Afforestation of Abandoned Agricultural Land: Growth of Non-Native Tree Species and Soil Response in the Czech Republic
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
Planting
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. The Results in the Doubek Locality
3.2. Number of HealthySeedlings and Mortality in the Doubek Locality
3.3. Dynamics of Soil Properties in the Doubek Locality (Research Plot)
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.E.; Verkerk, P.J. Trade-offs of European agricultural abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- Farooqi, T.J.A.; Portela, R.; Xu, Z.; Pan, S.; Irfan, M.; Ali, A. Advancing forest hydrological research: Exploring global research trends and future directions through scientometric analysis. J. For. Res. 2024, 35, 128. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Xiang, W.; Ouyang, S.; Zhang, T.; Zhang, X.; Zeng, Y.; Hu, Y.; Luo, G.; Kuzyakov, Y. Forest conversion to plantations: A meta-analysis of consequences for soil and microbial properties and functions. Glob. Change Biol. 2021, 27, 5643–5656. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; López-Mondéjar, R.; Kohout, P. Forest microbiome and global change. Nat. Rev. Microbiol. 2023, 21, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Jia, H.; Wang, X.; Jiang, Y.; Li, J.; He, X. Differential aluminum tolerance and absorption characteristics in Pinus massoniana seedlings colonized with ectomycorrhizal fungi of Lactarius deliciosus and Pisolithus tinctorius. J. For. Res. 2023, 34, 1523–1533. [Google Scholar] [CrossRef]
- Mueller, K.E.; Hobbie, S.E.; Oleksyn, J.; Reich, P.B.; Eissenstat, D.M. Do evergreen and deciduous trees have different effects on net N mineralization in soil? Ecology 2012, 93, 1463–1472. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. J. For. Res. 2023, 34, 821–830. [Google Scholar] [CrossRef]
- Nyssen, B.; Ouden, J.D.; Bindewald, A.; Brancalion, P.; Kremer, K.; Lapin, K.; Raats, L.; Schatzdorfer, E.; Stanturf, J.; Verheyen, K.; et al. Established Invasive Tree Species Offer Opportunities for Forest Resilience to Climate Change. Curr. For. Rep. 2024, 10, 456–486. [Google Scholar] [CrossRef]
- Novotný, S.; Gallo, J.; Baláš, M.; Kuneš, I.; Fuchs, Z.; Brabec, P. Silvicultural potential of the main introduced tree species in the Czech Republic—Review. Cent. Eur. For. J. 2023, 69, 188–200. [Google Scholar] [CrossRef]
- Wohlgemuth, T.; Gossner, M.M.; Campagnaro, T.; Marchante, H.; van Loo, M.; Vacchiano, G.; Castro-Diez, P.; Dobrowolska, D.; Gazda, A.; La Porta, N.; et al. Impact of non-native tree species in Europe on soil properties and biodiversity: A review. NeoBiota 2022, 78, 45–69. [Google Scholar] [CrossRef]
- Brundu, G.; Pauchard, A.; Pyšek, P.; Pergl, J.; Bindewald, A.M.; Brunori, A.; Canavan, S.; Campagnaro, T.; Celesti-Grapow, L.; Dechoum, M.d.S.; et al. Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 2020, 61, 65–116. [Google Scholar] [CrossRef]
- Castro-Diez, P.; Fierro-Brunnenmeister, N.; Gonzalez-Munoz, N.; Gallardo, A. Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 2012, 350, 179–191. [Google Scholar] [CrossRef]
- Elina, O.; Tarja, S.; Luisa, G.; Francesco, P.; Kaisa, N.; Helena, R.; Matti, R.; Alberto, S.; Juha, M. High-acclimation capacity for growth and role of soil fertility after long-range transfer of Betula pendula and B. pubescens Between Finland and Italy. J. For. Res. 2025, 36, 38. [Google Scholar] [CrossRef]
- Nicolescu, V.-N.; Rédei, K.; Mason, W.L.; Vor, T.; Pöetzelsberger, E.; Bastien, J.-C.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 2020, 31, 1081–1101. [Google Scholar] [CrossRef]
- Puchałka, R.; Dyderski, M.K.; Vítková, M.; Sádlo, J.; Klisz, M.; Netsvetov, M.; Prokopuk, Y.; Matisons, R.; Mionskowski, M.; Wojda, T.; et al. Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Glob. Change Biol. 2021, 27, 1587–1600. [Google Scholar] [CrossRef] [PubMed]
- Øyen, B.-H.; Nygaard, P.H. Impact of Sitka spruce on biodiversity in NW Europe with a special focus on Norway—Evidence, perceptions and regulations. Scand. J. For. Res. 2020, 35, 117–133. [Google Scholar] [CrossRef]
- Nosko, P.; Moreau, K.; Kuehne, C.; Major, K.C.; Bauhus, J. Does a shift in shade tolerance as suggested by seedling morphology explain differences in regeneration success of northern red oak in native and introduced ranges? J. For. Res. 2022, 33, 949–962. [Google Scholar] [CrossRef]
- Abeli, T.; Di Giulio, A. Risks of massive tree planting in Europe should be considered by the EU Forestry Strategy 2030. Restor. Ecol. 2023, 31, e13834. [Google Scholar] [CrossRef]
- Wagner, V.; Večeřa, M.; Jiménez-Alfaro, B.; Pergl, J.; Lenoir, J.; Svenning, J.; Pyšek, P.; Agrillo, E.; Biurrun, I.; Campos, J.A.; et al. Alien plant invasion hotspots and invasion debt in European woodlands. J. Veg. Sci. 2021, 32, e13014. [Google Scholar] [CrossRef]
- Bezabih Beyene, B.; Li, J.; Yuan, J.; Dong, Y.; Liu, D.; Chen, Z.; Kim, J.; Kang, H.; Freeman, C.; Ding, W. Non-native plant invasion can accelerate global climate change by increasing wetland methane and terrestrial nitrous oxide emissions. Glob. Change Biol. 2022, 28, 5453–5468. [Google Scholar] [CrossRef]
- Shovon, T.A.; Auge, H.; Haase, J.; Nock, C.A. Positive effects of tree species diversity on productivity switch to negative after severe drought mortality in a temperate forest experiment. Glob. Change Biol. 2024, 30, e17252. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Sangha, K.S.; Dhillon, G.P.S. Differences in gall development by invasive pest Eucalyptus gall wasp (Leptocybe invasa) in susceptible and resistant Eucalyptus clones. J. For. Res. 2025, 36, 23. [Google Scholar] [CrossRef]
- Wohlgemuth, T.; Moser, B.; Pötzelsberger, E.; Rigling, A.; Gossner, M.M. Über die Invasivität der Douglasie und ihre Auswirkungen auf Boden und Biodiversität. Schweiz. Z. Fur Forstwes. 2021, 172, 118–127. [Google Scholar] [CrossRef]
- Frigo, D.; Eggertsson, Ó.; Prendin, A.L.; Dibona, R.; Unterholzner, L.; Carrer, M. Growth form and leaf habit drive contrasting effects of Arctic amplification in long-lived woody species. Glob. Change Biol. 2023, 29, 5896–5907. [Google Scholar] [CrossRef] [PubMed]
- Lázaro-Lobo, A.; Ruiz-Benito, P.; Cruz-Alonso, V.; Castro-Díez, P. Quantifying carbon storage and sequestration by native and non-native forests under contrasting climate types. Glob. Change Biol. 2023, 29, 4530–4542. [Google Scholar] [CrossRef]
- Pötzelsberger, E.; Lapin, K.; Brundu, G.; Adriaens, T.; Andonovski, V.; Andrašev, S.; Bastien, J.-C.; Brus, R.; Čurović, M.; Čurović, Ž.; et al. Mapping the patchy legislative landscape of non-native tree species in Europe. For. Int. J. For. Res. 2020, 93, 567–586. [Google Scholar] [CrossRef]
- Booy, O.; Robertson, P.A.; Moore, N.; Ward, J.; Roy, H.E.; Adriaens, T.; Shaw, R.; Van Valkenburg, J.; Wyn, G.; Bertolino, S.; et al. Using structured eradication feasibility assessment to prioritize the management of new and emerging invasive alien species in Europe. Glob. Change Biol. 2020, 26, 6235–6250. [Google Scholar] [CrossRef]
- Campagnaro, T.; Brundu, G.; Sitzia, T. Five major invasive alien tree species in European Union forest habitat types of the Alpine and Continental biogeographical regions. J. Nat. Conserv. 2018, 43, 227–238. [Google Scholar] [CrossRef]
- Hulme, P.E.; Pyšek, P.; Jarošík, V.; Pergl, J.; Schaffner, U.; Vilà, M. Bias and error in understanding plant invasion impacts. Trends Ecol. Evol. 2013, 28, 212–218. [Google Scholar] [CrossRef]
- Medina-Villar, S.; Rodríguez-Echeverría, S.; Lorenzo, P.; Alonso, A.; Pérez-Corona, E.; Castro-Díez, P. Impacts of the alien trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. on soil nutrients and microbial communities. Soil Biol. Biochem. 2016, 96, 65–73. [Google Scholar] [CrossRef]
- Cremer, M.; Prietzel, J. Soil acidity and exchangeable base cation stocks Under pure and mixed stands of European beech, Douglas fir and Norway spruce. Plant Soil 2017, 415, 393–405. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.; Niu, S.; Li, X.; Wang, Y.; Bai, Z. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: A case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. CATENA 2018, 165, 72–79. [Google Scholar] [CrossRef]
- Krevš, A.; Kučinskiene, A. Influence of invasive Acer negundo leaf litter on benthic microbial abundance and activity in the littoral zone of a temperate river in Lithuania. Knowl. Manag. Aquat. Ecosyst. 2017, 26. [Google Scholar] [CrossRef]
- Vallé, C.; Le Viol, I.; Nabias, J.; Princé, K.; Gosselin, F. Tree species identity shapes the relationship between canopy cover and herb-layer species in temperate forests. J. Ecol. 2025, 113, 582–597. [Google Scholar] [CrossRef]
- Skowronek, S.; Terwei, A.; Zerbe, S.; Mölder, I.; Annighöfer, P.; Kawaletz, H.; Ammer, C.; Heilmeier, H. Regeneration Potential of Floodplain Forests Under the Influence of Nonnative Tree Species: Soil Seed Bank Analysis in Northern Italy. Restor. Ecol. 2014, 22, 22–30. [Google Scholar] [CrossRef]
- Novák, J.; Kacálek, D.; Dušek, D. Litterfall nutrient return in thinned young stands with Douglas fir. Cent. Eur. For. J. 2020, 66, 78–84. [Google Scholar] [CrossRef]
- Nicolescu, V.-N.; Mason, W.L.; Bastien, J.-C.; Vor, T.; Petkova, K.; Podrázský, V.; Đodan, M.; Perić, S.; La Porta, N.; Brus, R.; et al. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in Europe: An overview of management practices. J. For. Res. 2023, 34, 871–888. [Google Scholar] [CrossRef]
- Podrázský, V.; Vacek, Z.; Vacek, S.; Vítámvás, J.; Gallo, J.; Prokůpková, A.; D’Andrea, G. Production potential and structural variability of pine stands in the Czech Republic: Scots pine (Pinus sylvestris L.) vs. introduced pines—Case study and problem review. J. For. Sci. 2020, 66, 197–207. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Eşen, D.; Yildiz, O.; Král, J.; Gallo, J. Effect of Invasive Rhododendron ponticum L. on Natural Regeneration and Structure of Fagus orientalis Lipsky Forests in the Black Sea Region. Forests 2020, 11, 603. [Google Scholar] [CrossRef]
- Sławski, M.; Tarabuła, T.; Sławska, M. Does the enrichment of post-arable soil with organic matter stimulate forest ecosystem restoration—A view from the perspective of three decades after the afforestation of farmland. For. Ecol. Manag. 2020, 478, 118525. [Google Scholar] [CrossRef]
- Tóth, S.; Rysak, W.; Soltysová, B.; Karahuta, J. Effect of Soil Conditioner Based on Humic Acids Humac Agro on Soil and Yield And Sugar Content of Sugar Beet in Context of Selected Indicators of Agriculture System Sustainability. Listy Cukrov. A Reparske 2015, 131, 53. [Google Scholar]
- Frišták, V.; Pipíška, M.; Nováková, M.; Lesný, J.; Packová, A. Sorption separation of cadmium from aqueous solutions by alginite material: Kinetic and equilibrium study. Desalination Water Treat. 2015, 56, 379–387. [Google Scholar] [CrossRef]
- Pichler, V.; Gregor, J.; Bublinec, E.; Vass, D. Ecological-productive properties of Slovak alginite. Ekol.-Bratisl. 2001, 20, 278–284. [Google Scholar]
- Podrázský, V.; Gallo, J.; Baláš, M.; Kuneš, I.; Tama, A.Y.; Šulitka, M. Initial growth of native and introduced hardwoods at the afforested agricultural lands—Preliminary results. In Proceedings of the 11th Hardwood Conference Proceedings, Columbia, MO, USA, 23–26 March 1997; p. 102. [Google Scholar]
- Vondráková, A.; Vávra, A.; Voženílek, V. Climatic regions of the Czech Republic. J. Maps 2013, 9, 425–430. [Google Scholar] [CrossRef]
- Němeček, J.; Mühlhanselová, M.; Macků, J.; Vokoun, J.; Vavříček, D.; Novák, P. Taxonomic Classification System of Soils in the Czech Republic, 2nd ed.; Česká Zemědělská Univerzita Praha: Prague, Czech Republic, 2011; p. 94. [Google Scholar]
- Gallo, J.; Záruba, J.; Podrázský, V. Výzkumná plocha Doubek—Introdukované Dřeviny na Zemědělské Půdě. In Nové Poznatky ve Výzkumu Introdukovaných Dřevin; Czech Forestry Society, z. s.: Prague, Czech Republic, 2022; ISBN 978-80-02-02981-6. [Google Scholar]
- Kappen, H. Die Bodenazidität: Nach Agrikulturchemischen Gesichtspunkten Dargestellt; Springer: Berlin/Heidelberg, Germany, 1929. [Google Scholar]
- Ciavatta, C.; Antisari, L.V.; Sequi, P. Determination of organic carbon in soils and fertilizers. Commun. Soil Sci. Plant Anal. 1989, 20, 759–773. [Google Scholar] [CrossRef]
- Kirk, P.L. Kjeldahl Method for Total Nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3 Chemical Methods; SSSA Book Series; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Tabatabai, C.T., Johnston, M.E., Eds.; Soil Science Society of America; American Society of Agronomy: Madison, WI, USA, 2018; pp. 961–1010. ISBN 978-0-89118-866-7. [Google Scholar]
- Zbíral, J. Determination of plant-available micronutrients by the Mehlich 3 soil extractant—A proposal of critical values. Plant Soil Environ. 2016, 62, 527–531. [Google Scholar] [CrossRef]
- Zbíral, J. Comparison of Extraction Procedures for the Determination of Basic Nutrients in Soils in the Czech Republic; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 2001. [Google Scholar]
- Pedersen, N.K.; Schmidt, I.K.; Kepfer-Rojas, S. Drivers of tree colonization, species richness, and structural variation during the initial three decades of natural forest colonization in abandoned agricultural soils. For. Ecol. Manag. 2023, 543, 121138. [Google Scholar] [CrossRef]
- Piché, N.; Kelting, D.L. Recovery of soil productivity with forest succession on abandoned agricultural land. Restor. Ecol. 2015, 23, 645–654. [Google Scholar] [CrossRef]
- Yao, W.; Nan, F.; Li, Y.; Li, Y.; Liang, P.; Zhao, C. Effects of Different Afforestation Years on Soil Properties and Quality. Forests 2023, 14, 329. [Google Scholar] [CrossRef]
- Karrer, G.; Bassler-Binder, G.; Willner, W. Assessment of Drought-Tolerant Provenances of Austria’s Indigenous Tree Species. Sustainability 2022, 14, 2861. [Google Scholar] [CrossRef]
- Hazarika, R.; Lapin, K.; Bindewald, A.; Vaz, A.S.; Marinšek, A.; La Porta, N.; Detry, P.; Berger, F.; Barič, D.; Simčič, A.; et al. Balancing Risks and Benefits: Stakeholder Perspective on Managing Non-Native Tree Species in the European Alpine Space. Mitig. Adapt. Strat. Glob. Change 2024, 29, 55. [Google Scholar] [CrossRef]
- Webb, J.; Goodenough, A.E. Applying palaeoecological analogues to contemporary challenges: Community-level effects of canopy gaps caused by systematic decline of a prevalent tree species. J. For. Res. 2024, 35, 132. [Google Scholar] [CrossRef]
- Heinz, M.; Prospero, S. A modeling approach to determine substitutive tree species for sweet chestnut in stands affected by ink disease. J. For. Res. 2025, 36, 24. [Google Scholar] [CrossRef]
- Priya, E.; Sarkar, S.; Maji, P.K. A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar] [CrossRef]
- Singh Brar, B.; Singh, J.; Singh, G.; Kaur, G. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Meynier, S.; Brun, J.-J. Humus forms pathways in low-elevation cold scree slopes: Tangel or Mor? Appl. Soil Ecol. 2018, 123, 572–580. [Google Scholar] [CrossRef]
- Alizoti, P.; Bastien, J.-C.; Chakraborty, D.; Klisz, M.M.; Kroon, J.; Neophytou, C.; Schueler, S.; Loo, M.V.; Westergren, M.; Konnert, M.; et al. Non-Native Forest Tree Species in Europe: The Question of Seed Origin in Afforestation. Forests 2022, 13, 273. [Google Scholar] [CrossRef]
- Wagner, V.; Chytrý, M.; Jiménez-Alfaro, B.; Pergl, J.; Hennekens, S.; Biurrun, I.; Knollová, I.; Berg, C.; Vassilev, K.; Rodwell, J.S.; et al. Alien plant invasions in European woodlands. Divers. Distrib. 2017, 23, 969–981. [Google Scholar] [CrossRef]
- Danise, T.; Andriuzzi, W.S.; Battipaglia, G.; Certini, G.; Guggenberger, G.; Innangi, M.; Mastrolonardo, G.; Niccoli, F.; Pelleri, F.; Fioretto, A. Mixed-Species Plantation Effects on Soil Biological and Chemical Quality and Tree Growth of A Former Agricultural Land. Forests 2021, 12, 842. [Google Scholar] [CrossRef]
- Pallett, R.N. Evidence-based global yield benchmarks in unthinned industrial plantation eucalypts. South. For. A J. For. Sci. 2024, 86, 153–168. [Google Scholar] [CrossRef]
- Brichta, J.; Vacek, S.; Vacek, Z.; Cukor, J.; Mikeska, M.; Bílek, L.; Šimůnek, V.; Gallo, J.; Brabec, P. Importance and potential of Scots pine (Pinus sylvestris L.) in 21st century. Cent. Eur. For. J. 2023, 69, 3–20. [Google Scholar] [CrossRef]
- Journé, V.; Bogdziewicz, M.; Courbaud, B.; Kunstler, G.; Qiu, T.; Acuña, M.A.; Ascoli, D.; Bergeron, Y.; Berveiller, D.; Boivin, T.; et al. The Relationship Between Maturation Size and Maximum Tree Size From Tropical to Boreal Climates. Ecol. Lett. 2024, 27, e14500. [Google Scholar] [CrossRef] [PubMed]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Matula, R.; Knířová, S.; Vítámvás, J.; Šrámek, M.; Kníř, T.; Ulbrichová, I.; Svoboda, M.; Plichta, R. Shifts in intra-annual growth dynamics drive a decline in productivity of temperate trees in Central European forest under warmer climate. Sci. Total Environ. 2023, 905, 166906. [Google Scholar] [CrossRef]
- Hong, S.; Piao, S.; Chen, A.; Liu, Y.; Liu, L.; Peng, S.; Sardans, J.; Sun, Y.; Peñuelas, J.; Zeng, H. Afforestation neutralizes soil pH. Nat. Commun. 2018, 9, 520. [Google Scholar] [CrossRef]
- Laganière, J.; Angers, D.A.; Paré, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Change Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Jobbágy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef]
- Dlouhá, Š.; Borůvka, L.; Pavlů, L.; Tejnecký, V.; Drábek, O. Comparison of Al speciation and other soil characteristics Between meadow, young forest and old forest stands. J. Inorg. Biochem. 2009, 103, 1459–1464. [Google Scholar] [CrossRef]
- Harta, I.; Simon, B.; Vinogradov, S.; Winkler, D. Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area. J. For. Res. 2021, 32, 1819–1832. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Świtoniak, M. Assessment of soil organic carbon stocks differentiation in humus horizons of clay-illuvial soils within young morainic landscapes, northern Poland. Soil Sci. Ann. 2023, 74, 1–14. [Google Scholar] [CrossRef]
- Armolaitis, K.; Aleinikovienė, J.; Lubytė, J.; Žėkaitė, V.; Garbaravičius, P. Stability of soil organic carbon in agro and forest ecosystems on Arenosol. Zemdirb.-Agric. 2013, 100, 227–234. [Google Scholar] [CrossRef]
- Sheng, H.; Zhou, P.; Zhang, Y.; Kuzyakov, Y.; Zhou, Q.; Ge, T.; Wang, C. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biol. Biochem. 2015, 88, 148–157. [Google Scholar] [CrossRef]
- Kukuļs, I.; Kļaviņš, M.; Nikodemus, O.; Kasparinskis, R.; Brūmelis, G. Changes in soil organic matter and soil humic substances following the afforestation of former agricultural lands in the boreal-nemoral ecotone (Latvia). Geoderma Reg. 2019, 16, e00213. [Google Scholar] [CrossRef]
- Varnagirytė-Kabašinskienė, I.; Žemaitis, P.; Armolaitis, K.; Stakėnas, V.; Urbaitis, G. Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone. Forests 2021, 12, 1562. [Google Scholar] [CrossRef]
- Speckert, T.C.; Suremann, J.; Gavazov, K.; Santos, M.J.; Hagedorn, F.; Wiesenberg, G.L.B. Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture. Soil 2023, 9, 609–621. [Google Scholar] [CrossRef]
- Juřicová, A.; Chuman, T.; Žížala, D. Soil organic carbon content and stock change after half a century of intensive cultivation in a chernozem area. Catena 2022, 211, 105950. [Google Scholar] [CrossRef]
- Zhu, X.; Fang, X.; Wang, L.; Xiang, W.; Alharbi, H.A.; Lei, P.; Kuzyakov, Y. Regulation of soil phosphorus availability and composition during forest succession in subtropics. For. Ecol. Manag. 2021, 502, 119706. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Ma, C.; Xiang, Y.; Wu, J. Restoring farmland to forest increases phosphorus limitation based on microbial and soil C:N:P stoichiometry-a synthesis across China. For. Ecol. Manag. 2024, 556, 121745. [Google Scholar] [CrossRef]
- Hammad, H.M.; Fasihuddin Nauman, H.M.; Abbas, F.; Ahmad, A.; Bakhat, H.F.; Saeed, S.; Shah, G.M.; Ahmad, A.; Cerdà, A. Carbon sequestration potential and soil characteristics of various land use systems in arid region. J. Environ. Manag. 2020, 264, 110254. [Google Scholar] [CrossRef] [PubMed]
- Spohn, M.; Stendahl, J. Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture. Biogeosciences 2022, 19, 2171–2186. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture—Status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
Variant | Char. | Species (Mean ± Standard Deviation) | ||
---|---|---|---|---|
KS | PT | LS | ||
Alginite-A | H20 cm | 39.01 ± 19.15 a | 58.84 ± 27.25 b | 30.60 ± 19.32 c |
Alginite-A | H21 cm | 62.84 ± 38.64 a | 132.10 ± 59.69 b | 65.69 ± 40.29 c |
Alginite-A | H22 cm | 94.98 ± 55.01 a | 166.72 ± 81.07 b | 99.40 ± 59.34 c |
Alginite-A | H23 cm | 128.62 ± 70.88 a | 206.57 ± 100.97 b | 133.75 ± 75.03 c |
Alginite-A | H24 cm | 149.46 ± 84.35 a | 223.36 ± 111.72 b | 155.38 ± 110.05 a |
Humac-B | H20 cm | 36.14 ± 19.96 a | 50.10 ± 23.30 b | 25.46 ± 15.95 c |
Humac-B | H21 cm | 58.61 ± 35.89 a | 98.28 ± 44.53 b | 45.38 ± 32.46 a |
Humac-B | H22 cm | 84.85 ± 49.01 a | 130.53 ± 58.21 b | 74.19 ± 55.69 a |
Humac-B | H23 cm | 117.34 ± 64.21 a | 159.90 ± 72.72 b | 96.46 ± 73.23 a |
Humac-B | H24 cm | 138.15 ± 78.87 a | 178.92 ± 82.01 b | 118.22 ± 92.70 a |
Control-C | H20 cm | 40.42 ± 18.97 a | 47.38 ± 26.88 b | 34.19 ± 20.47 c |
Control-C | H21 cm | 64.60 ± 33.60 a | 91.55 ± 52.83 b | 59.31 ± 40.93 a |
Control-C | H22 cm | 102.49 ± 50.45 a | 134.22 ± 77.97 b | 93.04 ± 61.16 a |
Control-C | H23 cm | 143.39 ± 66.66 a | 176.96 ± 105.12 b | 148.65 ± 84.82 a |
Control-C | H24 cm | 175.47 ± 81.67 a | 192.80 ± 117.26 b | 184.25 ± 94.49 a |
Variant | Char. | Species (Mean ± Standard Deviation) | ||
---|---|---|---|---|
KS | PT | LS | ||
Alginite-A | I21 cm | 23.83 ± 25.08 a | 73.26 ± 40.41 b | 35.09 ± 30.02 c |
Alginite-A | I22 cm | 32.69 ± 23.21 a | 37.24 ± 23.88 b | 38.34 ± 31.01 b |
Alginite-A | I23 cm | 23.26 ± 32.87 a | 16.52 ± 50.91 b | 19.13 ± 53.64 b |
Alginte-A | I24 cm | 33.65 ± 26.41 a | 39.85 ± 31.52 a | 34.35 ± 29.33 a |
Humac-B | I21 cm | 22.46 ± 23.13 a | 48.17 ± 30.24 b | 19.92 ± 21.52 a |
Humac-B | I22 cm | 27.43 ± 23.35 a | 32.25 ± 19.67 b | 30.13 ± 31.64 a |
Humac-B | I23 cm | 23.31 ± 19.36 a | 19.02 ± 26.21 b | 19.31 ± 25.68 a |
Humac-B | I24 cm | 32.48 ± 24.45 a | 29.37 ± 20.75 a | 22.27 ± 32.81 a |
Control-C | I21 cm | 24.17 ± 20.60 a | 44.17 ± 37.08 b | 25.11 ± 26.09 a |
Control-C | I22 cm | 37.89 ± 24.12 a | 44.77 ± 33.14 a | 34.57 ± 29.27 a |
Control-C | I23 cm | 31.82 ± 19.51 a | 15.42 ± 21.55 a | 40.08 ± 49.48 a |
Control-C | I24 cm | 40.90 ± 21.61 a | 42.75 ± 32.51 a | 55.62 ± 59.68 a |
Tree Species | Healthy State/Mortality | Year 2020 | 2022 | 2023 | Total |
---|---|---|---|---|---|
KS | Healthy state | 278 | 21 | 30 | 329 |
Mortality | 53 | 2 | 2 | 57 | |
Total | 331 | 23 | 32 | 386 | |
PT | Healthy state | 276 | 41 | 11 | 328 |
Mortality | 50 | 9 | 3 | 62 | |
Total | 326 | 50 | 14 | 390 | |
LS | Healthy state | 71 | 23 | 11 | 105 |
Mortality | 16 | 4 | 5 | 25 | |
Total | 87 | 27 | 16 | 130 | |
Total | Healthy state | 625 | 85 | 52 | 762 |
Mortality | 119 | 15 | 10 | 144 | |
Grand total | Healthy state + Mortality | 744 | 100 | 62 | 906 |
Characteristics | Unit | Horizon | pl 1 | pl 2 | pl 3 | pl 4 | pl 5 |
---|---|---|---|---|---|---|---|
pH/H2O | 3 | 5.60 a | 4.87 b | 5.83 c | 5.91 c | 5.84 c | |
4 | 5.64 a | 5.08 b | 5.72 a | 5.76 a | 5.71 a | ||
pH/KCl | 3 | 4.54 a | 3.57 b | 4.74 a | 4.80 a | 4.68 a | |
4 | 4.67 a | 3.76 b | 4.75 a | 4.63 a | 4.63 a | ||
S | mval/100 g | 3 | 9.77 a | 5.81 b | 10.67 a | 10.68 a | 11.88 a |
4 | 9.74 a | 4.89 b | 9.99 a | 10.01 a | 11.26 a | ||
T − S | mval/100 g | 3 | 2.60 a | 7.33 b | 2.18 a | 2.11 a | 2.06 a |
4 | 2.25 a | 5.21 b | 2.04 a | 2.20 a | 1.95 a | ||
T | mval/100 g | 3 | 12.38 a | 12.94 a | 12.84 a | 12.79 a | 13.94 a |
4 | 11.98 a | 10.10 a | 12.02 a | 12.20 a | 13.22 a | ||
V | % | 3 | 78.99 a | 42.73 b | 82.93 a | 83.43 a | 85.07 a |
4 | 81.29 a | 47.74 b | 83.17 a | 81.99 a | 85.13 a | ||
Titration acidity | mval/kg | 3 | 2.26 a | 27.27 b | 1.97 a | 1.93 a | 1.77 a |
4 | 2.06 a | 24.27 b | 2.00 a | 1.99 a | 1.82 a | ||
H+ | mval/kg | 3 | 1.59 a | 1.68 a | 1.38 ab | 1.28 b | 1.34 b |
4 | 1.52 a | 1.70 b | 1.43 a | 1.41 a | 1.38 a | ||
AL3+ | mval/kg | 3 | 0.67 a | 25.29 b | 0.59 a | 0.64 a | 0.43 a |
4 | 0.54 a | 22.57 b | 0.58 a | 0.58 a | 0.48 a | ||
Humus content | % | 3 | 2.50 a | 4.90 b | 2.69 a | 2.34 a | 2.83 a |
4 | 2.63 a | 2.98 a | 2.20 a | 1.97 a | 2.05 a | ||
Cox | % | 3 | 1.45 a | 2.84 b | 1.56 a | 1.35 a | 1.65 a |
4 | 1.53 a | 1.73 a | 1.28 a | 1.14 a | 1.19 a | ||
combustible l | % | 3 | 4.81 a | 7.09 b | 5.02 a | 4.86 a | 5.26 a |
4 | 4.84 ab | 5.51 b | 4.49 a | 4.36 a | 4.63 a | ||
% | 3 | 0.143 a | 0.150 a | 0.146 a | 0.109 a | 0.096 a | |
total N | 4 | 0.121 a | 0.122 a | 0.135 a | 0.120 a | 0.119 a | |
P | mg/kg | 3 | 36.0 a | 21.67 a | 3.50 a | 37.08 a | 36.25 a |
4 | 37.25 a | 14.00 b | 2.75 a | 41.25 a | 32.25 a | ||
K | mg/kg | 3 | 203.75 a | 157.67 a | 253.75 a | 343.00 b | 390.20 b |
4 | 182.75 a | 142.75 a | 184.00 a | 180.50 a | 185.75 a | ||
Ca | mg/kg | 3 | 1084.8 a | 478.0 b | 1183.3 a | 1083.5 a | 1197.3 a |
4 | 1163.0 a | 469.3 b | 1185.5 a | 1089.3 a | 1266.8 a | ||
Mg | mg/kg | 3 | 114.0 a | 75.0 b | 120.75 a | 129.5 a | 121.0 a |
4 | 122.8 a | 70.3 b | 110.5 a | 105.5 a | 114.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tama, A.Y.; Manourova, A.; Mohammad, R.K.; Podrázský, V. Afforestation of Abandoned Agricultural Land: Growth of Non-Native Tree Species and Soil Response in the Czech Republic. Forests 2025, 16, 1113. https://doi.org/10.3390/f16071113
Tama AY, Manourova A, Mohammad RK, Podrázský V. Afforestation of Abandoned Agricultural Land: Growth of Non-Native Tree Species and Soil Response in the Czech Republic. Forests. 2025; 16(7):1113. https://doi.org/10.3390/f16071113
Chicago/Turabian StyleTama, Abubakar Yahaya, Anna Manourova, Ragheb Kamal Mohammad, and Vilém Podrázský. 2025. "Afforestation of Abandoned Agricultural Land: Growth of Non-Native Tree Species and Soil Response in the Czech Republic" Forests 16, no. 7: 1113. https://doi.org/10.3390/f16071113
APA StyleTama, A. Y., Manourova, A., Mohammad, R. K., & Podrázský, V. (2025). Afforestation of Abandoned Agricultural Land: Growth of Non-Native Tree Species and Soil Response in the Czech Republic. Forests, 16(7), 1113. https://doi.org/10.3390/f16071113