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Abstract: This study evaluates the palynologic, organic, inorganic, and petrographic properties of
organic-rich black shale (Mahamid Mine) in the El Sebaiya area, Nile Valley, Egypt. Black shale is
composed of quartz (50%), calcite (10%), kaolinite (25%) and montmorillonite (15%). Organic and
inorganic analyses revealed that this shale was deposited under oxic to anoxic marine conditions
during strong chemical weathering. Black shale has poor to very good organic richness, and poor
to fair hydrocarbon potential. Organic petrography indicates that the kerogen is mixed types II/III
and III and is immature to marginally mature (%VRo is 0.44 and 0.53). Liptinite macerals consist of
alginite, cutinite, and bituminite. The hydrocarbon products to be generated at higher maturity are
expected to be oil and gas.

Keywords: black shale; Duwi Formation; El Sebaiya; Rock-Eval pyrolysis; organic petrography;
elemental geochemistry

1. Introduction

The rapid growth of urban regions and industrial demand has led to a greater con-
sumption of conventional petroleum resources., which has resulted in the decline in
conventional petroleum reserves [1]. The decline in petroleum has led to the search for
unconventional resources based on fossil energy (e.g., oil shale, shale oil, shale gas) and
non-fossil energy (e.g., wind energy and sun power). Black shale (organically rich) has be-
come one of the important sources of unconventional oil/gas exploration [2]. Organic-rich
shales are widely deposited in Cretaceous deep marine settings, especially in the Tethys
region [3]. Egypt was situated on the southern margin of the Tethys throughout the late
Cretaceous to Paleogene period. The deposition of marine deposits, such as a widespread
sequence of carbonates and claystone, occurred in this area. This sequence played an
important role as the chief host of organic-rich sedimentary rocks.

In Egypt, the above time interval is economically important as it contains the main
episodes that led to the formation of the black shale and phosphorites of the Duwi For-
mation [4]. Phosphatic accumulations are associated with organic-rich strata and cherts,
and indicate high productive surface waters [1,4]. The province holds the greatest ac-
cumulation of phosphorites in geological history, possibly in excess of 70 billion metric
tons; the phosphate resources in Egypt alone exceed 3 billion metric tons [5]. These phos-
phorites represent the late Cretaceous Tethyan phosphorite belt and occupy a vast region
that extends from North Africa to the Middle East [6]. In Egypt, black shale deposits are
mostly associated with phosphorites deposits, as shown by Troger [7], who stated that the
phosphate belt in the Eastern Desert, Nile Valley and Southern Western Desert, contains a
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huge source of black shale. The above study concluded that black shale is concentrated
along many places, among them the Nile Valley in the Esna-Idfu region. Hassan et al. [8]
indicated that the black shale of the Duwi and Dakhla formations and the Lower Calcareous
shale member of the Esna Formation are characterized by mud bands and pseudomorph
of iron-oxides. This resulted from the deposition of oscillating shallow marine conditions
in an outer neritic to inner neritic and reducing environment that also contains muddy
argillaceous sediments.

El Kammar [9] recommended that additional exploration activity is needed in the
Nile Valley area to better understand the same geologic events that led to the formation of
oil shale deposits in Jordan, and which extended into Egypt. It is of importance to note
that published data on the quality and characteristics of fresh (subsurface) black shale of
the Nile Valley occurrence is very limited and has not been explored as a source of energy.
Therefore, the work presented here is the first detailed and comprehensive study that
combines inorganic, organic geochemical, and petrographic analyses for the evaluation of
the black shale belt in the Nile Valley with a focus on the Dawi Formation in the El Sebaiya
area.

2. Geologic Setting

In the Nile Valley, the Duwi Formation in the Qena-Idfu region was subdivided
into three members. They are, from top to bottom, the Adayma, Sebaiya, and Mahamid
Phosphate members [10]. They are separated from each other by marl and Oyster limestone
beds [11]. The studied black shale in the Sebaiya area (Mahamid mine) are located between
longitudes 32◦38′0.4” E, 33◦1′33” E and latitudes 25◦01′3.4” N, 25◦14′22.8” N on the south-
eastern side of the Nile Valley (Figure 1). The studied sequence is late Campanian-early
Paleocene and considered as a division of the dominated black and variegated shales that
are extensively dispersed in Upper Egypt. This succession extends from the New Valley
(Western Desert) to Safaga–El Qussier district (Red Sea Coastal Plain) through Aswan at
Nile Valley Figure 1. The study sequence consists of black shale (late Campanian–early
Maastrichtian) of the Duwi Formation. The formation overlies a fluvial variegated shale
succession of the Qusseir Member of the older Nubian Formation by an erosion contact [12].
The complete sequence was conformably overlaid by the deeper marine laminated gray to
black shale of the Dakhla Formation (late Maastrichtian-early Paleocene) (Figure 2).

Generally, the black shale of the Duwi Formation in El Sebaiya is well compacted.
The lower bed is yellowish grey, but the middle bed is dark grey. The color of the shale
beds of the Duwi Formation east of the Nile Valley varies from yellowish grey at the base
to pale yellow (with pseudomorphboidal pyrite) at the top. Dark blackish grey colors
confirm the oscillating depositional environment from littoral to inner to outer sublittoral
conditions [13]. However, the color of the shale beds of the Duwi Formation west of the
Nile Valley varies from yellowish dark grey to yellowish red pale grey from base to top.
This resulted mainly from oxidation, which formed hematite and limonite iron oxides and
black goethite cubes.
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Figure 1. Map of Egypt showing the location of the El Sebaiya study area in the Nile Valley. The aerial photograph (right) 
shows the sampling location. 

Figure 1. Map of Egypt showing the location of the El Sebaiya study area in the Nile Valley. The aerial photograph (right)
shows the sampling location.

Minerals 2021, 11, x 4 of 24 
 

 

 
Figure 2. Lithostratigraphic cross section of the study area. The mine cut wall showing the overburden rocks and mined 
phosphorite bed and sampled black shale bed are shown on the right side of the figure. 
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imately 25 km to the south of the mine (Figure 1). Approximately 2 kg per sample were 
taken. The six samples collected from the black shale horizon (Figure 2) were scattered 
horizontally along the bed over a distance of about 70 m. All the collected rock samples 
were prepared for chemical composition analysis using an Axios Sequential WD-XRF 
Spectrometer (named Analytical 2005), located in the National Research Centre Labora-
tory, Egypt. All the collected rock samples were prepared for chemical composition anal-
ysis using an Axios Sequential WD-XRF Spectrometer named Analytical 2005, located in 
the National Research Center Lab. Two samples were analyzed by X-ray diffractometry 
at the Egyptian Mineral Resources Authority (Dokki, Egypt) using a PAN analytical X-
Ray Diffraction equipment model X׳Pert PRO with Secondary Monochromator. The mor-
phology and size of the samples were characterized via SEM, coupled with energy-dis-
persive spectroscopy EDAX (SEM Model Quanta FEG 250) at the National Research Cen-
ter laboratories. A Leica DM4 microscope equipped with a 50× oil immersion objective 
lens was used for the organic petrographic analysis (vitrinite reflectance). A camera was 
attached to the microscope for photomicrographing. A mercury (Hg) lamp was used to 
generate blue light for fluorescence. 

Trace element enrichment in the studied samples was assessed by enrichment factor 
(EF) and contamination factor (CF). The Upper Continental Crust (UCC) [14] was used as 
the background (Bm) in this study. 

The enrichment factor (EF) is given by the following equation [15]: 

EF = (Cm/Bm)/(Rs/Rc) 

The Contamination Factor (CF), was determined using the following equations [16]: 

CF = Cm/Bm 

where, Cm is content of the examined element in the shale, Bm is content of the examined 
element in the UCC, Rs is content of the reference element in the shale and Rc is content of 

Figure 2. Lithostratigraphic cross section of the study area. The mine cut wall showing the overburden rocks and mined
phosphorite bed and sampled black shale bed are shown on the right side of the figure.
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3. Materials and Methods
3.1. Sampling, Chemical and Mineralogy Techniques

A well-constrained Global Positioning System (GPS) was used for navigation and to
locate the sampling sites accurately. Seven composite representative black shale samples
were collected. Six samples (Samples 2–6) taken from an open-cut mine from El Sebaiya
(Mahamid mine), Aswan, from the phosphate mines of the El Nasser Company and one
sample (Sample No. 1) was taken from an outcrop of the black shale bed situated approxi-
mately 25 km to the south of the mine (Figure 1). Approximately 2 kg per sample were
taken. The six samples collected from the black shale horizon (Figure 2) were scattered hor-
izontally along the bed over a distance of about 70 m. All the collected rock samples were
prepared for chemical composition analysis using an Axios Sequential WD-XRF Spectrom-
eter (named Analytical 2005), located in the National Research Centre Laboratory, Egypt.
All the collected rock samples were prepared for chemical composition analysis using an
Axios Sequential WD-XRF Spectrometer named Analytical 2005, located in the National
Research Center Lab. Two samples were analyzed by X-ray diffractometry at the Egyptian
Mineral Resources Authority (Dokki, Egypt) using a PAN analytical X-Ray Diffraction
equipment model X′Pert PRO with Secondary Monochromator. The morphology and size
of the samples were characterized via SEM, coupled with energy-dispersive spectroscopy
EDAX (SEM Model Quanta FEG 250) at the National Research Center laboratories. A
Leica DM4 microscope equipped with a 50× oil immersion objective lens was used for
the organic petrographic analysis (vitrinite reflectance). A camera was attached to the
microscope for photomicrographing. A mercury (Hg) lamp was used to generate blue light
for fluorescence.

Trace element enrichment in the studied samples was assessed by enrichment factor
(EF) and contamination factor (CF). The Upper Continental Crust (UCC) [14] was used as
the background (Bm) in this study.

The enrichment factor (EF) is given by the following equation [15]:

EF = (Cm/Bm)/(Rs/Rc)

The Contamination Factor (CF), was determined using the following equations [16]:

CF = Cm/Bm

where, Cm is content of the examined element in the shale, Bm is content of the examined
element in the UCC, Rs is content of the reference element in the shale and Rc is content of
the reference element in the UCC. In this study, zirconium was used as a conservative tracer
to differentiate natural from anthropogenic components. Zirconium is generally considered
as mainly originated from natural lithogenic sources (rock weathering of mineral zircon)
and has no significant anthropogenic source [17,18]. The classes of the occurrence of
elements based on EF and CF are illustrated in Table 1.

Table 1. Classes of EF and CF.

Index Index Value Soil Quality

EF

EF < 2 depletion to minimal enrichment
2 ≤ EF < 5 moderate enrichment
5 ≤ EF < 20 significant enrichment

20 ≤ EF < 40 very high enrichment
EF ≥ 40 Extremely high enrichment.

CF

CF < 1 low CF
1 ≤ CF < 3 moderate CF
3 ≤ CF < 6 considerable CF

CF ≥ 6 very high CF
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3.2. TOC Analysis and Open-System Pyrolysis

Organic geochemical analysis was carried out for seven (7) samples. A cut of each
sample was thoroughly washed in cold water and any large quantities of contaminants
were removed. The sample was air dried at room temperature to prevent loss of free
hydrocarbons, and subsequently crushed to a homogeneous powder and passed through a
40 mm-mesh sieve. Total Organic Carbon (TOC) determination was carried out according
to the following procedures. Between 20.0 and 200.0 mg of pulverized rock were accurately
weighed into a Pyrex beaker and reacted with 10% (vol.) concentrated HCl to dissolve
carbonate mineral species. The acid mixture was heated to 70 ◦C to remove dolomite if
present. Once the reaction was complete, the sample was transferred to a microfiber filter
paper using a Millipore filter apparatus. The filter paper was then transferred to a LECO
crucible and dried. An accelerator was added, per manufacture’s recommendation, and
the sample was combusted in a LECO model C230 apparatus in an oxygen atmosphere
to produce CO2. Moisture and particulate matter were filtered out and the CO2 gas was
measured by a solid-state infrared (IR) detector.

The samples were also crushed and pulverized into fine powder, whereby an aliquot
of ca. 60 mg of powdered fractions was analyzed through a Rock-Eval 6® instrument. The
samples were analyzed using the Basic/Bulk-Rock method to measure the group of param-
eters, including TOC, S1 (free hydrocarbons), S2 (thermally cracked hydrocarbons), S3 (CO
and CO2), S4 (CO and CO2), and S5 (mineral carbon), Tmax (temperature at maximum S2),
along with other calculated parameters of hydrogen index (HI), oxygen index (OI), and
production index (PI). Combustion of samples occurred in a nitrogen atmosphere, whereby
the released hydrocarbons were measured by an IR detector. Pyrolysis analysis started
with 300 ◦C isothermal stage for 3 min that followed by a gradual temperature increase up
to 650 ◦C by 25 ◦C/min [19–22].

3.3. Palynology

The basic aim of the palynofacies analysis investigation is to determine the nature of
the disseminated organic constituents or organic matter (OM), sedimentation conditions,
and paleo-environmental conditions prevailed during the deposition of the investigated
samples. For palynofacies and organic petrographic analysis, the sample was split into two
portions. The first portion was crushed to about 1 mm grain size and digested in acids
(HCl 10% and HF 40%, respectively) to remove the minerals [23]. The residue was used to
examine palynofacies and to observe the organic particles.

3.4. Organic Petrography

The second portion was crushed to about 2 and 1.5 cm size grains. About 10 g of the
grains were crushed to ca. 840 µm (−20 mesh) and well-mixed with an epoxy resin and
hardener. The polished pellets were then ground by a combination of 320 µm and 600 µm
cloths. This was followed by a polishing of surfaces by alumina powder and water with
two stages of 0.3 µm and 0.05 µm, respectively. A Zeiss Axio Imager® A2m reflected light
microscope was used to investigate the pellets, which equipped with a UV light source
and a digital camera. Oil immersion objective of 50× (noil = 1.514 at 23 ◦C) provided a
magnification of 500×, was used for reflectance measurements. Random reflectance values
on primary vitrinite and bitumen were measured using a glass standard having Ro% of
0.477. For further details of sample preparation techniques, the reader can refer to the
International Organization for Standardization (ISO) standards [24,25] and to the Amer-
ican Society for Testing and materials (ASTM) [26].

4. Results and Discussion
4.1. Mineralogy and SEM

The minerals identified by X-ray diffraction in the El Sebaiya black shale samples
are quartz (50%), calcite (10%), and clay minerals (40%). Clay minerals are composed of
kaolinite (25%) and montmorillonite (15%) (Figure 3). The crystallinity characters of the
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investigated clay minerals, as reflected from the shape of their diffraction peaks, indicate
moderate to high status of crystallinity. Most of the analyzed samples show moderately to
well-developed sharp diffraction peaks. Montmorillonite generally has a marked moderate
crystallinity. On the other hand, kaolinite exhibits moderate to high degree of crystallinity.
The results obtained from the SEM investigation support those recorded from XRD patterns
(Figure 4).
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SEM examination of the shale samples showed coarse to medium sized particles
and aggregates, and moderately crystallized kaolinite (Figure 4). The morphology and
crystallinity character of the recorded clay minerals as the shape and the edges of the
particles of clay minerals revealed that they are of detrital origin. This was confirmed with
the XRD analysis as their diagram displayed intense and sharp peaks. The clay minerals
recorded are like those identified by Abou El-Anwar and Samy [27].

4.2. Inorganic Geochemistry
4.2.1. Major and Trace Elements

Generally, the most abundant elements in the black shale samples are Si, Al, and Fe.
Their corresponding oxides, namely SiO2, Al2O3, and Fe2O3 are shown in Table 2. This
suggests that the main mineral components are clay minerals and quartz, as identified by
XRD analysis. Sulfur represents the next most abundant element, ranging from 0.14 to
5.75% and averaging 3.16%. Calcium, K, Na, Mg, Ti and P are the third most abundant
group of elements (Table 2). The El Sebaiya black shale samples show great loss on ignition
(11.66%–16.62%) with an average of 14.02% (Table 2). This suggests that silica, alumina,
and iron make up the non-LOI (Loss-On-Ignition) components (average 54.16%, 13.95%
and 6.35%; respectively) (Table 2). The concentration of P is used for interpreting paleo-
redox conditions through the TOC/P ratio calculation [28] (TOC=Total Organic Carbon).
TOC/P ratio values of <10, 10–150, and >150 indicate oxic, dysoxic, and anoxic conditions,
respectively [29]. The calculated TOC/P ratio in our samples is <10 (Table 2) indicating
oxic conditions.

Immobile elements such as Al, Fe, Ti, Cr, Th, Pd, Sc, Co, Zr, Nb, Y, Ga and Se, are
important indicators of provenance, such as weathering, transportation, and sorting [30].
Strong and moderate positive correlations between Al2O3 and Fe, Ti, Co, Cu, Zr and Pb
(r = 0.62, 0.71, 0.80, 0.79 and 0.36; respectively) (Table 3) revealed that these elements were
accumulated by weathering processes [31–34]. The Al/Si ratio of the studied black shale
samples is low (0.2–0.28), which indicates that Si has another source in addition to clay
minerals.

Uranium content in the studied samples varied from 1.5 to 4.8 ppm. As a result, these
samples can be classified as uraniferous black shale. Generally, U in marine black shales is
accumulated from sea water and may be deposited in a hydrogen sulfide environment [35].
Arning et al. [36] stated that the U/Mo ratio can be used to distinguish between anoxic
non-sulfidic and anoxic sulfidic conditions. The low U/Mo ratios obtained (average 0.28,
Table 2) indicate that the black shales in the El Sebaiya mine (Nile Valley) formed in an
anoxic sulfidic environment [37]. Strong positive correlations were obtained between U
and Cr, Mo, Ni, and Zn (r = 0.97, 0.96, 0.6 and 0.56; respectively) and a moderate correlation
with V (r = 0.32). Thus, U may be freed during weathering, be immobile and become fixed
quickly in new phases [37,38]. Uranium is strongly positively correlated with P and Si
(r = 0.77 and 0.84; respectively). Thus, it can also be associated with phosphates and sand
grains. Bots and Behrends [39] and Bata [40] stated that U may be coupled with heavy
metals and trace elements during chemical weathering under anoxic conditions.



Minerals 2021, 11, 1416 8 of 24

Table 2. Major oxide (%) and trace element (ppm) content of the studied black shale of El Sebaiya and ratios.

Sample
SiO2 TiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O P2O5 SO3 Cl LOI V Cr Mn Co Ni Cu Zn As Zr Cd Pb

% ppm

1 49.4 1.0 15.8 9.0 2.6 0.7 1.5 0.9 0.1 0.1 2.1 16.6 104.0 81.2 321.4 17.3 42.0 13.7 52.5 0.4 249.6 2.2 10.9
2 59.7 0.5 9.6 4.4 1.8 4.0 0.6 0.7 2.2 2.3 0.1 13.8 81.5 94.1 96.6 9.2 46.3 9.7 149.7 2.9 76.7 2.6 12.6
3 58.9 0.8 14.6 4.8 1.9 1.8 0.9 0.8 0.5 1.7 0.1 13.0 106.8 85.3 63.0 14.5 38.6 10.8 81.9 2.1 151.6 2.6 14.4
4 61.0 0.6 11.3 5.1 1.7 2.2 0.7 0.7 1.0 2.4 0.1 13.2 120.1 90.7 61.9 7.3 37.6 0.5 67.7 2.7 63.9 2.5 11.4
5 53.4 1.1 17.0 6.1 1.4 1.3 1.1 1.3 0.7 4.4 0.1 11.7 77.1 77.7 298.1 14.1 32.9 9.7 105.2 6.0 354.8 2.3 14.6
6 48.6 1.3 15.3 7.5 1.2 2.1 0.9 1.5 1.1 5.7 0.1 13.8 91.7 82.0 322.0 16.2 35.7 10.4 48.6 0.8 397.9 3.4 13.2
7 48.1 1.5 14.1 7.6 1.2 2.6 0.9 1.6 0.5 5.5 0.1 16.0 80.1 78.7 222.1 17.1 33.9 11.4 61.8 0.0 348.0 2.3 14.0

Min 48.1 0.5 9.6 4.4 1.2 0.7 0.6 0.7 0.1 0.1 0.1 11.7 77.1 77.7 61.9 7.3 32.9 0.5 48.6 0.0 63.9 2.2 10.9
Max 61.0 1.5 17.0 9.0 2.6 4.0 1.5 1.6 2.2 5.7 2.1 16.6 120.1 94.1 322.0 17.3 46.3 13.7 149.7 6.0 397.9 3.4 14.6

Mean 54.2 1.0 14.0 6.3 1.7 2.1 0.9 1.1 0.9 3.2 0.4 14.0 94.5 84.2 197.9 13.7 38.1 9.5 81.1 2.1 234.6 2.6 13.0

Sample
Rb Sr Th Mo La U CIA U/Th V/Cr TOC/P V/(V + Ni) Cr/Ni Ni/Co U/Mo Al/Si V/Ni K2O/Al2O3 Al2O3/TiO2

ppm

1 24.6 216.2 10.4 1.3 26.2 1.7 80.78 0.16 1.28 4.8 0.56 1.93 2.43 1.31 0.32 2.48 0.05 15.84
2 21.5 194.8 7.6 24.5 30.7 4.8 83.99 0.63 0.87 2.9 0.46 2.03 5.03 0.20 0.16 1.76 0.08 19.59
3 32.6 165.3 13.3 6.1 22.1 2.6 84.61 0.20 1.25 7.8 0.56 2.21 2.66 0.43 0.25 2.77 0.06 17.83
4 25.1 134.7 7.9 31.5 18.3 4.5 84.30 0.57 1.32 4.0 0.57 2.41 5.15 0.14 0.18 3.19 0.06 19.45
5 36.1 153 11.2 1.7 39.8 1.8 82.52 0.16 0.99 3.9 0.50 2.36 2.33 1.06 0.32 2.34 0.08 15.27
6 38.1 174.7 14.3 2.3 21.3 2.3 82.69 0.16 1.12 2.0 0.53 2.30 2.20 1.00 0.31 2.57 0.10 11.76
7 40.6 178.9 11.8 2.2 45.8 1.5 81.16 0.13 1.02 5.2 0.50 2.32 1.98 0.68 0.29 2.36 0.11 9.59

Min 21.5 134.7 7.6 1.3 18.3 1.5 80.78 0.13 0.87 2.0 0.46 1.93 4.51 1.15 0.20 2.34 0.07 9.59
Max 40.6 216.2 14.3 31.5 45.8 4.8 84.61 0.63 1.32 7.8 0.57 2.41 2.68 0.15 0.28 2.59 0.09 19.59

Mean 31.23 173.94 10.9 9.94 29.17 2.74 82.86 0.29 1.12 4.4 0.53 2.22 2.84 0.28 0.26 2.43 0.08 15.39
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Table 3. Correlation matrix between the studied major and trace elements.

SiO2 TiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O P2O5 SO3 Cl LOI V Cr Mn Co Ni Cu Zn As Zr Cd Pb

SiO2 1.00

TiO2 −0.91 1.00

Al2O3 −0.67 0.71 1.00

Fe2O3 −0.91 0.72 0.62 1.00

MgO 0.17 −0.45 0.00 0.17 1.00

CaO 0.41 −0.38 −0.85 −0.58 −0.36 1.00

Na2O −0.55 0.40 0.81 0.73 0.52 −0.90 1.00

K2O −0.80 0.94 0.57 0.51 −0.70 −0.13 0.14 1.00

P2O5 0.48 −0.52 −0.76 −0.62 −0.30 0.88 −0.81 −0.22 1.00

SO3 −0.45 0.67 0.20 0.11 −0.95 0.21 −0.31 0.87 0.16 1.00

Cl −0.38 0.05 0.31 0.69 0.82 −0.56 0.78 −0.23 −0.52 −0.63 1.00

LOI −0.56 0.33 0.01 0.70 0.39 −0.07 0.33 0.10 −0.34 −0.21 0.68 1.00

V 0.42 −0.45 −0.17 −0.11 0.49 −0.31 0.07 −0.64 −0.30 −0.58 0.25 0.04 1.00

Cr 0.81 −0.89 −0.92 −0.70 0.21 0.68 −0.69 −0.78 0.73 −0.42 −0.22 −0.18 0.37 1.00

Mn −0.89 0.73 0.75 0.85 −0.07 −0.55 0.68 0.67 −0.39 0.34 0.45 0.29 −0.43 −0.77 1.00

Co −0.88 0.85 0.80 0.79 0.03 −0.54 0.67 0.67 −0.65 0.23 0.41 0.48 −0.32 −0.85 0.73 1.00

Ni 0.43 −0.72 −0.62 −0.25 0.66 0.43 −0.19 −0.74 0.49 −0.70 0.36 0.26 0.18 0.74 −0.37 −0.37 1.00

Cu −0.64 0.51 0.52 0.55 0.25 −0.23 0.52 0.39 −0.29 −0.02 0.45 0.46 −0.52 −0.53 0.57 0.83 0.10 1.00

Zn 0.58 −0.59 −0.52 −0.69 −0.02 0.63 −0.47 −0.35 0.74 −0.13 −0.35 −0.44 −0.44 0.53 −0.42 −0.55 0.48 −0.05 1.00

As 0.48 −0.36 0.04 −0.55 −0.18 −0.02 −0.08 −0.16 0.26 0.03 −0.39 −0.85 −0.23 0.08 −0.13 −0.46 −0.15 −0.33 0.62 1.00

Zr −0.90 0.94 0.79 0.69 −0.45 −0.43 0.46 0.93 −0.41 0.68 0.05 0.14 −0.55 −0.89 0.87 0.81 −0.69 0.53 −0.46 −0.14 1.00

Cd −0.08 0.11 −0.06 −0.08 −0.42 0.23 −0.39 0.24 0.40 0.45 −0.39 −0.25 0.02 0.16 0.09 0.01 −0.05 −0.07 −0.17 −0.19 0.21 1.00

Pb −0.10 0.42 0.36 −0.26 −0.61 0.07 −0.15 0.57 −0.01 0.59 −0.64 −0.48 −0.57 −0.43 0.02 0.30 −0.56 0.27 0.22 0.34 0.44 0.11 1.00

Shadow: Correlation is significant at the 0.01 level. Bold: Correlation is significant at the 0.05 level.
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Black shales are commonly rich in trace elements relative to global crustal averages
in concentrations such that economic extraction is viable [41,42]. The enrichment of the
studied shale with trace elements was evaluated by EF and CF (Table 4). The calculated EF
values demonstrate that Cd is the only enriched element in the black shale sediments of the
study area. on the other hand, all the other trace elements show depletion with respect to
UCC. The depletion of these elements was likely the result of weathering. The enrichment
of black shale with Cd was confirmed by the very high CF values (>6). These results add
economic value to the studied black shale through the extraction of Cd.

Table 4. Calculated values of EF and CF for the studied shale trace elements.

Index SN As Cd Co Cr Cu Ni Pb Zn V Th U

EF

1 0.02 6.86 0.28 0.25 0.14 0.25 0.18 0.22 0.30 0.28 0.18

2 0.55 26.37 0.49 0.93 0.32 0.90 0.68 2.04 0.77 0.66 1.62

3 0.20 13.34 0.39 0.43 0.18 0.38 0.39 0.56 0.51 0.58 0.44

4 0.62 30.43 0.46 1.08 0.02 0.88 0.73 1.11 1.36 0.82 1.83

5 0.25 5.04 0.16 0.17 0.07 0.14 0.17 0.31 0.16 0.21 0.13

6 0.03 6.65 0.16 0.16 0.07 0.13 0.14 0.13 0.17 0.24 0.15

7 0.00 5.14 0.20 0.17 0.08 0.15 0.17 0.19 0.17 0.23 0.11

mean 0.24 12.40 0.31 0.45 0.12 0.40 0.35 0.65 0.49 0.43 0.64

CF

1 0.08 24.44 1.00 0.88 0.49 0.89 0.64 0.78 1.07 0.99 0.63

2 0.60 28.89 0.53 1.02 0.35 0.99 0.74 2.23 0.84 0.72 1.78

3 0.44 28.89 0.84 0.93 0.39 0.82 0.85 1.22 1.10 1.27 0.96

4 0.56 27.78 0.42 0.99 0.02 0.80 0.67 1.01 1.24 0.75 1.67

5 1.25 25.56 0.82 0.84 0.35 0.70 0.86 1.57 0.79 1.07 0.67

6 0.17 37.78 0.94 0.89 0.37 0.76 0.78 0.73 0.95 1.36 0.85

7 0.00 25.56 0.99 0.86 0.41 0.72 0.82 0.92 0.83 1.12 0.56

mean 0.44 28.41 0.79 0.92 0.34 0.81 0.77 1.21 0.97 1.04 1.02

4.2.2. Distribution of Trace Elements and Redox Conditions

The values of Zr, Cd, Zn, Pb, V, U, Th, and Mo in the studied samples are higher than
those in the Upper Continental Crust (UCC) [14] and the Post Archaean Australian Shale
(PAAS) [28] (Figure 5).

Moderately positive correlations between Ni, V, Cu and Cr with Mo (r = 0.66, 0.49, 0.25
and 0.21; respectively) point out to the important function of the dolomitization process in
the accumulation of these elements in the studied samples (Table 3). The occurrence of Pb,
Zn, Cu, Ni, Cd, Mo, and Co in the samples indicates the role of hydrothermal solutions in
the study area [43].

Authigenic U and some trace elements and their ratios can be signifying the redox
environment of rocks [28,29,44]. The V/Ni ratio (average 2.43) in the studied El Sebaiya
black shale indicates that they were deposited under a dysoxic to oxic environment with
terrigenous organic matter mixed with marine organic matter (Table 2). However, the ratios:
Ni/Co (2.74), V/Cr (1.12), and V(V + Ni) = 0.53 indicate mainly oxic conditions [29,45,46].
Thus, the results point to an oxic to anoxic environment in which the studied black shales
were deposited [37,47]. The above ratios should be used with caution when weathering
is suspected because some elemental abundance ratios that are used as environmental
proxies, including U/Th, Ni/Co and V/Cr, could be altered [29].
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A moderate positive correlation (r = 0.54) between Sr and Fe2O3 revealed that the
studied samples were deposited under the effect of bacterial activity (Table 3), which agrees
with Abou El-Anwar [32,48–53] and Abou El-Anwar et al. [54–56]. This is supported by
the low TOC content (Table 5), which is typical of such environments.

Table 5. Organic geochemical analysis data of the El Sebaiya samples, Nile Valley, Egypt.

Sample
No.

Sulfur
wt.%

TOC
wt.%

S1
mg/g

S2
mg/g

S3
mg/g Tmax HI OI PI S1 + S2 S2/S3 Ro

1 0.14 0.21 ND ND ND ND ND ND ND ND ND ND
2 2.48 2.77 0.18 11.34 0.61 426 409 22 0.02 11.52 18.59
3 1.96 1.71 0.04 2.56 0.34 435 150 20 0.02 2.60 7.53 0.44
4 2.52 1.74 0.08 5.09 0.32 429 293 18 0.02 5.17 15.91 0.53
5 5.23 1.20 0.06 1.04 0.27 433 87 23 0.05 1.10 3.85
6 5.14 0.98 0.05 0.77 0.22 431 79 22 0.06 0.82 3.50
7 2.95 1.13 0.07 0.98 0.47 434 87 42 0.07 1.05 2.09

Sulfur wt.% = Total Sulfur; TOC wt.% = Total organic carbon; S1: Free hydrocarbons content, mg HC/g rock; S2: Remaining hydrocarbon
generative potential, mg HC/g rock; S3: Carbon dioxide yield, mg CO2/g rock; Tmax = Temperature at maximum of S2 peak (◦C); HI:
Hydrogen index = S2 × 100/TOC, mg HC/TOC; OI: Oxygen index = S3 × 100/TOC, mg CO2/g TOC; PI: Production index = S1/(S1 + S2);
Ro = Reflectance (%).

Roaldset [57] concluded that the relationship between K2O/Al2O3 and MgO/Al2O3
can be used to differentiate between marine and non-marine sediments. Applying this
relationship (Figure 6) revealed that all studied black shale samples plot in the marine water
field, in agreement with Abou El-Anwar and Samy [27] and Abou El-Anwar et al. [51].
Al2O3 is a significant indicator for the extent of detrital influx. The low values of the
K2O/Al2O3 ratio (0.07 to 0.09) are attributed to the marked presence of kaolinite. The
positive correlation of Al2O3 with TiO2 (r = 0.71) suggests that TiO2 is a necessary trace
constituent of clay minerals. The positive correlation (r = 0.57) between Al2O3 and K2O
can be explained by the occasional presence of illite, which was not detected by XRD.
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Hayashi et al. [58] mentioned that the Al2O3/TiO2 ratio increases from 3 to 8 for mafic,
from 8 to 21 for intermediate, and from 21 to70 for felsic igneous rocks. In the studied
El-Sebaiya black shale, the values of Al2O3/TiO2 range from 9.59 to 19.95, average 15.39
(Table 2), which suggests inheritance from intermediate rocks.

Cox et al. [59] emphasized that the K2O/Al2O3 ratio of sediments can be used as
a marker of the origin composition of early sediments. K2O/Al2O3 ratios in the alkali
feldspars range from 0.3 to 0.9, in illite the ratio is about 0.3, and in other clay minerals it
is almost zero. K2O/Al2O3 > 0.5 suggests the presence of alkali feldspars as compared to
other minerals in the original shales. K2O/Al2O3 < 0.3 suggests minimal alkali feldspar
contents. In the studied black shales samples, the K2O/Al2O3 ratio ranges from 0.07 to 0.09
and averages 0.08 (Table 2), which suggests the presence of traces of K-feldspars.

P2O5, Cr, Zn, Mo and U have strong positive correlations with total organic matter
(r = 0.72 to 0.82), which indicates that these elements are mostly associated with organic
matter, and a moderate one with Ni (r = 0.43). Positive correlations between Al2O3 with
Fe2O3, Na2O and K2O (r = 0.62, 0.81 and 0.57; respectively) revealed that these elements
are associated with clay minerals. Manganese, Co, Cu, Rb, Pd, Zr and La have strong
positive correlations with Al2O3 indicating that these trace elements are associated with
clay minerals.

TiO2 has strong positive correlation coefficients with Al2O3, Fe2O3, K2O, and SO3,
(r = 0.71, 0.72, 0.40, 0.94 and 0.67; respectively), which suggests an association with clay
and sulfide minerals. Additionally, SO3 showed strong to moderate correlations with Rb,
Pd, Zr, La and Cd (r = 0.81, 0.59, 0.68, 0.45 and 0.45; respectively), thus indicating that these
elements can be related to sulfide minerals.

4.2.3. Paleoclimate

The paleoclimatic conditions can be defined by the Chemical Index Alteration (CIA) [60]:

CIA = 100 × Al2O3/(Al2O3 + CaO + Na2O + K2O) (1)

with CaO coming only from silicates.
Nesbitt and Young [60] and McLennan [61] indicated that 50 to 65% CIA points to

weak chemical weathering, 65 to 85% reveals warm and humid climate during moderate
chemical weathering, while 85 to 100% suggests a hot and humid climate during strong
chemical weathering. CIA values of the investigated black shales varied from 80.78 to
84.61, with an average 82.86% (Table 2). This value suggests that these rocks possibly
accumulated during a period of strong intensity chemical weathering. Immobile elements
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can be used as indicators of origin such as weathering [28]. Hence, the strong positive
correlation between Al2O3 and Fe, Ti, Mn, Co, Rb and Zr (r = 0.62., 0.71, 0.75, 0.80, 0.62, and
0.79; respectively, Table 3) as well as a moderate correlation with Cu, Pb and La (r = 0.52,
0.36 and 0.22; respectively) indicate that these immobile elements accumulated because of
weathering processes [31]. Weathering processes can also occur after deposition on early
diagenetic to late diagenetic stage [29].

4.3. Organic Geochemistry

Seven samples collected from the Duwi Formation in the El Sebaiya area, Nile Valley,
were analyzed to determine their organic geochemical characteristics, such as organic
richness, hydrocarbon potentiality, and thermal maturity (Table 5).

4.3.1. Organic Richness

The El Sebaiya samples have total organic carbon (TOC) values ranging from 0.21
to 2.77 wt.%, which indicates poor to good organic content [20] (Table 5 and Figure 7a).
The lowest TOC value was recorded in the outcrop layer, owing to the impact of the
weathering process. The relationship between TOC wt.% and S1 can determine the origin
of hydrocarbons present, whether they are indigenous or non-indigenous [62]. Figure 7b
shows that the S1 hydrocarbons in the El Sebaiya samples are indigenous. The hydrocarbon
generating potential of a source rock also can be estimated from the relationships between
TOC (wt.%) vs. S1 + S2. The El Sebaiya samples have poor to fair hydrocarbon potential
according to Dembicki [63] (Figure 7c).

Minerals 2021, 11, x 14 of 24 
 

 

accumulated during a period of strong intensity chemical weathering. Immobile elements 
can be used as indicators of origin such as weathering [28]. Hence, the strong positive 
correlation between Al2O3 and Fe, Ti, Mn, Co, Rb and Zr (r = 0.62., 0.71, 0.75, 0.80, 0.62, 
and 0.79; respectively, Table 3) as well as a moderate correlation with Cu, Pb and La (r = 
0.52, 0.36 and 0.22; respectively) indicate that these immobile elements accumulated be-
cause of weathering processes [31]. Weathering processes can also occur after deposition 
on early diagenetic to late diagenetic stage [29]. 

4.3. Organic Geochemistry 
Seven samples collected from the Duwi Formation in the El Sebaiya area, Nile Valley, 

were analyzed to determine their organic geochemical characteristics, such as organic 
richness, hydrocarbon potentiality, and thermal maturity (Table 5). 

4.3.1. Organic Richness 
The El Sebaiya samples have total organic carbon (TOC) values ranging from 0.21 to 

2.77 wt%, which indicates poor to good organic content [20] (Table 5 and Figure 7a). The 
lowest TOC value was recorded in the outcrop layer, owing to the impact of the weather-
ing process. The relationship between TOC wt% and S1 can determine the origin of hy-
drocarbons present, whether they are indigenous or non-indigenous [62]. Figure 7b shows 
that the S1 hydrocarbons in the El Sebaiya samples are indigenous. The hydrocarbon gen-
erating potential of a source rock also can be estimated from the relationships between 
TOC (wt%) vs. S1 + S2. The El Sebaiya samples have poor to fair hydrocarbon potential 
according to Dembicki [63] (Figure 7c). 

 
Figure 7. (a) Organic richness of the El Sebaiya samples, Nile Valley, Egypt [20]; (b) TOC vs. S1 of 
the El Sebaiya samples, Nile Valley, Egypt [63]; (c) and source potential rating of the El Sebaiya 
samples based on S1 + S2 vs. TOC [64]. 
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4.3.2. Kerogen Type and Generation Capability

The El Sebaiya samples contain type II/III and type III kerogen, as represented in
the modified Van Krevelen diagram [13] (Figure 8a). This is also confirmed by the S2/S3
values, which range from 2.09 to 18.59 (Table 5) [20]. The plot of TOC vs. S2 (Figure 8b)
confirmed this and revealed the expected hydrocarbon products will likely consist of a
mixture of oil and gas. The plot of TOC vs. HI (Figure 8c [64]) also confirms the above
assertion.
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4.3.3. Thermal Maturity

Tmax, Production Index (PI), and Vitrinite Reflectance (%Ro) can be used to evaluate
the thermal maturation of El Sebaiya samples. Tmax in the El Sebaiya samples ranges from
426 to 435 ◦C (Table 5), which indicates that the organic matter is immature to marginally
mature (Figure 9a).
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According to Espitalié et al. [63], the plot of the hydrogen index versus Tmax of
Duwi Formation samples in El Sebaiya (Figure 9b) refers to the control of defined kerogen
type based on HI values, as the variation in Tmax is narrow. The above plot confirms
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the immature to marginally mature nature of the organic matter. This indicates that the
organic matter in the shale requires greater maturation to produce oil. Additionally, this
conclusion is confirmed by the modified diagram by Langford and Blank-Valleron [65]
(Figure 9c), which uses Tmax vs. the production index (PI) values and by the measured
vitrinite reflectance (Ro%) values, which are 0.44 to 0.53 (Table 5).

4.3.4. Organic Petrography and Microscopic Composition of Organic Matter

The organic matter consists of a variety of particles of different origin including
Amorphous Organic Matter (AOM) spores and dinoflagellate (Figure 10). The organic
geochemical analysis indicated that the samples contained kerogen type III and II based
on the values of S2 and HI (Figure 8a,b). The microscopic composition of the organic
matter, however, reveals the detailed composition of the organic matter, especially the
diversity, abundances, thermal maturity, and intergranular distribution [65,66]. These
aspects show large variations among the samples, indicating significant differences in
the paleoenvironmental conditions. Samples no. 1 and 2 are composed mainly of thin
laminae that vary between shale and fine silt with calcareous cement (Figure 11 (1–10)
and Figure 12 (1,2). The organic matter is concentrated mainly in the shale laminae and is
represented by alginite (41%) that is distinguished by its brown color in white light and
bright yellow color in fluorescence mode (Figure 11 (1–3,6,7,11,12). The alginite extends in
large sheets (<5 µm in thickness) parallel to the bedding plane (Figure 11 (1–3,6,7)). Some
particles (10%) are similar to the observed alginite but lack the characteristic fluorescence.
These particles have spherical lobes that could be relicts of algal cells (Figure 11 (8–10).
Sheet-like particles lacking fluorescence but having cellular structure occurred in relatively
large abundance (34%) (Figure 11 (4,5) and Figure 12 (13)). The sheets were observed in
the kerogen extracts (Figure 12 (2)). Bituminite (9%) also occurred in significant amounts
and was concentrated especially around alginite fragments (Figure 11 (4,5,10)). It showed
light brown color in white light and yellow color in fluorescence mode. Vitrinite and
inertinite (6%) particles concentrated only in the coarser silt laminae (Figure 11 (12,14). In
the kerogen extracts, organic matter was dominated by flaky AOM of different densities
and by transparent brown wood particles having a distinctive cellular tissue (Figure 11
(12,14) and Figure 12 (2)). The organic matter composition points to dysoxic conditions in
the shale laminae. The density of the organic matter in the rock matrix is generally low and
compares to the values of the TOC of samples no. 1 and no. 2 (Table 5). The kerogen type
is mixed II/III, which is also in accordance with the organic geochemical analysis (Table 5).
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Figure 11. All pairs are for the same microscopic fields. Photomicrographs of organic facies of sample
no. 1. Scale bar is 20 µm except no. 3 is 50 µm. 1, 4, 6, 8, 13 are in incident white light, 15 Palynofacies
in transmitted light. Other photomicrographs are in fluorescence mode. The (1,2) Alginite grains
appear brown in white incident light and yellow in fluorescence mode; (3) micro-laminae are parallel
to the bedding surface with different organic composition; the lower coarse-grained micro-laminae
have lower organic content; the fine-grained micro-laminae have thin sheets of alginate; (4,5) Brown
tracheid grains are without any fluorescence along with bituminous groundmass and dispersed
pyrite crystals; (6,7) Alginite have strong yellow fluorescence that merges with non-fluorescence
grain; (8–10) have a thick organic sheet of brown organic matter without any fluorescence; these
sheets are composed of lobes that can be attributed to algal cells; (11,12) Alginite sheet of different
layers and structure; (13,14) vitrinite grain, and (15) Palynofacies rich in granular AOM.
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Figure 12. All pairs are for the same microscopic fields. Scale bar is 20 µm for photomicrographs
except 1, 2 and 13 is 50 µm. 3, 5 and 12 are in incident white light; 2 and 1 Palynofacies in transmitted
light. The other photomicrographs are in fluorescence mode; (1,2) organic-facies of sample no. 2;
(3–14) organic facies of sample no. 3, 1 Micro-laminae, similar to sample no; 1. 2 palynofacies
of sample no. 2 that are rich in terrigenous organic matters such as wood tracheid, cuticles, and
AOM; 3–6 vitrinite particles, dinoflagellate, and acritarchs with bituminous groundmass; 7 cutinite
particle with yellow fluorescence; 8 and 9 dinoflagellate with yellow fluorescence color. 10 and 14
Botryococcus grain with yellow fluorescence color; 11 and 12 Sphagnum leaf cuticle showing no
fluorescence; 13 Palynofacies of sample no. 2 with abundant dinoflagellate, cuticles, and AOM.

Sample no. 3 witnessed significant changes in the nature of the organic matter and
showed a higher enrichment of marine microphytoplankton (Figure 12 (3–14)). The micro-
phytoplankton is represented by alginate, which includes dinoflagellate, acritarchs, and algal
masses (53%) that are bright yellow in color when in fluorescence mode (Figure 12 (3,4,8–
10,14)). The marine organic matter was infested with pyrite framboids (Figure 12 (10,14)).
The terrigenous organic matter was represented by well-preserved vitrinite lumps (12%)
and Sphagnum leaf cuticles (Figure 12 (3–6,11,12)). Cutinite (10%) was yellow in color in
fluorescence mode and showed cellular structure (Figure 12 (7)). Bituminite and liptodetrinite
(25%) existed in higher abundances and had a yellow fluorescence color (Figure 12 (3–6)). The
examination of kerogen extract in transmitted light showed the dominance of flaky AOM and
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dinoflagellates (Figure 12 (13)). The oxygen conditions ranged from dysoxic to suboxic [67].
The kerogen is type II, which agrees well with the results of S2 and HI (Table 5).

In sample no. 4, the alginite abundance was significantly lower (Figure 13 (1–3,6)). The
main observation is the dominant occurrence of a bituminous groundmass. The bituminous
groundmass had pale brownish shade in white light and strong yellow color in fluorescence
mode (Figure 13 (1,2)). In transmitted light, the kerogen extract showed the dominance
of the diffused edge AOM and low abundance of dinoflagellates that had a weak yellow
fluorescence color (Figure 13 (3,4)). The AOM grains contained minute algal particles
(1 µm) with yellow fluorescence. The dominance of bituminous groundmass in general
indicates high level of paleoproductivity and anoxic conditions [68,69]. This is reflected in
the high TOC and HI values of this sample (Table 5).
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Figure 13. All pairs are for the same microscopic fields. Scale bar is 20 µm in all photomicrographs
except 3, 6, 9–12, 14 and 15 is 50 µm; 1, 4, 7 are in incident white light, 2, 5, 6, 8, 11, 12, 13 and 15 are
in florescence mode; 3, 9, 10 and 14 are in transmitted light; (1–3,6) sample no. 4; (4,5,7–12) sample
no. 5; (13–15) sample no. 6; 1 and 2 same field; large enrichment with bituminous groundmass
that has yellow color fluorescence; 3 and 6 palynofacies that are enriched in granular AOM and
diffused edge with pyrite specks and dinoflagellate inclusions; the AOM grains have weak yellow
fluorescence; 4, 7 and 8 alginite grains with yellow color fluorescence; 9 and 12 palynofacies enriched
in cuticles that are distinguished by yellow color fluorescence; 10 and 11 palynofacies enriched in
tracheids and wood phytoclasts with yellow color fluorescence; 13 low alginite content with yellow
fluorescence color; 14 and 15 palynofacies enriched in brown woods, tracheids, and resin having
orange fluorescence color.
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Samples nos. 5, 6 and 7 have the same lithological and organic composition that
is characterized by higher abundance of terrigenous organic matter (Figure 13 (4,5) and
Figure 14). The terrigenous organic matter is dominated by vitrinite and brown wood sheets
that represent the secondary xylem tissues (range between 79%–87%) and wood rays and
tracheids (3%–5%) and lesser amounts of sporinite and resinite (5%–8%) (Figure 14 (1–3,10)).
This terrigenous matter was better observed in the kerogen extracts under transmitted light
and lacked any fluorescence (Figure 13 (4,5) and Figure 14 (7–9)). Only membranous sheets
of cutinite had fluorescence in the whole-rock and kerogen extracts (Figure 13 (4,5,7–9,12)).
Sample no. 7 had gradational thin laminations of different grain sizes (Figure 14 (1–3)). The
fine-grained undisturbed laminations indicate low energy environmental conditions that
allowed the regular deposition of plant tissues, bituminite, and rich pyrite framboids grains
parallel to bedding surfaces (Figure 14 (1–5)). This sample also contained the least amount of
organic matter. The highly sorted and rounded shell fragments in the coarse-grained laminae
point to long distance transportation (Figure 14 (3)). Dinoflagellates (2%–5%) occurred
in lesser amounts and the organic composition in the general indicated proximity of the
environmental settings to terrigenous vegetation sources in calm and dysoxic conditions [69].
The organic composition is of kerogen type III, which is in accordance with the S2 and HI
values that are similar among the three samples (Table 5).
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Figure 14. Scale bar is of (1–3) is 50 µm; (4–6) is 20 µm; (7–9) is 50 µm; (10) is 20 µm 6. Sample no. 7
photomicrographs; 1–3, 5, 6 and 9 are in fluorescence mode; 7 and 8 are in transmitted light; 10 is
in incident light; 1 Dense layered alginite and tracheids with thin laminae of coarse grains; 2 Low
density sheets of alginite and tracheids; 3 Corse grains of shell fragments grading into dense layer
of laminated alginite and tracheids; 4 and 5 pyrite framboids sheets; 6 unidentified organic matter
structure; 7 and 8 Palynofacies with abundant tracheid sheets and brown phytoclasts and frequent
dinoflagellate of yellow fluorescence color; 10 vitrinite grain.
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5. Conclusions

Samples of the Duwi Formation at El Sebaiya area (Mahamid Mine) consist of quartz,
calcite, and clay minerals (montmorillonite and kaolinite). The shale is composed mainly
of SiO2 (48.1%), Al2O3 (9.6%) and Fe2O3 (4.4%), which is also supported by SEM and EDX.

Heavy metals and La have a strong positive correlation with Al2O3, indicating that
these trace elements are associated with clay minerals and were deposited under oxic
conditions and have been subjected to strong chemical weathering.

The kerogen in the black shales from the Mahamid Mine has poor to very good
organic richness. It consists of mixed types II/III and III. Type II (liptinite) is comprised of
bituminite, cutinite, sporinite, and alginate, as well as prominent bituminous groundmass.
Type III consist of terrigenous macerals such as vitrinite and other plant remains like
tracheids. Based on Rock-Eval Tmax and measured vitrinite Ro values, the kerogen is
immature to marginally mature. The expected hydrocarbons are both oil and gas.

The palynofacies and organic petrography analyses agreed in part with the geochemi-
cal analysis. Organic composition indicates the dominance of dysoxic to anoxic conditions
in the paleoenvironment. These terrigenous sediments were of intermediate composition
(between mafic and felsic) and contained trace amounts of K-feldspars. The abundance of
organic matter reveals deposition in a marine proximal setting that was affected by active
terrigenous transportation and humid conditions. Based on the Chemical Index Alteration
(CIA) values, the rocks accumulated during a period of intense chemical weathering.

The aim of this study was to evaluate an unconventional source of energy using a
combination of analytical methods. We hope that the data generated will be applied by
the industry in the future for the exploration and exploitation of this important resource
in Egypt.
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