Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = alginite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10777 KiB  
Article
Afforestation of Abandoned Agricultural Land: Growth of Non-Native Tree Species and Soil Response in the Czech Republic
by Abubakar Yahaya Tama, Anna Manourova, Ragheb Kamal Mohammad and Vilém Podrázský
Forests 2025, 16(7), 1113; https://doi.org/10.3390/f16071113 - 5 Jul 2025
Viewed by 765
Abstract
Non-Native Tree Species (NNTs) play crucial roles in global and European forests. However, in the Czech Republic, NNTs represent a tiny fraction of the forested areas due to limited research on their potential use. The country is actively afforesting abandoned agricultural lands; NNTs [...] Read more.
Non-Native Tree Species (NNTs) play crucial roles in global and European forests. However, in the Czech Republic, NNTs represent a tiny fraction of the forested areas due to limited research on their potential use. The country is actively afforesting abandoned agricultural lands; NNTs which are already tested and certified could enhance the country’s forestry system. This study aimed to evaluate the initial growth of Castanea sativa, Platanus acerifolia, and Corylus colurna under three soil treatments on abandoned agricultural soil, evaluate the survival and mortality of the tree species, and further compare the soil dynamics among the three ecosystems to describe the initial state and short-term changes in the soil environment. The research plot was set in the Doubek area, 20 km East of Prague. Moreover, soil-improving materials, Humac (1.0 t·ha−1) and Alginite (1.5 t·ha−1), were established on the side of the control plot at the afforested part. The heights of plantations of tree species were measured from 2020 to 2024. Furthermore, 47 soil samples were collected at varying depths from three ecosystems (afforested soil, arable land, and old forest) in 2022. A single-factor ANOVA was run, followed by a post hoc test. The result shows that the Control-C plot (Castanea Sativa + Platanus acerifolia + Corylus colurna + agricultural soil without amendment) had the highest total growth (mean annual increment in the year 2024) for Castanea sativa (KS = 40.90 ± a21.61) and Corylus colurna (LS = 55.62 ± 59.68); Alginite-A (Castanea Sativa + Platanus acerifolia + Corylus colurna + Alginite) did best for Platanus acerifolia (PT = 39.85 ± 31.52); and Humac-B (Castanea Sativa + Platanus acerifolia + Corylus colurna + Humac) had the lowest growth. Soil dynamics among the three ecosystems showed that the old forest (plot two) significantly differs from arable soil (plot one), Humac and Platanus on afforested land (plot three), Platanus and Alginite on afforested land (plot four), and Platanus without amendment (plot five) in horizon three (the subsoil or horizon B) and in horizon four (the parent material horizon or horizon C). Results document the minor response of plantations to soil-improving matters at relatively rich sites, good growth of plantations, and initial changes in the soil characteristics in the control C plot. We recommend both sparing old forests and the afforestation of abandoned agricultural soils using a control treatment for improved tree growth and sustained soil quality. Further studies on the species’ invasiveness are needed to understand them better. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

29 pages, 10563 KiB  
Article
Microscopic Characteristics and Formation of Various Types of Organic Matter in High-Overmature Marine Shale via SEM
by Meng Zhao, Hongyan Wang, Zhensheng Shi, Qun Zhao, Tianqi Zhou and Ling Qi
Appl. Sci. 2025, 15(3), 1310; https://doi.org/10.3390/app15031310 - 27 Jan 2025
Cited by 1 | Viewed by 867
Abstract
Organic matter exhibits significant heterogeneity and complexity, with varying pore structures across different types influenced by multiple interacting factors. This paper introduces a “two categories, six subcategories” classification scheme based on morphological observations using a combination of argon ion polishing and scanning electron [...] Read more.
Organic matter exhibits significant heterogeneity and complexity, with varying pore structures across different types influenced by multiple interacting factors. This paper introduces a “two categories, six subcategories” classification scheme based on morphological observations using a combination of argon ion polishing and scanning electron microscopy (SEM). Organic matter is classified into two main categories: depositional organic matter and migrated organic matter, based on whether migration has occurred. Depositional organic matter is further subdivided into three types based on microscopic characteristics: bioclasts, compacted kerogen, and in situ remnants from post-hydrocarbon generation. Migrated organic matter is categorized into three types: organic matter in intragranular pores, organic matter in intergranular pores, and bitumen in microfractures. Bioclasts can be further classified into alginite, zooclasts, acritarchs, and encapsulated organic matter based on maceral type. Zooclasts, acritarchs, encapsulated organic matter, and compacted kerogen—types of depositional organic matter—have few or no pores. This is primarily related to the nature of the hydrocarbon-generating precursor materials, with compacted kerogen being influenced by low thermal maturity and diagenetic compaction. In contrast, pores are more developed in alginite, in situ remnants from post-hydrocarbon generation, and all forms of migrated organic matter, largely due to the expulsion of gaseous hydrocarbons during thermal evolution. The pores in alginite reflect both the original structural properties of the hydrocarbon-generating precursor materials and the thermal evolution process. Depositional organic matter exhibits a stronger oil-generating potential and a higher gas-generating potential, while migrated organic matter primarily possesses a stronger gas-generating capability. Specifically, organic matter enriched in alginite, in situ remnants from post-hydrocarbon generation, as well as migrated organic matter in intragranular pore and intergranular pore, exhibit a higher hydrocarbon-generation potential. Full article
Show Figures

Figure 1

34 pages, 22660 KiB  
Article
Source Rock Evaluation and Hydrocarbon Expulsion Characteristics of Effective Source Rocks in the Fushan Depression, Beibuwan Basin, China
by Xirong Wang, Fujie Jiang, Xiaowei Zheng, Di Chen, Zhenguo Qi, Yilin Liu, Jing Guo and Yuqi Zhang
Minerals 2024, 14(10), 975; https://doi.org/10.3390/min14100975 - 27 Sep 2024
Viewed by 945
Abstract
This study presents an integrated approach using organic geochemistry and incident-light organic petrographic microscopy techniques to characterize the kerogen type, hydrocarbon potential, thermal maturity, and effective depositional environment of the Eocene Liushagang Formation intervals in the western Huangtong Sag, eastern Bailian Sag, central [...] Read more.
This study presents an integrated approach using organic geochemistry and incident-light organic petrographic microscopy techniques to characterize the kerogen type, hydrocarbon potential, thermal maturity, and effective depositional environment of the Eocene Liushagang Formation intervals in the western Huangtong Sag, eastern Bailian Sag, central Huachang Sub-uplift, and Southern Slope Zone area in the Fushan Depression, Beibuwan Basin. The results show that the hydrocarbon potential of these organic-rich lacustrine shale areas is mainly dependent on the depositional environment and the present-day burial depth of sediments. Oscillations and transitions between (i) rocks with dominant allochthonous organic matter (including primary/reworked vitrinite and inertinite macerals and terrestrial debris particles) representing a large influence of continental sediments (e.g., source supply direction) and (ii) rocks with dominant autochthonous organic matter (e.g., alginite) indicate a distal and stable lacustrine basin depositional environment. The source rock thickness ranges from 40.1 to 387.4 m. The average TOC of the Liushagang Formation in the Fushan Sag is between 0.98% and 2.00%, with the highest organic matter abundance being in the first and second sections of the Liushagang Formation, presenting as high-quality source rocks. The organic matter is predominantly Type II1 and Type II2. The highest vitrinite reflectance (1.14%) is in the Huangtong and Bailian Sags. The source rocks of the second section of the Liushagang Formation are primary hydrocarbon generators, contributing 55.11% of the total generation. Hydrocarbon sequestration peaks at %Ro 0.80%, with a maximum efficiency of 97.7%. The cumulative hydrocarbon generation of the Liushagang Formation is 134.10 × 108 tons, with 50.52 × 108 tons having been expelled and 83.58 × 108 tons remaining. E2L2X and E2L2S have maximum hydrocarbon displacement intensities of 184.22 × 104 t/km² and 45.39 × 104 t/km², respectively, with cumulative displacements of 52.99 × 108 tons and 15.58 × 108 tons. The oil and gas accumulation system is highly prospective, showing significant exploration potential. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

17 pages, 2533 KiB  
Article
Evaluating the Efficacy of Selected Plant Growth-Promoting Microorganisms in Optimizing Plant Growth and Soil Health in Diverse Soil Types
by Sándor Attila Pabar, Zsolt Kotroczó, Tünde Takács and Borbála Biró
Agriculture 2024, 14(9), 1586; https://doi.org/10.3390/agriculture14091586 - 12 Sep 2024
Cited by 2 | Viewed by 2557
Abstract
This study explores the efficacy of bio-efficient solutions, specifically plant growth-promoting microorganisms (PGPMs), in sustainable soil management. This research was conducted in 2020. It evaluates the impact of various single microbial inoculants, including Enterobacter ludwigii, Bacillus subtilis, Pseudomonas fluorescens, Kosakonia [...] Read more.
This study explores the efficacy of bio-efficient solutions, specifically plant growth-promoting microorganisms (PGPMs), in sustainable soil management. This research was conducted in 2020. It evaluates the impact of various single microbial inoculants, including Enterobacter ludwigii, Bacillus subtilis, Pseudomonas fluorescens, Kosakonia cowanii, and Trichoderma harzianum, on plant growth soil enzyme activity and organism abundance. Perennial ryegrass and mustard were used as test plants, in controlled environmental conditions. The results show generally positive effects of microbial inoculants on plant biomass (E. ludwigii increased ryegrass biomass by 9.75%, and P. fluorescens increased mustard biomass by up to 38.81% compared to the control) and on soil microbial activities. Our study further investigated the combined application of all these strains in five different soil types and textures. The results highlight the significance of soil physicochemical properties in determining inoculant efficacy; we found that clayey soils with higher colloid content support more robust microbial activity. Additionally, using natural clay minerals like alginite for enhancing soil conditions showed promising interactions with microbial inoculants, although application requires further optimization. These findings suggest that integrating microbial inoculants in sustainable agricultural practices could enhance plant growth, improve soil health, and reduce the need of chemical fertilizers. Future research should aim to refine the combinations and application methods of these bio-efficient solutions for broader agricultural applicability. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

21 pages, 4720 KiB  
Article
Biochar, Halloysite, and Alginite Improve the Quality of Soil Contaminated with Petroleum Products
by Jadwiga Wyszkowska, Agata Borowik, Magdalena Zaborowska and Jan Kucharski
Agriculture 2023, 13(9), 1669; https://doi.org/10.3390/agriculture13091669 - 24 Aug 2023
Cited by 4 | Viewed by 1695
Abstract
Investigations into the effective, fast, and economically viable remediation of soils polluted with petroleum-derived products are still relevant. The vegetative pot experiment was conducted at the Didactic-Experimental Garden greenhouse (NE, Poland, 53.759° N, 20.452° E) on loamy sand (LS) and sandy loam (SL) [...] Read more.
Investigations into the effective, fast, and economically viable remediation of soils polluted with petroleum-derived products are still relevant. The vegetative pot experiment was conducted at the Didactic-Experimental Garden greenhouse (NE, Poland, 53.759° N, 20.452° E) on loamy sand (LS) and sandy loam (SL) soils. Its main research objective was to assess the effectiveness of biochar (B), halloysite (H) and alginite (A) in the biological regeneration of contaminated soil diesel oil (DO) and petrol (P). The assessment was conducted by determining the magnitude of the adverse impact of these xenobiotics on the growth and development of Zea mays, as well as the activity of seven soil enzymes. The impact of the tested contaminants and sorbents was assessed based on the impact factors (IF) of DO and P, as well as B, H, and A on Zea mays biomass and enzymatic activity of the soil. Soil contamination with petroleum-derived products disrupted the growth and development of Zea mays. DO had a stronger inhibitory effect on plant growth compared to P. Zea mays cultivated in LS, which was less resistant to the effects of these contaminants compared to that cultivated in SL. The impact of DO and P on enzyme activity depended on the soil texture. DO stimulated enzyme activity in LS and SL, while P only did so in LS. All remediation substances, and biochar in particular, led to an increase in plant biomass in the DO-contaminated soils. Both biochar, halloysite and alginite also improved the biochemical quality index (BA) of SL and LS. Despite the unquestionable remediation potential of the analyzed sorbents, their highest efficacy can only be achieved by their application on soils with physicochemical properties corresponding to their characteristics, which is a valuable guideline for further research. Full article
(This article belongs to the Special Issue Agricultural Environmental Pollution, Risk Assessment, and Control)
Show Figures

Figure 1

15 pages, 6094 KiB  
Article
Maceral Control on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China
by Bei Liu, Juan Teng and Maria Mastalerz
Energies 2023, 16(2), 636; https://doi.org/10.3390/en16020636 - 5 Jan 2023
Cited by 10 | Viewed by 2238
Abstract
Organic matter (OM) type critically controls the hydrocarbon generation potential and organic pore development in black shales. However, maceral variation in lacustrine shales and its control on hydrocarbon generation potential and organic pore development are not yet well understood. In this study, 15 [...] Read more.
Organic matter (OM) type critically controls the hydrocarbon generation potential and organic pore development in black shales. However, maceral variation in lacustrine shales and its control on hydrocarbon generation potential and organic pore development are not yet well understood. In this study, 15 Chang 7 Member shale samples of the Yanchang Formation, Ordos Basin, were investigated with organic petrography, Rock-Eval pyrolysis, and a scanning electron microscope to study the maceral composition, hydrocarbon generation potential, and organic pores in this black shale succession. The results show that the studied shales are in the oil window (Ro~0.70%). OM belongs to Type I and Type III kerogen, as demonstrated by Rock-Eval pyrolysis. Macerals in the Chang 7 Member shales are composed of amorphous OM, alginite, sporinite, liptodetrinite, vitrinite, inertinite, and solid bitumen. Amorphous OM and alginite are major hydrocarbon-generating macerals, and their content determines the hydrocarbon potential of shales. Secondary organic pores were not observed in the studied Chang 7 Member shales due to either a low thermal maturity or a dominance of terrigenous OM. Maceral variation can affect the reliability of using Rock-Eval Tmax as a thermal maturity indicator. This study provides important insights into maceral control on hydrocarbon generation and organic pore development in black shales, calling for a critical evaluation of OM in black shale successions with organic petrography. Full article
(This article belongs to the Special Issue Sedimentary Organic Matter in Shale Oil/Gas Systems)
Show Figures

Figure 1

11 pages, 2289 KiB  
Article
Investigation and Characterisation of New Eco-Friendly Cosmetic Ingredients Based on Probiotic Bacteria Ferment Filtrates in Combination with Alginite Mineral
by Pál Tóth and Áron Németh
Processes 2022, 10(12), 2672; https://doi.org/10.3390/pr10122672 - 12 Dec 2022
Cited by 6 | Viewed by 3706
Abstract
In light of the fact that three of the five healthiest meals on earth are fermented, fermentation came into focus of both customers, product developers, and researchers all around the world. Even in the cosmetics industry, fermented cosmetics have been increasingly introduced, creating [...] Read more.
In light of the fact that three of the five healthiest meals on earth are fermented, fermentation came into focus of both customers, product developers, and researchers all around the world. Even in the cosmetics industry, fermented cosmetics have been increasingly introduced, creating a market emphasising the positive image that healthy fermented substances are environment-friendly and that it also aids skin health. Moreover, discovering usages for various naturally occurring organo-mineral rocks is a growing area of research. Thus, this study’s aim was to combine the benefits of alginite and Lactobacilli (LAB) for cosmetic applications and investigate their combined effect on the skin considering the fermentation parameters as well, such as biomass and lactic acid concentration. The examined LAB strains were Lactobacillus rhamnosus, Lactobacillus acidophilus, Limosilactobacillus reuteri, and Lactococcus lactis, and a non-LAB probiotic strain Bifidobacterium adolescentis was also studied for the same purposes. The cell-free broth, also called as “filtrates”, of the fermentations—both those that included alginite and those that did not—were tested for skin moisturising with a corneometer and for antioxidant activity with DPPH scavenging, as well as for skin-whitening properties with the inhibition of mushroom tyrosinase. The findings suggest that the combination of alginite and Limosilactobacillus reuteri is a potential novel cosmeceutical component with skin tanning capabilities. This result may help create more readily available, environmentally friendly, natural, and sustainable cosmetic ingredients. Full article
Show Figures

Figure 1

12 pages, 3827 KiB  
Article
Quantitative Study of the Maceral Groups of Laminae Based on Support Vector Machine
by Yuanzhe Wu, Yunpeng Fan, Yan Liu, Kewen Li, Tingxiang Zeng, Yong Ma, Yongjing Tian, Yaohui Xu, Zhigang Wen, Xiaomin Xie and Juan Teng
Appl. Sci. 2022, 12(18), 9046; https://doi.org/10.3390/app12189046 - 8 Sep 2022
Cited by 1 | Viewed by 1989
Abstract
Identifying organic matter in laminae is fundamental to petroleum geology; however, many factors restrict manual quantification. Therefore, computer recognition is an appropriate method for accurately identifying microscopic components. In this study, we used support vector machine (SVM) to classify the preprocessed photomicrographs into [...] Read more.
Identifying organic matter in laminae is fundamental to petroleum geology; however, many factors restrict manual quantification. Therefore, computer recognition is an appropriate method for accurately identifying microscopic components. In this study, we used support vector machine (SVM) to classify the preprocessed photomicrographs into seven categories: pyrite, amorphous organic matter, mineral matter, alginite, sporinite, vitrinite, and inertinite. Then, we performed a statistical analysis of the classification results and highlighted spatial aggregation of some categories using the kernel density estimation method. The results showed that the SVM can satisfactorily identify the macerals and minerals of the laminae, and its overall accuracy, kappa, precision, recall, and F1 are 82.86%, 0.80, 85.15%, 82.86%, and 82.75%, respectively. Statistical analyses revealed that pyrite was abundantly distributed in bright laminae; vitrinite and sporinite were abundantly distributed in dark laminae; and alginite and inertinite were equally distributed. Finally, the kernel density maps showed that all classification results, except inertinite, were characterized by aggregated distributions: pyrite with the distribution of multi-core centers, alginite, and sporinite with dotted distribution, and vitrinite with stripe distribution, respectively. This study may provide a new method to quantify the organic matter in laminae. Full article
(This article belongs to the Special Issue Applications of Machine Learning on Earth Sciences)
Show Figures

Figure 1

24 pages, 6173 KiB  
Article
Organic Petrographic and Geochemical Evaluation of the Black Shale of the Duwi Formation, El Sebaiya, Nile Valley, Egypt
by Esmat Abou El-Anwar, Salman Salman, Doaa Mousa, Sami Aita, Walid Makled and Thomas Gentzis
Minerals 2021, 11(12), 1416; https://doi.org/10.3390/min11121416 - 14 Dec 2021
Cited by 12 | Viewed by 4448
Abstract
This study evaluates the palynologic, organic, inorganic, and petrographic properties of organic-rich black shale (Mahamid Mine) in the El Sebaiya area, Nile Valley, Egypt. Black shale is composed of quartz (50%), calcite (10%), kaolinite (25%) and montmorillonite (15%). Organic and inorganic analyses revealed [...] Read more.
This study evaluates the palynologic, organic, inorganic, and petrographic properties of organic-rich black shale (Mahamid Mine) in the El Sebaiya area, Nile Valley, Egypt. Black shale is composed of quartz (50%), calcite (10%), kaolinite (25%) and montmorillonite (15%). Organic and inorganic analyses revealed that this shale was deposited under oxic to anoxic marine conditions during strong chemical weathering. Black shale has poor to very good organic richness, and poor to fair hydrocarbon potential. Organic petrography indicates that the kerogen is mixed types II/III and III and is immature to marginally mature (%VRo is 0.44 and 0.53). Liptinite macerals consist of alginite, cutinite, and bituminite. The hydrocarbon products to be generated at higher maturity are expected to be oil and gas. Full article
Show Figures

Figure 1

21 pages, 5337 KiB  
Article
Alginite-Rich Layers in the Bazhenov Deposits of Western Siberia
by Timur Bulatov, Elena Kozlova, Evgeniya Leushina, Ivan Panchenko, Natalia Pronina, Andrey Voropaev, Nikita Morozov and Mikhail Spasennykh
Geosciences 2021, 11(6), 252; https://doi.org/10.3390/geosciences11060252 - 11 Jun 2021
Cited by 10 | Viewed by 3530
Abstract
In this study, we identified the luminescent layers containing a significant amount of alginite in the Upper Jurassic–Lower Cretaceous Bazhenov Formation named “the alginite-rich layers”. Lithological and geochemical methods were used to determine distinctive features of these layers and to evaluate their impact [...] Read more.
In this study, we identified the luminescent layers containing a significant amount of alginite in the Upper Jurassic–Lower Cretaceous Bazhenov Formation named “the alginite-rich layers”. Lithological and geochemical methods were used to determine distinctive features of these layers and to evaluate their impact on the total petroleum generation potential of the Bazhenov Formation. We have shown that the composition of the alginite-rich layers differs significantly from the organic-rich siliceous Bazhenov rocks. Rock-Eval pyrolysis, bulk kinetics of thermal decomposition, elemental analysis, and the composition of pyrolysis products indicate type I kerogen to be the predominant component of the organic matter (OM). Isotope composition of carbon, nitrogen, and sulfur was used to provide insights into their origin and formation pathways. The luminescent alginite-rich layers proved to be good regional stratigraphic markers of the Bazhenov Formation due to widespread distribution over the central part of Western Siberia. They can also be applied for maturity evaluation of the deposits from immature to middle of the oil window, since the luminescence of the layers changes the color and intensity during maturation. Full article
(This article belongs to the Special Issue Petrophysics and Geochemistry of Unconventional Reservoirs)
Show Figures

Figure 1

Back to TopTop