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Abstract: In this study, we identified the luminescent layers containing a significant amount of alginite
in the Upper Jurassic–Lower Cretaceous Bazhenov Formation named “the alginite-rich layers”.
Lithological and geochemical methods were used to determine distinctive features of these layers and
to evaluate their impact on the total petroleum generation potential of the Bazhenov Formation. We
have shown that the composition of the alginite-rich layers differs significantly from the organic-rich
siliceous Bazhenov rocks. Rock-Eval pyrolysis, bulk kinetics of thermal decomposition, elemental
analysis, and the composition of pyrolysis products indicate type I kerogen to be the predominant
component of the organic matter (OM). Isotope composition of carbon, nitrogen, and sulfur was used
to provide insights into their origin and formation pathways. The luminescent alginite-rich layers
proved to be good regional stratigraphic markers of the Bazhenov Formation due to widespread
distribution over the central part of Western Siberia. They can also be applied for maturity evaluation
of the deposits from immature to middle of the oil window, since the luminescence of the layers
changes the color and intensity during maturation.

Keywords: the Bazhenov Formation; alginite-rich layers; macerals; type I kerogen; algal organic
matter; marker horizon; Rock-Eval pyrolysis; kinetics; isotope composition

1. Introduction

Hydrocarbon production motivates the studies of unconventional reservoirs all over
the world. The Bazhenov Formation discovered more than 50 years ago is considered to
be one of the primary unconventional self-sourced reservoir in the world. Deposits of the
Bazhenov Formation are extended over an area of about 1 million km2 and are buried at
depths from 2.0 to 3.5 km. In spite of a long research period and high number of studies,
many questions still need to be addressed relating to effective technology of hydrocarbon
exploration and production.

The Upper Jurassic–Lower Cretaceous Bazhenov Formation deposits have been
formed in marine environments. A major part of solid organic matter in the Bazhenov
Formation is represented by type II kerogen, which is characterized by a common marine
genesis. The total organic carbon (TOC) concentrations vary considerably from less than
1 up to 30 wt.% for different lithological units within a cross-section. The TOC variations
are usually accompanied by considerable variations of the hydrogen index (HI), chemical
and isotope composition, and level of organic matter thermal maturation [1–4]. These
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variations reflect the changes in sedimentation conditions, including the rate of sedimen-
tation, diversity of marine biota and bioproductivity, redox conditions, and others [5–7].
In the case of the Bazhenov Formation, the effect of these factors on the hydrocarbon
formation process and hydrocarbon productivity is not yet fully understood and requires
additional studies, based on detailed analysis of OM composition, properties, and sources
for different areas.

In this study, we focus on the layers containing luminescent organic matter character-
ized by high TOC values and extremely high HI values, distinguishing them from the other
Bazhenov Formation rocks. We discovered these intervals in more than 20 wells located in
the central parts of the Western Siberian petroleum basin [8] and performed their detailed
lithological and geochemical analyses. The layers show bright yellow to orange lumines-
cence under ultraviolet (UV) light, most probably due to their OM algal genesis. Their
properties differ from other luminescent layers in the Bazhenov cross-sections, including
oil saturated intervals and luminescent tuffs described in [9–11], which do not contain a
high amount of organic carbon. Through a comprehensive analysis, we have proven the
presence of type I kerogen in these layers, which is unique for the Bazhenov Formation.
Therefore, an extensive study of these specific layers is important for understanding the
sedimentation process in the Bazhenov paleobasin. The presence of luminescent layers in
visually homogeneous Bazhenov cross-sections could become a tool for correlation of wells
at least in the central part of Western Siberia where such layers have been found.

The identified alginite-rich layers were analyzed in terms of their lithological and
geochemical characteristics, including their occurrence in the Bazhenov sequence, genesis,
and potential application for well correlation and hydrocarbon exploration and production.
This study considers the existing data on these types of layers found in the Bazhenov Forma-
tion and provides novel results based on a lithological investigation, Rock-Eval pyrolysis,
CHNS analysis, stable isotope composition analysis, and other geochemical methods.

2. Geological Setting

The Bazhenov Formation and its facial and stratigraphical analogues Tutleimskaya
(lower part), Maryanovskaya, Yanovstanskaya, and Golchikhinskaya Formations make up
the single Bazhenov horizon that corresponds to the largest Mesozoic global black shale
event. Figure 1 shows the Bazhenov Formation and indicates the locations of wells where
the alginite-rich layers have been found.
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The sedimentation period covers the late Tithonian-early Valanginian time inter-
val [13,14]. The Bazhenov epicontinental paleosea had extremely low deposition rates.
High levels of bio-productivity and anoxic depositional environments were favorable for
OM accumulation and preservation [15–17]. Numerous studies have integrated the paleon-
tological findings and other proxies of the paleoenvironment conditions that controlled
its deposition at different stages of geological history [18–21]. In general, the Bazhenov
Formation rock properties, organic matter, and their transformation into petroleum have
been the focus of numerous studies since the 1960s [22–29].

The stratigraphic units of the Bazhenov Formation are not unified, and different
studies have subdivided them according to different criteria. Nonetheless, most studies
accept the division of the Bazhenov Formation into an upper part and a lower part due
to lithological characteristics and concentration of OM, which is higher in the Upper
Bazhenov. In this study, we adopt the stratigraphic units reported in [30]. According to
Panchenko et al., the Bazhenov Formation is divided into two parts, each consisting of
three distinct units. Thus, the Bazhenov section is comprised of six units, possessing certain
paleontological, lithological, and geochemical characteristics, which have been identified
based on well logging data (Figure 2). Such an integrated approach allows one to establish
units that reflect event-driven changes in the sedimentation conditions during the late
Tithonian-early Valanginian period.
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Figure 2. Example of the Bazhenov Formation cross-section. Core photographs under white and
UV light. Lithology: 1, siliceous claystone; 2, siliceous rocks with low clay content; 3, organic-rich
calcareous rocks; 4, claystone; 5, organic-rich claystone; 6, radiolarite; 7, organic-rich siliceous rocks;
8, alternation of siltstones, claystone, and sandstones. Well-logs: LL, laterolog; IL, induction log; GR,
gamma-ray log; NL, neutron log.

The Bazhenov section is mainly composed of organic-rich siliceous rocks with varying
admixtures of clay and carbonate minerals. Different quantities of siliceous rocks, which
are composed of radiolarites and carbonate rocks (limestones and dolomites), can be found
in every cross-section of the Bazhenov Formation. The rock-forming minerals are quartz,
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clay (mixed-layer, kaolinite, and chlorite), and carbonate (calcite and dolomite) minerals.
Sulfides are disseminated within the deposits predominantly in a form of pyrite. Pyrite can
reach high concentrations up to 15 wt.%. Apatite and glauconite are also observed within
thin lenses and layers.

Similar to other black shales deposited in marine environments, the Bazhenov Forma-
tion rocks contain a higher concentration of transitional metals as compared with ordinary
shales, for example, Ni, Co, Cd, Mo, Ba, V, Cu, Zn, U, and others. The Bazhenov Formation
is of particular interest due to its high uranium content [15,17,31], which is detected as an
anomaly in gamma-ray logs [32].

The Bazhenov Formation organic matter, its generalized structure, and composition
have been analyzed in a range of previous studies [33–37]. Total organic carbon con-
centration varies from 1 to 25–30 wt.% (mean 8–9 wt.%) and the initial hydrogen index
(HI0) values range between 650 and 715 mg HC/g TOC [38–40]. The organic matter is
type II kerogen with maturity varying along the region from immature (protocatagenesis
stage PC3) in the Nyurolskaya Depression to the end of the oil window (mesocatagenesis
stage MC3) in the Salym Arch [39,41,42]. Catagenesis stages are named according to [43],
tectonic zoning is suggested by [44]. Type I kerogen in the Bazhenov deposits has been
mentioned previously in recent studies, but the detailed characterization has never been
presented [38,39].

Depending on the thermal maturity advance, the properties and characteristics of the
OM in the Bazhenov Formation change, which are reflected in the Rock-Eval pyrolysis
parameters [45–47], molecular, and isotope composition [4,48,49]. In general, areas with a
higher maturity of OM show better hydrocarbon productivity.

Luminescent alginite-rich layers are located in the lower part of the Upper Bazhenov,
in Unit 4. There are other luminescent layers present in Unit 4, i.e., tuffs (Figures 2 and 3).
Tuffs appear as highly fractured greenish-gray or brown rocks with a relict volcaniclastic
microstructure. They are mostly composed of devitrified volcanic glass, which has been
subjected to hydration activity. The alginite-rich layers and tuffs have a different nature
of luminescence. Various studies have associated the luminescence of tuffs with the
mineralogy of clay minerals [10] or barite concentrations [11], whereas the alginite-rich
layers have an organic nature of luminescence. Since the luminescence of the alginite-rich
layers and tuffs are very similar visually, in the results section we provide their comparative
characteristics in order to determine the strict criteria to distinguish them from one another.
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Figure 3. Core layout showing typical appearance of the Bazhenov Formation organic-rich siliceous
rocks with presence of the alginite-rich layers (marked in red) and tuffs (marked in light green). Core
photographs under white and UV light.
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3. Materials and Methods

Luminescent alginite-rich layers were observed in the core material from 22 wells
(Figure 1). All of the alginite-rich layers occur in the lower part of the Upper Bazhenov
Formation (Unit 4, see Figure 2).

For this study, we have chosen samples of the alginite-rich layers and host rocks
representing mostly organic-rich siliceous rocks. The sampling distance between the
alginite-rich layers and the host rocks did not exceed 5 cm.

The samples for thin section petrographic examination were cut perpendicular to the
bedding planes, oriented down-up, 0.03 mm thick, polished, and cover slipped. The thin
sections were examined using Axioscop 5 polarizing microscope (Zeiss, Jena, Germany)
equipped with an Axiocam 506 color digital camera (Zeiss, Jena, Germany).

Polished whole-rock blocks were prepared and examined. The maceral analysis was
performed using a QDI-300 Craic micro-spectrophotometer (CRAIC Technologies, San
Dimas, USA) with a DM 2500 P base microscope (Leica, Wetzlar, Germany) under reflected
white light and UV light illumination in air [50]. A quartz halogen lamp (12 V, 100 W)
was used for white light. A high-pressure mercury lamp (100 W HBO®, OSRAM, Munich,
Germany) was used for the UV light. The maceral nomenclature used in this study follows
the International Committee for Coal and Organic Petrology [51–53].

The X-ray diffraction (XRD) analysis was performed on selected samples for bulk
mineral composition analyses. The XRD analyses were carried out with ARL X’TRA X-ray
diffractometer (Thermo, Basel, Switzerland) using CuKα radiation, operated at 40 kV
and 40 mA and analyzed over the 2–60◦ 2θ angular range. For indexing of diffraction
peaks and identification of mineral phases, the Siroquant software package (Siroquant,
Mitchell, Australia) was used. We used the Rietveld refinement procedure and obtained
data through a concerted theory-experiment comparison.

The X-ray fluorescence (XRF) analysis was performed using ARL Perform’X spectrom-
eter (Thermo, Basel, Switzerland), applying the fundamental parameters method. The
samples were prepared as pressed powder pellets on a boric acid substrate.

Rock-Eval pyrolysis was performed using a HAWK Resource Workstation (Wildcat
Technology, Humble, USA). We determined the following main pyrolysis parameters:
thermovaporized free hydrocarbons (S0 and S1), pyrolysis products from cracking of
kerogen and heavy petroleum fractions (S2), CO2 generated from OM during the pyrolysis
step (S3), CO2 generated from organic matter during the oxidation step (S4), CO2 generated
from the mineral source during the oxidation step (S5), and the temperature at which the
maximum amount of hydrocarbon was generated (Tmax). Above parameters were used
to calculate the TOC, generative organic carbon (GOC), non-generative organic carbon
(NGOC), hydrogen index (HI), oxygen index (OI), production index (PI), and proportion
of generative kerogen (Kgoc = GOC/TOC × 100).

The kinetic studies of organic matter thermal decomposition were carried out us-
ing a HAWK Resource Workstation. The extracted rock samples were subjected to non-
isothermal pyrolysis at temperature from 300 to 650 ◦C, at three heating rates (3, 10, and
30 ◦C/min). The Kinetics 2015 software (CoeoIsoChem Corporation, Covina, USA) was
used to determine the discrete distribution of activation energies (Ea, kcal/mol) for a fixed
frequency factor A = 1 × 1014 s−1.

The CHN628 elemental analyzer (LECO, St. Joseph, MO, USA) was used to determine
the carbon, hydrogen, and nitrogen content via combustion (at 950 ◦C) into CO2, H2O, and
NO2 contents, respectively. A helium carrier gas swept the combustion gas to separate
infrared cells utilized for the detection of H2O and CO2, while a thermal conductivity cell
was used for the detection of nitrogen. The 628 S module (LECO, St. Joseph, MO, USA)
was used to determine the sulfur content. Sulfur evolved (at 1350 ◦C) from the sample and
formed SO2. From the combustion system, the gases flowed through the sulfur infrared
detection cell. Combustion occurred in the pure oxygen for CHN and S analyses.

Pyrolysis gas chromatography analyses (pyro-GC × GC-FID/TOFMS) were per-
formed using the Pegasus 4D (LECO, St. Joseph, MO, USA) equipped with a cryo-
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modulator and injection modules for thermal desorption and pyrolysis (Gerstel, Mulheim,
Germany). Chromatographic separation of the products was carried out using a reverse-
order column set. Samples were heated to a final temperature of 500 ◦C. Pyrolysis products
were detected simultaneously using FID and time-of-flight mass spectrometer detectors.

Isotope and elemental analysis of carbon, nitrogen, and sulfur was performed on a
DELTA V Plus mass spectrometer (Thermo, Dreieich, Germany) equipped with a Flash HT
elemental analyzer (Thermo, Dreieich, Germany). The validation of analytical procedures
was established using the following international standards: oil NBS 22, ammonium sulfate
IAEA-N-2, and barium sulfate NBS 127 for carbon, nitrogen and sulfur, respectively, as well
as the laboratory standards, whose elemental and isotope composition was determined
during interlaboratory comparison measurements. In accordance with the generally ac-
cepted rules, all the measured isotopic ratios were recalculated and are given in δ values
characterizing the deviation of the isotopic ratio of the sample from the isotopic ratio of the
standard (in ‰), i.e., PDB, AIR and CDT for carbon, nitrogen and sulfur, respectively. The
absolute error of measurement for δ values is ±0.3‰ for carbon, ±0.5‰ for sulfur and
nitrogen. The relative error of element content measurements is ±10%.

4. Results
4.1. Visual Core Description under White and UV Light

The thicknesses of the individual alginite-rich layers vary from 1 to 50 mm, and the
total thickness is up to 1 m in the cross-section. The studied cross-sections of the Bazhenov
Formation have a thickness of about 20–30 m. The alginite layers usually constitute about
1–5% of the entire cross-section. They can be macroscopically distinguished by their
bright yellow or orange luminescence under UV light and less often by lighter coloring
as compared with the darker host rocks (organic-rich siliceous rocks) under white light
(Figure 3). Usually, the alginite-rich layers pass gradually to the organic-rich siliceous
rocks. This gradation gives the rocks a banded appearance under UV light. Another
interesting feature of the alginite-rich layers is their plasticity and flexibility, as well as their
low density.

4.2. Lithology and Mineral Composition

According to petrographic description, the luminescent alginite-rich layers are mainly
composed of OM and quartz aggregations (Figure 4a,b). Remains of fish bones, calci-
spheres, and radiolarians are rare. Pyrite is present either in the form of framboids, evenly
distributed over the rock, or replaces radiolarian shells. The boundaries between the
alginite-rich layers and the underlying rocks are sharp (Figure 4c), while the upper contacts
are gradually replaced by the overlying rocks.

From the XRD results, it is clear that the mineral part of the alginite-rich layers mainly
consists of quartz (70–90 wt.%). The content of clay minerals, including kaolinite and
mixed-layer clays, usually does not exceed 17 wt.%. Carbonate minerals and pyrite are
present in minor amounts. The results of the XRF confirm the mineral composition data
and indicate a predominance of the siliceous component (SiO2 values range 65–90 wt.%) in
an inorganic part of the alginite-rich layers.

The host rocks are organic-rich siliceous rocks. Thin sections show lamination of
organic-rich rock, generally pyritic, with organic matter along the bedding axis (Figure 4d).
This rock is generally non-calcareous. Pyrite occurs as microcrystals, framboidal aggregates,
or as nodules formed within the rocks. The organic-rich siliceous rocks contain rare
phosphate fish bone remains oriented parallel to the layering.

The XRD shows that a major part of organic-rich siliceous rocks is quartz (60–70 wt.%)
in addition to clay minerals (15–20 wt.%), calcite (0–10 wt.%), and pyrite (3–10 wt.%).
The most abundant oxides are SiO2, Al2O3, CaO, and Fe2O3, whereas MgO, TiO2, MnO,
K2O, P2O5, and Na2O are present in minor quantities. For hosting organic-rich siliceous
rocks, the SiO2 values are in the range of 50–70 wt.%, the Al2O3 values are in the range of
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5–15 wt.%, and the CaO values are in the range from 0.5 to 15 wt.%. The average Fe2O3
content is 4.6 wt.%.
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Figure 4. Typical thin section photomicrographs of the alginite-rich layers, host rocks, and tuffs.
(a,b) Alginite-rich layers, predominantly containing organic matter (OM) and aggregates of quartz
(Q), radiolarians (R) are rare; (c) alginite-rich layer and host rock that are separated by wavy surfaces
(highlighted by red short-dashed line); (d) host rock shows the distribution of mineral matrix with
organic matter along beddings; (e) tuff shows former glassy ash matrix devitrified to crystals of
plagioclase (Plg), quartz (Q), kaolinite (Kln), and clay matrix; (f) host rock contains thin tuff layer.
All photomicrographs are taken under parallel nicols. Corresponding magnification of (a–e) 20×
and (f) 10×.

For comparison, we present photomicrographs of the thin sections of the luminescent
tuffs (Figure 4e,f). The tuffs consist of volcanic glasses, almost completely transformed
into clay minerals. In the petrographic thin sections, we observed plagioclase and zircon
grains. The tuffs are significantly different from the alginite-rich layers and from the
host siliceous rocks by the almost complete absence of OM and by a substantially clay
mineral composition.

According to the XRD, tuffs are essentially composed of clay minerals (up to 60–80 wt.%).
The predominant clay minerals of all the tuffs are mixed-layer clays and kaolinite. The
minor minerals are quartz, plagioclase, mica, albite, and pyrite. The XRF results of tuffs
show that SiO2 values range between 45 and 55 wt.%. Similarly, Al2O3 contents vary
between 20 and 30 wt.%. The average Fe2O3 content is 2.4 wt.% and that of CaO is 1.2 wt.%.
The sum of Na2O and K2O is 3–6 wt.%. The chemical composition of tuffs corresponds to
the basaltic andesitic source of intermediate magma.

4.3. Organic Petrography

The organic petrography shows that alginite is a major organic component. The shape
of the OM has fan, lumps, and clots morphology. Alginite has a distinctive external form
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and, in most cases, an internal structure of specific recognizable algal remains. Under
reflected white light, alginite is brownish (Figure 5a,c,e). During the analysis in the incident
fluorescent mode (under UV light), alginite is a greenish-yellow color to bright yellow
color (Figure 5b,d,f). Therefore, alginite is separated from the amorphous material, i.e.,
bituminite, which lacks distinctive morphology and originates from the various precursors.
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Figure 5. Photomicrographs illustrating a typical maceral composition of the alginite-rich layers.
(a,c,e) Samples under reflected white light shows enrichment of organic matter in mineral matrix.
Many colonies contain pyrite; (b,d,f) same samples under UV light shows high intensity yellow
luminescence of alginite. Air, magnification of 50× for all photomicrographs. Alg, alginite; Q, quartz;
Py, pyrite.

The absolute predominance of alginite (40–50 vol.%) in the maceral composition con-
firms the algal origin of the organic matter in these layers. As compared with the samples
from the host rocks, alginites are less abundant and only small amounts of bituminite
were detected.

4.4. Characterization of Organic Matter

Since the petrographic data allowed us to state that OM in the alginite-rich layers had
an algal nature, we further analyzed the quantity and composition of the OM to prove this
hypothesis. The geochemical characterization included Rock-Eval pyrolysis, pyro-GC-TOF
MS/FID analyses, kinetic studies of OM thermal decomposition, elemental analysis, and
isotope composition measurements.

4.4.1. Rock-Eval Pyrolysis

In Table 1, we report the Rock-Eval pyrolysis data for the studied samples from the
alginite-rich layers and host rocks. To emphasize the difference, we provide Rock-Eval
pyrolysis data for tuffs sampled during the study.
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Table 1. Rock-Eval pyrolysis data for the alginite-rich layers, host rocks, and tuffs.

Well Sample S0 + S1,
mg HC/g

S2
mg HC/g

PI
(S1/S1 + S2)

TOC,
wt.%

Kgoc,
%

Tmax,
◦C

HI,
mg HC/g TOC

OI,
mg CO2/g TOC

V-K 81 Alginite-rich layer 2.15 241.65 0.01 22.94 91 445 1053 1
Host rock 4.64 133.90 0.03 17.81 67 431 751 4

V-Ch 526 Alginite-rich layer 1.06 219.02 0.01 21.56 87 443 1015 1
Host rock 5.12 74.52 0.06 10.72 67 430 682 3

M 184 Alginite-rich layer 0.53 259.24 0.00 25.25 88 451 1026 3
Host rock 1.36 46.21 0.03 8.77 48 438 527 11

S-O 128 Alginite-rich layer 2.49 110.48 0.02 12.20 79 450 905 6
Host rock 2.99 71.05 0.04 13.20 49 444 538 4

O 318
Alginite-rich layer 1.36 103.14 0.53 12.19 74 447 846 4

Tuff 0.22 2.08 0.10 0.77 34 436 269 36
Host rock 5.65 66.43 0.45 13.9 48 436 478 3

S 40 Alginite-rich layer 1.79 140.25 0.01 16.21 76 440 865 2
Host rock 2.81 51.93 0.05 10.69 46 430 485 3

V-I 301 Alginite-rich layer 0.50 66.78 0.01 8.19 72 439 815 4
Host rock 3.44 54.25 0.06 11.03 48 431 491 5

D 541 Tuff 0.16 1.88 0.08 0.71 28 454 264 28

M 14 Tuff 0.25 2.03 0.11 0.60 37 421 339 59

J 177 Tuff 0.34 1.89 0.15 0.79 28 437 240 29

The most distinctive feature of organic matter of the alginite-rich layers is the value of
hydrogen index. HI in the alginite-rich layers of a low maturity degree reaches 1053 mg
HC/g TOC, which is 350–400 mg HC/g TOC higher than that for host rocks. In the modified
van Krevelen diagram, the alginite-rich layers are located in the area that is typical for type
I kerogens, while the Bazhenov Formation OM of the host rocks is characterized as type II
kerogen (Figure 6a). The TOC concentration of the low mature alginite-rich layers reaches
25 wt.%. The amount of pyrolyzed hydrocarbon compounds in the studied intervals
reaches 260 mg HC/g rock. In the S2-TOC plot (Figure 6b), the alginite-rich layers have
significantly better petroleum generation potential than the host rocks [54,55]. There is a
minor difference in oxygen index between the alginite-rich layers and host rocks (1–11 mg
CO2/g TOC). At the same time, in tuffs, OI sharply increases and reaches 59 mg CO2/g
TOC. The maturity parameters of the alginite-rich layers are inconsistent with each other.
At very low PI we observe very high Tmax values. These values exceed the corresponding
values in the host rocks by 6–14 ◦C, which reflect the differences in the OM maturation
pathways for different kerogen types, provided the OM type remains comparable [56].
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Organic matter in the alginite-rich layers has a higher quantity of pyrolyzable carbon
as compared with the background along the section. Generative organic carbon to TOC
ratio (Kgoc) reaches 91% and decreases with an increase in OM maturity (Table 1).

Figure 7 illustrates a section of a core sample (7 cm thick) with alternating layers of
bright and dull luminescent intensities, related to alginite contents. The samples were
analyzed by Rock-Eval pyrolysis, and we observed significant variations of the parameters
even in such a small interval.
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Figure 7. Detailed (layer-by-layer) Rock-Eval pyrolysis for core sample with interbedding of the alginite-rich layer and
hosting organic-rich siliceous rock from well V-K 81. A–L, sampling points.

Rock-Eval pyrolysis parameters obtained for the first background Point A (Figure 7)
are common for the Bazhenov Formation rocks; for darker non-luminescent layers, the
TOC is 8–11 wt.%; and for the luminescent alginite-rich layers, the TOC is 13–25 wt.%. For
the luminescent layers, we observe a significant increase in Tmax by 5–11 ◦C more than
the darker ones. The difference in HI for the nearby layers reaches 450 mg HC/g TOC.
The amount of thermally desorbed light hydrocarbons (S0 + S1) changes inversely to S2
and TOC, i.e., for luminescent rocks S2 is high and S0 + S1 is low, and vice versa for the
darker layers. Thus, the layer-by-layer Rock-Eval pyrolysis emphasizes the heterogeneous
saturation of the Bazhenov Formation rocks with type I kerogen, which interbeds and
mixes with different types of OM (type I and type II of kerogen).

4.4.2. Organic Matter Thermal Decomposition

The presence of type I kerogen in the alginite-rich layers is confirmed by the bulk
kinetic characteristics of the OM thermal decomposition. In Figure 8, we provide the
activation energy distributions for two pairs of samples, i.e., from the alginite-rich layer
and from the adjacent host rock. The spectrum for the alginite-rich organic matter is narrow
and consists of a single energy Ea = 53 kcal/mol (Figure 8b,d), which is a feature of type I
kerogen [57,58]. For the host rocks, the activation energy distributions (with a maximum
at 52 kcal/mol) have the typical shape of the Bazhenov kerogen and characterize the host
rocks OM as type II kerogen (Figure 8a,c). The upper pair of samples (Figure 8a,b) was
taken from the section of the Bazhenov Formation with moderately immature OM (MC1).
The lower one (Figure 8c,d) was taken from the section in the early oil window (MC1-2).

The results of the pyrolysis-gas chromatography/mass spectrometry provide us with
information about the quantitative and qualitative chemistry of the thermal decomposition
products from the cracking of kerogen [59]. This method provides a direct indicator for the
geochemical typing of kerogens and types of hydrocarbons that can be generated during
thermal maturation. A comparison of the aliphatic and aromatic nature of kerogens has
been previously described in [57,59–61].
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Numerous compound hydrocarbon classes have been found in pyrolysis products
of kerogen, including light hydrocarbons C1–C7; n-alkanes C8–C40; unsaturated HC;
naphthenes; and mono-, di-, tri- and poly-aromatic compounds (Table 2). Type I kerogen of
the alginite-rich layers produces dominantly long-chain n-alkanes and n-alkenes, whereas
type II kerogen of host rocks produces more unsaturated HC, naphthenes, and aromatic
compounds (Figure 9a,b). These differences are also reflected in the elemental composition.
The type I kerogen of the alginite-rich layers has a high atomic H/C up to 1.88 and a low
atomic O/C (0.05–0.07); the kerogen of host rocks characterized by a high atomic H/C
(1.09–1.19) and a low atomic O/C (0.06–0.09).

Table 2. Distribution of HC classes from Pyro-GC×GC-TOF MS/FID and elemental analysis data for the alginite-rich layers
and host rocks.

Hydrocarbon Classes (% w/w)
Well S-O 128 Well V-I 301

Host Rock Alginite-Rich Layer Host Rock Alginite-Rich Layer

Light HC C1–C7 7 6 19 8
n-Alkanes C8–C40 8 25 25 33

Unsaturated HC and naphthenes 37 64 29 53
Mono-aromatic compounds 21 4 19 4

Di-aromatic compounds 15 1 7 1
Tri- and poly-aromatic compounds 12 0 1 1

Aliphatic/aromatic 52/48 95/5 73/27 94/6
H/C 1.09 1.88 1.19 1.69
O/C 0.06 0.07 0.09 0.05
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High aliphaticity (at least 90 wt.%) of pyrolysis products suggest that type I kerogen
of the alginite-rich layers is dominated by lipid-rich and protein-rich algal material that
has undergone extensive bacterial reworking in reducing conditions. Aliphatic to aromatic
ratio of pyrolysis products show that type II kerogen of host rocks originates from various
precursors (mixed phytoplankton, zooplankton, and bacterial material).

4.4.3. Isotope Composition of C, N, and S

Among geochemical data, the isotope composition of carbon, nitrogen, and sulfur in
rocks enables the genesis estimation of organic matter. In Table 3, we provide the results of
stable isotope studies of carbon, nitrogen, and sulfur.

The carbon isotope composition for the alginite-rich layers varies in the range from
−31.1 to −31.9‰, while for the host rocks δ13Corg it varies from −30.5 to −31.9‰. In
contrast, tuffs contain 10–30 times less organic carbon than host rocks and the alginite-
rich layers. Tuffs are enriched in heavy carbon isotope, and for δ13Corg it is from −29.0
to −28.8‰.

The concentrations of nitrogen in the alginite-rich layers and in host rocks vary from
0.07 to 0.37 wt.%. For all the samples from the alginite-rich layers, we observe 1.5–2 times
lower nitrogen content as compared with the host rocks. The concentrations of nitrogen
in the host rocks vary from 0.24 to 0.37 wt.%, and in δ15Ntot, vary from 0.9 to 5.4‰. The
nitrogen contents in the alginite-rich layers is from 0.07 to 0.21 wt.%, and the organic
matter is enriched in 15N (in δ15Ntot, it is from 5.9 to 25.7‰). The Corg/Ntot ratio correlates
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with the heavier nitrogen isotope composition (Figure 10a). The tuffs are characterized by
Corg/Ntot ratios from 2.7 to 4.38, and by δ15Ntot values from 1.2 to 2.4‰.

Table 3. Bulk C, N, and S elemental and isotope composition for the alginite-rich layers, host rocks, and tuffs.

Well Sample Corg/Ntot
δ13Corg, ‰

PDB
Ntot, wt.% δ15Ntot, ‰

AIR
Stot, wt.% δ34Stot, ‰

CDT
Corg, wt.%

V-K81
Alginite-rich layer 93.37 −31.5 0.21 5.9 2.31 −6.0 22.12

Host rock 43.84 −31.4 0.37 0.9 4.36 −17.3 17.81

S-O 128
Alginite-rich layer 103.28 −31.8 0.11 7.7 1.61 −18.5 12.20

Host rock 43.54 −30.5 0.34 3.2 3.71 −24.9 12.30

V-I 301
Alginite-rich layer 109.57 −31.8 0.07 17.5 2.75 −11.2 8.19

Host rock 42.23 −31.9 0.24 5.4 4.18 −26.0 11.03

V-C 526
Alginite-rich layer 155.50 −31.1 0.15 25.7 1.37 −9.3 21.56

Host rock - - - - - - -

L 42
Alginite-rich layer 76.83 −31.9 0.21 13.0 2.10 −7.1 19.79

Host rock - - - - - - -

D 541 Tuff 2.70 −28.8 0.45 2.4 1.89 4.4 0.71

M 14 Tuff 4.38 −29.0 0.21 1.5 0.69 4.5 0.60

J 177 Tuff 4.11 −28.9 0.23 2.1 0.63 2.4 0.79
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Figure 10. Comparison of δ15Ntot values and Corg/Ntot ratio (a), and comparison of δ34Stot values and Stot content (b) in
the alginite-rich layers, host rocks, and tuffs.

Content and isotope composition of the total sulfur is also different for the rocks from
the alginite-rich, host deposits, and tuff. For the alginite-rich layers, the δ34Stot values
range from −6.0 to −18.5‰ with a total sulfur content of 1.37 to 2.75 wt.%. For the host
rocks, we detect a predominance of lighter sulfur, i.e., the δ34Stot values varies from −17.3
to −26.0‰ and for Stot, from 3.71 to 4.36%. Tuffs demonstrate the heaviest sulfur isotope
ratio (Figure 10b).

5. Discussion
5.1. Occurrence

Alginite-rich layers are discovered throughout the Bazhenov sequence within the
central part of Western Siberia in Unit 4, where the Jurassic–Cretaceous boundary is
situated between the Upper and Lower Bazhenov Formation. The remains of variable-sized
algae are regularly microscopically recorded in rock samples, particularly in fine-grained
organic-rich siliceous rocks that occur throughout the Bazhenov sequence, but pure and
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concentrated fossil algae are found only in the alginite-rich layers. According to the results,
the alginite-rich layers widely extend for more than 455,000 km2 area (Figure 1). The
studied wells are located in different regions of Western Siberia and are confined to the
following various tectonic elements: the Frolovskaya Megadepression, the Krasnoleninsky
Arch, the Surgut Arch, the Nizhnevartovsky Arch, the Yugansk Megadepression, and the
Nyurolskaya Depression and others.

5.2. Key Characteristics of the Alginite-Rich Layers

Considering visual characteristics and the obtained mineralogical and geochemical
data, the key features that can be used for identifying the alginite-rich layers from host
rocks are: macroscopically visually lighter coloring as compared with the darker host rocks;
luminescence under UV light; low density and plasticity; matrix consists mainly of algal
OM and quartz aggregations; Rock-Eval pyrolysis data, kinetics parameters, and elemental
composition indicate type I kerogen in the alginite-rich layers; high Corg/Ntot ratio and
δ15Ntot values.

The Rock-Eval pyrolysis parameters of the alginite layers significantly exceed those in
host rocks. The values of Kgoc reach 90%. The hydrogen indices are 400–500 mg HC/g TOC
higher, and the Tmax is higher by 5–10 ◦C as compare with the host rocks. The atomic H/C
ratio is up to 1.88. The Rock-Eval pyrolysis parameters, bulk kinetics data, and elemental
composition confidently describe OM as type I kerogen.

The mineral composition of alginite-rich layers mainly consists of quartz grains
(60–90 wt.%), which is not typical for the Bazhenov Formation rocks. In general, the
abnormal quartz concentrations within Unit 4 can indirectly show the occurrence of the
alginite-rich layers.

The carbon isotope composition of OM indicates the source of organic matter. The
δ13Corg values of the alginite-rich layers (from −31.1 to −31.9‰) are similar to host rocks
(from −30.5 to −31.9‰). The resulting values are typical for marine OM of the Bazhenov
Formation that have been previously reported [4,62].

According to mineralogical studies, the main chemical form of sulfur in investigated
samples is the sulfide sulfur fixed as pyrite. Organic sulfur presents in a very subordinate
amount, the sulfur content in organic matter in sedimentary rocks of West Siberia is
generally low and does not exceed 5 wt.% [62]. The sulfur isotope composition of sulfide
sulfur indicates the changes in redox conditions during sedimentation and the sulfate-
reducing bacteria activity. Intensive sulfate reduction in euxinic conditions results in higher
sulfur content and its “lighter” isotope composition [63], which is observed in the host
rocks with δ34Stot from −17.3 to −26.0‰. The alginite-rich layers are characterized by
intermediate values of sulfur content and δ34Stot values from −6.0 to −18.5‰, which
reflects suboxic conditions of sedimentation as compared with the host rocks. The tuff
samples are quite different with low sulfur content and relatively high δ34Stot values from
2.4 to 4.5‰. The sulfur isotope composition of tuffs is possibly affected by the admixture
of volcanic sulfur from pyroclastic material [64,65].

The low nitrogen concentration (0.07–0.21 wt.%), high Corg/Ntot ratios (70–155 and
above), and δ15Ntot values (up to 25.7‰) are characteristic features of the alginite-rich
layers. Host rocks have Corg/Ntot ratios from 3 to 50 and δ15Ntot values from 1 to 5.4‰ that
show the same values as the black shales of various ages [66–68]. The low nitrogen content
and heavy isotope composition correspond to an initial predominance of lipid components
and/or significant microbial alteration of OM at the diagenesis stage. The process of
bacterial transformation is known to be common for the sapropelic OM formation, and it
is usually accompanied by destruction of proteins and carbohydrates [69]. The nitrogen
isotope fractionation occurs due to amino acids destruction resulting in the loss of amino
groups, and the kinetic isotope effect is directed towards the accumulation of lighter 14N in
the products of biochemical reactions and enrichment of the residual substrate by 15N [70].

For comparison, luminescent tuffs exhibit relatively high nitrogen and low organic
carbon concentrations, indicating the presence of inorganic nitrogen. In a detailed min-



Geosciences 2021, 11, 252 15 of 21

eralogical study of tuff layers of the Bazhenov Formation, Shaldybin et al. found the
illite/tobelite/smectite mixed-layered mineral compounds, where ammonium partially re-
places potassium in the crystal structure of tobelite [10,71]. We attribute formation of these
minerals to transformation of pyroclastic material at the diagenesis stage in the presence
of ammonium, formed during the OM decomposition in the pore waters. High nitrogen
content and low δ15Ntot values, obtained for tuff samples in this study, are consistent with
this concept.

5.3. Origin of the Alginite-Rich Layers

The obtained results show that extensive environmental changes have occurred, dur-
ing the short term, in the geological timescale period of sedimentation of the paleobasin
in the territory of modern Western Siberia. Due to these changes, a considerable amount
of organic-matter-rich algal sapropel has accumulated in most parts of the paleosea. The
observed thickness of lithified material corresponds to the sedimentation of 5–10 m of mud
enriched with algae, which most probably was formed as a result of algal blooms.

Algae are known to occur in a variety of depositional environments and have been
described from ancient deposits to recent times. The environment must have had a regular
and ample nutrient supply, enough light intensity, and optimal water temperature. Algal
blooms happen regularly in the Black and the Mediterranean Seas [72,73]. The source
of nutrients in the middle of the paleosea potentially stimulating algal blooms could be
volcanic ash [74–76], eolian processes [77–79], upwelling [80], or run-off from the eroding
land areas, and currents, concentrating stock of living plankton. The occurrence of a large
amount of quartz in the alginite-rich layers is associated with the release of silica or input
from an external source. The source of silica most commonly includes biogenic debris
(radiolarians, diatoms, sponge spicule, and others), the transformation of clay minerals,
and the vitrification of volcanic ash. The aeolian processes can produce a large amount of
quartz-rich dust from coastal deserts [81,82].

5.4. Stratigraphy and Hydrocarbon Potential

In the Bazhenov Formation, the luminescent alginite-rich layers occur in addition to
luminescent tuffs in Unit 4 (Figure 11). They have different types of luminescence and can
be distinguished by the criteria listed above. The widespread distribution over the entire
area of the central part of Western Siberia makes both the alginite-rich layers and tuffs
useful for correlating the Bazhenov sequence.

Luminescence of the alginite-rich layers is associated with a significant amount of
luminescent alginite in their composition. During the study, we did not found any lumi-
nescent alginite-rich layers in wells with the degree of OM maturity after the middle of
the oil window. This observation allows us to suggest that at a certain thermal maturity
degree during realization of the generation potential of OM, the luminescent alginite-rich
layers lose their luminescence. Speight and Huc described samples of type I kerogen that
contained algobacterial material that luminescent under UV light at low thermal matu-
rity stages, and the intensity of luminescence gradually decreased and disappeared with
maturation [83,84]. Therefore, since OM reached the middle of the oil window, the lumi-
nescence of the alginite-rich layers was extinguished and the layers could be distinguished
by geochemical data.

Luminescence of the alginite-rich layers can be used to confirm the thermal matu-
rity parameters of Rock-Eval pyrolysis or biomarker analysis of Bazhenov deposits from
immature conditions (PC3) to the early to middle oil window (MC1-2). Generally, the
luminescent colors of the alginite-rich layers change from a greenish-yellow color to a
bright yellow and orange under UV light before luminescence is mostly extinguished at
the middle oil window (Figure 12). The decreasing alginite luminescence of high maturity
level is due to a decrease in the ratios of both hydrogen and oxygen to carbon and increased
molecular aromatization [85–88].
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The hydrocarbon generation potential of the alginite-rich layers is significantly higher
than that in the host rocks enriched in type II kerogen. The value of S2 for the alginite-rich
layers is 2–2.5 times higher than that in the host rocks and reaches 250 mg HC/g rocks.
The prevalence of aliphatic compounds in generated hydrocarbons by type I kerogen
contributes to the high quality of the produced crude oils. Therefore, the alginite-rich layers
improve the petroleum generation potential of the Bazhenov Formation and are suggested
to be significant contributors to hydrocarbon formation. Since type II kerogen exhausted its
petroleum generation potential at a high maturity level of the Bazhenov Formation, the type
I kerogen of the alginite-rich layers still holds its high hydrocarbon potential and is capable
of producing light oils. In the oil fields within the Western Siberian basin with a high OM
thermal maturity (Verkhnesalymskoye, Krasnoleninskoye, and Sredne-Nazymskoye) type
I kerogen is possibly the major source of petroleum derived from the Bazhenov strata.

A high content of type I kerogen is concentrated in luminescent Stellarites of Late
Carboniferous within the Stellarton basin in Canada [89,90]. Algal-rich sediments of the
Late Jurassic–Early Cretaceous age have been found in the southern part of the Barents
Sea [91,92]. The Blackstone layer of the Late Jurassic Kimmeridge Formation consists
primarily of algal origin OM [93,94]. Other records of abundant fossil algae confirm that
they can be important contributors of OM to source rock deposits.

6. Conclusions

The luminescent alginite-rich layers were discovered in many wells of the Western
Siberia petroleum basin, distributed over an area of 0.5 million km2. They were situated
stratigraphically in the Upper part of the Bazhenov Formation. Individual laminas have
thicknesses from 1 to 50 mm, and the total thickness of the layers in one cross-section
reaches 1 m.

We determined the key characteristics during the comparative analysis of the alginite-
rich layers with host rocks and luminescent tuffs. For the alginite-rich layers, the lumi-
nescence under UV light was associated with algal OM. Abnormally high HI values, high
atomic H/C, and the single activation energy of thermal decomposition, which are typical
for type I kerogen, were obtained for the alginite-rich layers. The stable isotope composition
of carbon has similar values for the alginite-rich layers and host rocks, whereas tuffs have
higher and more positive values. More significant differences were found in the elemental
and isotope composition of nitrogen and sulfur as compared with the host rocks and tuffs.

The obtained results show that extensive environmental changes have occurred, dur-
ing the short term, in the geological timescale period of sedimentation of the paleobasin in
the territory of modern Western Siberia. Due to these changes, a considerable amount of
algal-rich OM has accumulated in most parts of the paleosea, most probably as a result of
algal blooms.

For practical purposes, the described alginite-rich layers can become a tool for correla-
tion of the Bazhenov sequence. The exceptionally high generation potential of the alginite-
rich layers organic matter and the composition of thermal destruction products should be
taken into consideration during basin modeling of the Western Siberian petroleum basin.
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