ethanol from the xylan-free wood at 190 °C. The lignocellulose residue formed after the extraction of xylan and ethanollignin was subjected to catalytic peroxide delignification in the acetic acid-water medium at 100 °C in order to obtain microcrystalline cellulose. MCC is hydrolyzed with 56% sulfuric acid and treated with ultrasound to produce microfibrillated cellulose and nanofibrillated cellulose. The yields of MFC and NFC were 14.4 and 19.0 wt.%, respectively. The average hydrodynamic diameter of NFC particles was 36.6 nm, the crystallinity index was 0.86, and the average zeta-potential was 41.5 mV. The composition and structure of xylan, ethanollignin, cellulose product, MCC, MFC, and NFC obtained from aspen wood were characterized using elemental and chemical analysis, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, Gas chromatography (GC), Gel permeation-chromatography (GPC), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), Dynamic light scattering (DLS), Thermal gravimetric analysis (TGA). Full article
Show Figures

Graphical abstract

14 pages, 2921 KiB  
Article
Effect of Adsorption Deacidification on the Quality of Peony Seed Oil
by Zhi Wang, Xuan Ma, Chang Zheng, Weijun Wang and Changsheng Liu
Foods 2023, 12(2), 240; https://doi.org/10.3390/foods12020240 - 5 Jan 2023
Cited by 11 | Viewed by 1859
Abstract
To overcome the issues in the traditional deacidification processes of peony seed oil (PSO), such as losses of neutral oil and trace nutrients, waste discharge, and high energy consumption, adsorption deacidification was developed. The acid removal capacity of adsorbent-alkali microcrystalline cellulose was evaluated [...] Read more.
To overcome the issues in the traditional deacidification processes of peony seed oil (PSO), such as losses of neutral oil and trace nutrients, waste discharge, and high energy consumption, adsorption deacidification was developed. The acid removal capacity of adsorbent-alkali microcrystalline cellulose was evaluated using the isothermal adsorption equilibrium and the pseudo-first-order rate equation. The optimized adsorption deacidification conditions included adsorbent-alkali microcrystalline cellulose at 3%, a heating temperature of 50 °C, and a holding time of 60 min. The physicochemical, bioactive properties, antioxidant capacities, and oxidative stabilities of PSO processed by alkali refining and oil-hexane miscella deacidification were compared under the same operating conditions. Fatty acid content was not significantly different across all three methods. The deacidification rates were 88.29%, 98.11%, and 97.76%, respectively, for adsorption deacidification, alkali refining, and oil-hexane miscella deacidification. Among the three deacidification samples, adsorption deacidification showed the highest retention of tocopherols (92.66%), phytosterols (91.96%), and polyphenols (70.64%). Additionally, the obtained extract preserved about 67.32% of the total antioxidant activity. The oil stability index was increased 1.35 times by adsorption deacidification. Overall, adsorption deacidification can be considered a promising extraction technology in terms of quality as compared to alkali refining and oil-hexane miscella deacidification. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

11 pages, 2094 KiB  
Article
Extraction and Characterization of Microcrystalline Cellulose from Lagenaria siceraria Fruit Pedicles
by Muhammad Asif, Dildar Ahmed, Naveed Ahmad, Muhammad Tariq Qamar, Nabil K. Alruwaili and Syed Nasir Abbas Bukhari
Polymers 2022, 14(9), 1867; https://doi.org/10.3390/polym14091867 - 2 May 2022
Cited by 26 | Viewed by 5360
Abstract
Microcrystalline cellulose (MCC) is a versatile polymer commonly employed in food, chemical, and biomedical formulations. Lagenaria siceraria (bottle gourd) fruit is consumed in many parts of the world, and its pedicle is discarded as waste. In the quest for a novel renewable source [...] Read more.
Microcrystalline cellulose (MCC) is a versatile polymer commonly employed in food, chemical, and biomedical formulations. Lagenaria siceraria (bottle gourd) fruit is consumed in many parts of the world, and its pedicle is discarded as waste. In the quest for a novel renewable source of the MCC, the present study investigates the extraction and characterization of MCC from the pedicle of Lagenaria siceraria fruits. The MCC was extracted by sequentially treating pedicles with water, alkali, bleaching (sodium chlorite), and dilute sulfuric acid (acid hydrolysis). The removal of associated impurities from pedicle fibers was confirmed by Fourier transform infrared analyses. The extracted MCC exhibited a characteristic crystalline structure of cellulose in X-ray diffraction with a 64.53% crystallinity index. The scanning electron microscopy (SEM) showed the variation in the morphology of the fibers and the formation of MCC of approximately 100 µm. The thermogravimetric analysis (TGA) indicated higher thermal stability of MCC. MCC production from biowaste (pedicle) holds potential for application as an emulsifier, stabilizer, and thickener in the chemical, pharmaceutical, and food industries. Full article
Show Figures

Figure 1

13 pages, 3616 KiB  
Article
The Relationship between Crystal Structure and Mechanical Performance for Fabrication of Regenerated Cellulose Film through Coagulation Conditions
by Tessei Kawano, Satoshi Iikubo and Yoshito Andou
Polymers 2021, 13(24), 4450; https://doi.org/10.3390/polym13244450 - 18 Dec 2021
Cited by 15 | Viewed by 4451
Abstract
Cellulose films regenerated from aqueous alkali–urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) [...] Read more.
Cellulose films regenerated from aqueous alkali–urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) and microcrystalline cellulose (MCC) under several coagulation conditions. Cellulose dissolved in aqueous LiOH–urea solution was regenerated using various solvents at ambient temperature to investigate the effects of their dielectric constant on the properties of RC film. The crystal structure, mechanical properties, and surface morphology of prepared RC films were analyzed using X-ray diffraction (XRD), tensile tester, and atomic probe microscopy (AFM), respectively. It is revealed that the preferential orientation of (110) and (020) crystal planes, which are formed by inter- and intramolecular hydrogen bonding in cellulose crystal regions, changed depending on coagulant species. Furthermore, we found out that tensile strength, elongation at break, and crystal structure properties of RC films strongly correlate to the dielectric constant of solvents used for the coagulation process. This work, therefore, would be able to provide an indicator to control the mechanical performance of RC film depending on its application and to develop detailed researches on controlling the crystal structure of cellulose. Full article
(This article belongs to the Special Issue Mechanical Performance and Modelling of Polymeric Materials)
Show Figures

Graphical abstract

18 pages, 4754 KiB  
Article
Fractionation of Birch Wood by Integrating Alkaline-Acid Treatments and Hydrogenation in Ethanol over a Bifunctional Ruthenium Catalyst
by Boris N. Kuznetsov, Sergey V. Baryshnikov, Angelina V. Miroshnikova, Aleksandr S. Kazachenko, Yuriy N. Malyar, Andrey M. Skripnikov and Oxana P. Taran
Catalysts 2021, 11(11), 1362; https://doi.org/10.3390/catal11111362 - 12 Nov 2021
Cited by 10 | Viewed by 2263
Abstract
For the first time, the fractionation of birch wood into microcrystalline cellulose, xylose and methoxyphenols is suggested based on the integration of alkali-acid pretreatments and hydrogenation in ethanol over a bifunctional Ru/C catalyst. It is established that removal of hemicelluloses during pretreatments of [...] Read more.
For the first time, the fractionation of birch wood into microcrystalline cellulose, xylose and methoxyphenols is suggested based on the integration of alkali-acid pretreatments and hydrogenation in ethanol over a bifunctional Ru/C catalyst. It is established that removal of hemicelluloses during pretreatments of birch wood influences the yields of the liquid, gaseous and solid products of the non-catalytic and catalytic hydrogenation of pretreated samples in ethanol at 225 °C. The bifunctional Ru/carbon catalyst affects in different ways the conversion and yields of products of hydrogenation of the initial and acid- and alkali-pretreated birch wood. The most noticeable influence is characteristic of the hydrogenation of the acid-pretreated wood, where in contrast to the non-catalytic hydrogenation, the wood conversion and the yields of liquid products increase but the yields of the solid and gaseous products decrease. GC-MS, gel permeation chromatography and elemental analysis were used for characterization of the liquid product composition. The molecular mass distribution of the liquid products of hydrogenation of the initial and pretreated wood shifts towards the low-molecular range in the presence of the catalyst. From the GC-MS data, the contents of monomer compounds, predominantly 4-propylsyringol and 4-propanolsyringol, increase in the presence of the ruthenium catalyst. The solid products of catalytic hydrogenation of the pretreated wood contain up to 95 wt% of cellulose with the structure, similar to that of microcrystalline cellulose. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

18 pages, 3295 KiB  
Article
Cellulose-Based Hydrogels and Aerogels Embedded with Silver Nanoparticles: Preparation and Characterization
by Alexander Vasil’kov, Margarita Rubina, Alexander Naumkin, Mikhail Buzin, Pavel Dorovatovskii, Georgy Peters and Yan Zubavichus
Gels 2021, 7(3), 82; https://doi.org/10.3390/gels7030082 - 2 Jul 2021
Cited by 26 | Viewed by 4963
Abstract
The paper presents the preparation and characterization of novel composite materials based on microcrystalline cellulose (MCC) with silver nanoparticles (Ag NPs) in powder and gel forms. We use a promising synthetic conception to form the novel composite biomaterials. At first MCC was modified [...] Read more.
The paper presents the preparation and characterization of novel composite materials based on microcrystalline cellulose (MCC) with silver nanoparticles (Ag NPs) in powder and gel forms. We use a promising synthetic conception to form the novel composite biomaterials. At first MCC was modified with colloidal solution of Ag NPs in isopropyl alcohol prepared via metal vapor synthesis. Then Ag-containing MCC powder was used as precursor for further preparation of the gels. The hydrogels were prepared by dissolving pristine MCC and MCC-based composite at low temperatures in aqueous alkali solution and gelation at elevated temperature. To prepare aerogels the drying in supercritical carbon dioxide was implemented. The as-prepared cellulose composites were characterized in terms of morphology, structure, and phase composition. Since many functional properties, including biological activity, in metal-composites are determined by the nature of the metal-to-polymer matrix interaction, the electronic state of the metal was carefully studied. The studied cellulose-based materials containing biologically active Ag NPs may be of interest for use as wound healing or water-purification materials. Full article
(This article belongs to the Special Issue Gels Horizons: From Science to Smart Materials)
Show Figures

Graphical abstract

11 pages, 4571 KiB  
Article
Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber
by H. Fouad, Lau Kia Kian, Mohammad Jawaid, Majed D. Alotaibi, Othman Y. Alothman and Mohamed Hashem
Polymers 2020, 12(12), 2926; https://doi.org/10.3390/polym12122926 - 7 Dec 2020
Cited by 37 | Viewed by 4743
Abstract
Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated [...] Read more.
Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future. Full article
(This article belongs to the Special Issue Bio-Based Materials: Contribution to Advancing Circular Economy)
Show Figures

Figure 1

19 pages, 3795 KiB  
Article
Enhanced Thermostability and Enzymatic Activity of cel6A Variants from Thermobifida fusca by Empirical Domain Engineering
by Imran Ali, Hafiz Muzzammel Rehman, Muhammad Usman Mirza, Muhammad Waheed Akhtar, Rehana Asghar, Muhammad Tariq, Rashid Ahmed, Fatima Tanveer, Hina Khalid, Huda Ahmed Alghamdi and Matheus Froeyen
Biology 2020, 9(8), 214; https://doi.org/10.3390/biology9080214 - 7 Aug 2020
Cited by 11 | Viewed by 3999
Abstract
Cellulases are a set of lignocellulolytic enzymes, capable of producing eco-friendly low-cost renewable bioethanol. However, low stability and hydrolytic activity limit their wide-scale applicability at the industrial scale. In this work, we report the domain engineering of endoglucanase (cel6A) of Thermobifida fusca to [...] Read more.
Cellulases are a set of lignocellulolytic enzymes, capable of producing eco-friendly low-cost renewable bioethanol. However, low stability and hydrolytic activity limit their wide-scale applicability at the industrial scale. In this work, we report the domain engineering of endoglucanase (cel6A) of Thermobifida fusca to improve their catalytic activity and thermal stability. Later, enzymatic activity and thermostability of the most efficient variant named as cel6A.CBC was analyzed by molecular dynamics simulations. This variant demonstrated profound activity against soluble and insoluble cellulosic substrates like filter paper, alkali-treated bagasse, regenerated amorphous cellulose (RAC), and bacterial microcrystalline cellulose. The variant cel6A.CBC showed the highest catalysis of carboxymethyl cellulose (CMC) and other related insoluble substrates at a pH of 6.0 and a temperature of 60 °C. Furthermore, a sound rationale was observed between experimental findings and molecular modeling of cel6A.CBC which revealed thermostability of cel6A.CBC at 26.85, 60.85, and 74.85 °C as well as structural flexibility at 126.85 °C. Therefore, a thermostable derivative of cel6A engineered in the present work has enhanced biological performance and can be a useful construct for the mass production of bioethanol from plant biomass. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Figure 1

15 pages, 3424 KiB  
Article
Revisiting the Dissolution of Cellulose in NaOH as “Seen” by X-rays
by Birte Martin-Bertelsen, Erika Andersson, Tobias Köhnke, Artur Hedlund, Lars Stigsson and Ulf Olsson
Polymers 2020, 12(2), 342; https://doi.org/10.3390/polym12020342 - 5 Feb 2020
Cited by 20 | Viewed by 4861
Abstract
Cotton production is reaching a global limit, leading to a growing demand for bio-based textile fibers produced by other means. Textile fibers based on regenerated cellulose from wood holds great potential, but in order to produce fibers, the components need to be dissolved [...] Read more.
Cotton production is reaching a global limit, leading to a growing demand for bio-based textile fibers produced by other means. Textile fibers based on regenerated cellulose from wood holds great potential, but in order to produce fibers, the components need to be dissolved in suitable solvents. Furthermore, the dissolution process of cellulose is not yet fully understood. In this study, we investigated the dissolution state of microcrystalline cellulose in aqueous NaOH by using primarily scattering methods. Contrary to previous findings, this study indicated that cellulose concentrations of up to 2 wt % are completely molecularly dissolved in 8 wt % NaOH. Scattering data furthermore revealed the presence of semi-flexible cylinders with stiff segments. In order to improve the dissolution capability of NaOH, the effects of different additives have been of interest. In this study, scattering data indicated that the addition of ZnO decreased the formation of aggregates, while the addition of PEG did not improve the dissolution properties significantly, although preliminary NMR data did suggest a weak attraction between PEG and cellulose. Overall, this study sheds further light on the dissolution of cellulose in NaOH and highlights the use of scattering methods to assess solvent quality. Full article
(This article belongs to the Special Issue Cellulose and Renewable Materials)
Show Figures

Figure 1

Back to TopTop