Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = aerosil nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2580 KiB  
Article
Dual-Particle Synergy in Bio-Based Linseed Oil Pickering Emulsions: Optimising ZnO–Silica Networks for Greener Mineral Sunscreens
by Marina Barquero, Luis A. Trujillo-Cayado and Jenifer Santos
Materials 2025, 18(13), 3030; https://doi.org/10.3390/ma18133030 - 26 Jun 2025
Viewed by 398
Abstract
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect [...] Read more.
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect of incorporating fumed silica/alumina (Aerosil COK 84) was evaluated. A central composite response surface design was used to ascertain the oil/ZnO ratio that maximised the in vitro sun protection factor at sub-300 nm droplet size. The incorporation of Aerosil at concentrations ranging from 0 to 2 wt.% resulted in a transformation of the dispersion from a nearly Newtonian state to a weak-gel behaviour. This alteration was accompanied by a reduction in the Turbiscan Stability Index. Microscopic analysis has revealed a hierarchical particle architecture, in which ZnO forms Pickering shells around each droplet, while Aerosil aggregates bridge neighboring interfaces, creating a percolated silica scaffold that immobilises droplets and amplifies multiple UV scattering. The findings demonstrate that coupling interfacial Pickering armour with a continuous silica network yields a greener, physically robust mineral sunscreen and offers a transferable strategy for stabilising plant-oil emulsions containing inorganic actives. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

21 pages, 13283 KiB  
Article
Quantitative Analysis of Morphology and Surface Properties of Poly(lactic acid)/Poly(ε-caprolactone)/Hydrophilic Nano-Silica Blends
by Sanja Mahović Poljaček, Dino Priselac, Tamara Tomašegović, Mirela Leskovac, Aleš Šoster and Urška Stanković Elesini
Polymers 2024, 16(12), 1739; https://doi.org/10.3390/polym16121739 - 19 Jun 2024
Cited by 1 | Viewed by 1519
Abstract
A quantitative analysis of the morphology, as well as an analysis of the distribution of components and surface/interfacial properties in poly(lactic acid)(PLA) InegoTM 3251D, poly(ε-caprolactone) (PCL) Capa 6800 and nano-silica (SiO2) Aerosil®200 blends, was conducted in this research. The [...] Read more.
A quantitative analysis of the morphology, as well as an analysis of the distribution of components and surface/interfacial properties in poly(lactic acid)(PLA) InegoTM 3251D, poly(ε-caprolactone) (PCL) Capa 6800 and nano-silica (SiO2) Aerosil®200 blends, was conducted in this research. The study aimed to improve the understanding of how PLA, PCL, and nano-SiO2 interact, resulting in the specific morphology and surface properties of the blends. Samples were produced by varying the concentration of all three components. They were analyzed using SEM, EDS mapping, water contact angle measurements, surface free energy calculation, adhesion parameter measurements, and FTIR-ATR spectroscopy. The results showed that the addition of SiO2 nanoparticles led to an increase in the contact angle of water, making the surface more hydrophobic. SEM images of the blends showed that increasing the PCL content reduced the size of spherical PCL elements in the blends. FTIR-ATR analysis showed that SiO2 nanoparticles influenced the structure ordering of PLA in the blend with equal portions of PLA and PCL. In the samples with a higher PCL content, the spherical elements present in the samples with a higher PLA/PCL ratio have been reduced, indicating better interactions at the interface between PLA, PCL, and SiO2. SEM-EDS mapping of the PLA/PCL 100/0 blend surfaces revealed the presence of SiO2 clusters and the silicon (Si) concentration reaching up to ten times higher than the nominal concentration of SiO2. However, with the addition of 3% SiO2 to the blend containing PCL, the structure became more granular. Specifically, Si protrusions in the sample PLA/PCL 90/10 with 3% SiO2 displayed 29.25% of Si, and the sample PLA/PCL 70/30 with 3% SiO2 displayed an average of 10.61% of Si at the protrusion locations. The results confirmed the affinity of SiO2 to be encapsulated by PCL. A better understanding of the interactions between the materials in the presented blends and the quantitative analysis of their morphology could improve the understanding of their properties and allow the optimization of their application for different purposes. Full article
Show Figures

Figure 1

17 pages, 4357 KiB  
Article
Biocompatibility Analysis of Bio-Based and Synthetic Silica Nanoparticles during Early Zebrafish Development
by Cinzia Bragato, Roberta Mazzotta, Andrea Persico, Rossella Bengalli, Mariana Ornelas, Filipa Gomes, Patrizia Bonfanti and Paride Mantecca
Int. J. Mol. Sci. 2024, 25(10), 5530; https://doi.org/10.3390/ijms25105530 - 18 May 2024
Cited by 7 | Viewed by 2359
Abstract
During the twenty-first century, engineered nanomaterials (ENMs) have attracted rising interest, globally revolutionizing all industrial sectors. The expanding world population and the implementation of new global policies are increasingly pushing society toward a bioeconomy, focused on fostering the adoption of bio-based nanomaterials that [...] Read more.
During the twenty-first century, engineered nanomaterials (ENMs) have attracted rising interest, globally revolutionizing all industrial sectors. The expanding world population and the implementation of new global policies are increasingly pushing society toward a bioeconomy, focused on fostering the adoption of bio-based nanomaterials that are functional, cost-effective, and potentially secure to be implied in different areas, the medical field included. This research was focused on silica nanoparticles (SiO2-NPs) of bio-based and synthetic origin. SiO2-NPs are composed of silicon dioxide, the most abundant compound on Earth. Due to their characteristics and biocompatibility, they are widely used in many applications, including the food industry, synthetic processes, medical diagnosis, and drug delivery. Using zebrafish embryos as in vivo models, we evaluated the effects of amorphous silica bio-based NPs from rice husk (SiO2-RHSK NPs) compared to commercial hydrophilic fumed silica NPs (SiO2-Aerosil200). We evaluated the outcomes of embryo exposure to both nanoparticles (NPs) at the histochemical and molecular levels to assess their safety profile, including developmental toxicity, neurotoxicity, and pro-inflammatory potential. The results showed differences between the two silica NPs, highlighting that bio-based SiO2-RHSK NPs do not significantly affect neutrophils, macrophages, or other innate immune system cells. Full article
(This article belongs to the Special Issue Zebrafish Model for Toxicological and Pharmacological Research)
Show Figures

Figure 1

17 pages, 13173 KiB  
Article
The Impact of Nano- and Micro-Silica on the Setting Time and Microhardness of Conventional Glass–Ionomer Cements
by Zeynep A. Güçlü, Şaban Patat and Nichola J. Coleman
Dent. J. 2024, 12(3), 54; https://doi.org/10.3390/dj12030054 - 27 Feb 2024
Cited by 1 | Viewed by 2650
Abstract
The objective of this study was to investigate the effect of the incorporation of 2, 4 or 6 wt% of amorphous nano- or micro-silica (Aerosil® OX 50 or Aeroperl® 300 Pharma (Evonik Operations GmbH, Essen, Germany), respectively) on the net setting [...] Read more.
The objective of this study was to investigate the effect of the incorporation of 2, 4 or 6 wt% of amorphous nano- or micro-silica (Aerosil® OX 50 or Aeroperl® 300 Pharma (Evonik Operations GmbH, Essen, Germany), respectively) on the net setting time and microhardness of Ketac™ Molar (3M ESPE, St. Paul, MN, USA) and Fuji IX GP® (GC Corporation, Tokyo, Japan) glass–ionomer cements (GICs) (viz. KM and FIX, respectively). Both silica particles were found to cause a non-linear, dose-dependent reduction in setting time that was within the clinically acceptable limits specified in the relevant international standard (ISO 9917-1:2007). The microhardness of KM was statistically unaffected by blending with 2 or 4 wt% nano-silica at all times, whereas 6 wt% addition decreased and increased the surface hardness at 1 and 21 days, respectively. The incorporation of 4 or 6 wt% nano-silica significantly improved the microhardness of FIX at 1, 14 and 21 days, with no change in this property noted for 2 wt% addition. Micro-silica also tended to enhance the microhardness of FIX, at all concentrations and times, to an extent that became statistically significant for all dosages at 21 days. Conversely, 4 and 6 wt% additions of micro-silica markedly decreased the initial 1-day microhardness of KM, and the 21-day sample blended at 4 wt% was the only specimen that demonstrated a significant increase in this property. Scanning electron microscopy indicated that the nano- and micro-silica particles were well distributed throughout the composite structures of both GICs with no evidence of aggregation or zoning. The specific mechanisms of the interaction of inorganic nanoparticles with the constituents of GICs require further understanding, and a lack of international standardization of the determination of microhardness is problematic in this respect. Full article
(This article belongs to the Special Issue Women's Research in Dentistry)
Show Figures

Figure 1

13 pages, 2921 KiB  
Article
Study on the Memory Effect in Aerosil-Filled Nematic Liquid Crystal Doped with Magnetic Nanoparticles
by Peter Bury, Marek Veveričík, František Černobila, Natália Tomašovičová, Veronika Lacková, Katarína Zakutanská, Milan Timko and Peter Kopčanský
Nanomaterials 2023, 13(23), 2987; https://doi.org/10.3390/nano13232987 - 21 Nov 2023
Cited by 2 | Viewed by 1486
Abstract
A study on 5CB liquid crystal composites with SiO2 nanoparticles and an additional commixture with Fe3O4 nanoparticles using light transmission and SAW measurements is presented. The prepared liquid crystal composites exhibited an interesting memory effect characterized by the hysteresis [...] Read more.
A study on 5CB liquid crystal composites with SiO2 nanoparticles and an additional commixture with Fe3O4 nanoparticles using light transmission and SAW measurements is presented. The prepared liquid crystal composites exhibited an interesting memory effect characterized by the hysteresis of both light transmission and SAW attenuation responses investigated in the nematic phase. While in the case of SiO2 nanoparticles as dopants, the liquid crystal composite showed an improvement in the memory effect, the addition of Fe3O4 magnetic nanoparticles resulted in the memory effect decreasing. Additional studies showed a significant shift in both the threshold voltage and nematic–isotropic transition temperature. Measurements in the magnetic field confirmed the increasing memory effect according to that of pure 5CB. The properties of these composites could lead to a potential application for the fabrication of memory devices suitable for information storage. Full article
Show Figures

Figure 1

13 pages, 2289 KiB  
Article
Catalytic Reductive Amination of Aromatic Aldehydes on Co-Containing Composites
by Vladyslav V. Subotin, Vitalii M. Asaula, Yulian L. Lishchenko, Mykyta O. Ivanytsya, Olena O. Pariiska, Sergey V. Ryabukhin, Dmitriy M. Volochnyuk and Sergey V. Kolotilov
Chemistry 2023, 5(1), 281-293; https://doi.org/10.3390/chemistry5010022 - 17 Feb 2023
Cited by 6 | Viewed by 4155
Abstract
The performance of a series of cobalt-based composites in catalytic amination of aromatic aldehydes by amines in the presence of hydrogen as well as hydrogenation of quinoline was studied. The composites were prepared by pyrolysis of CoII acetate, organic precursor (imidazole, 1,10-phenantroline, [...] Read more.
The performance of a series of cobalt-based composites in catalytic amination of aromatic aldehydes by amines in the presence of hydrogen as well as hydrogenation of quinoline was studied. The composites were prepared by pyrolysis of CoII acetate, organic precursor (imidazole, 1,10-phenantroline, 1,2-diaminobenzene or melamine) deposited on aerosil (SiO2). These composites contained nanoparticles of metallic Co together with N-doped carboneous particles. Quantitative yields of the target amine in a reaction of p-methoxybenzaldehyde with n-butylamine were obtained at p(H2) = 150 bar, T = 150 °C for all composites. It was found that amination of p-methoxybenzaldehyde with n-butylamine and benzylamine at p(H2) = 100 bar, T = 100 °C led to the formation of the corresponding amines with the yields of 72–96%. In the case of diisopropylamine, amination did not occur, and p-methoxybenzyl alcohol was the sole or the major reaction product. Reaction of p-chlorobenzaldehyde with n-butylamine on the Co-containing composites at p(H2) = 100 bar, T = 100 °C resulted in the formation of N-butyl-N-p-chlorobenzylamine in 60–89% yields. Among the considered materials, the composite prepared by decomposition of CoII complex with 1,2-diaminobenzene on aerosil showed the highest yields of the target products and the best selectivity in all studied reactions. Full article
(This article belongs to the Topic Catalysis: Homogeneous and Heterogeneous)
Show Figures

Graphical abstract

12 pages, 2284 KiB  
Article
Improving the Powder Properties of an Active Pharmaceutical Ingredient (Ethenzamide) with a Silica Nanoparticle Coating for Direct Compaction into Tablets
by Tatsuki Tadauchi, Daiki Yamada, Yoko Koide, Mayumi Yamada, Yasuhiro Shimada, Eriko Yamazoe, Takaaki Ito and Kohei Tahara
Powders 2022, 1(4), 231-242; https://doi.org/10.3390/powders1040016 - 21 Nov 2022
Cited by 7 | Viewed by 6608
Abstract
To improve the powder properties of active pharmaceutical ingredients (APIs), we coated APIs with silica nanoparticles using a dry process that allowed for direct compression into tablets. The dry coating performed with different apparatuses (a batch-type high-speed shear mixer (Mechanomill) and a continuous [...] Read more.
To improve the powder properties of active pharmaceutical ingredients (APIs), we coated APIs with silica nanoparticles using a dry process that allowed for direct compression into tablets. The dry coating performed with different apparatuses (a batch-type high-speed shear mixer (Mechanomill) and a continuous conical screen mill (Comil)) and properties of the resulting dry-coated APIs were compared. Ethenzamide (ETZ), which has low powder flowability, was selected as the host particle to be improved and the colloidal silicas Aerosil 200 and R972 were used as the guest particles. Both coating processes and types of silica nanoparticles improved the powder flowability (angle of repose) of ETZ under unstressed conditions. Inverse gas chromatography demonstrated that dry coating with silica nanoparticles reduced the surface free energy and improved the homogeneity of the surface energy distribution of ETZ particles. Under the stress conditions of a shear cell test, the Mechnomill-based treatment improved the powder flowability of ETZ from that of untreated ETZ; however, the Comil-based treatment did not improve the flowability. The mechanical shear force exerted by Comil was apparently insufficient for interactions between host and guest particles. However, the properties of tableted ETZ were enhanced even when the silica nanoparticles were coated using Comil. Full article
(This article belongs to the Special Issue Feature Papers in Powders)
Show Figures

Figure 1

13 pages, 2170 KiB  
Article
Hydrophobic AEROSIL®R972 Fumed Silica Nanoparticles Incorporated Monolithic Nano-Columns for Small Molecule and Protein Separation by Nano-Liquid Chromatography
by Cemil Aydoğan, İbrahim Y. Erdoğan and Ziad El-Rassi
Molecules 2022, 27(7), 2306; https://doi.org/10.3390/molecules27072306 - 1 Apr 2022
Cited by 12 | Viewed by 4240
Abstract
A new feature of hydrophobic fumed silica nanoparticles (HFSNPs) when they apply to the preparation of monolithic nano-columns using narrow monolithic fused silica capillary columns (e.g., 50-µm inner diameter) was presented. The monolithic nano-columns were synthesized by an in-situ polymerization using butyl methacrylate [...] Read more.
A new feature of hydrophobic fumed silica nanoparticles (HFSNPs) when they apply to the preparation of monolithic nano-columns using narrow monolithic fused silica capillary columns (e.g., 50-µm inner diameter) was presented. The monolithic nano-columns were synthesized by an in-situ polymerization using butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) at various concentrations of AEROSIL®R972, called HFSNPs. Dimethyl formamide (DMF) and water were used as the porogenic solvents. These columns (referred to as HFSNP monoliths) were successfully characterized by using scanning electron microscopy (SEM) and reversed-phase nano-LC using alkylbenzenes and polyaromatic hydrocarbons as solute probes. The reproducibility values based on run-to-run, column-to-column and batch-to-batch were found as 2.3%, 2.48% and 2.99% (n = 3), respectively. The optimized column also indicated promising hydrophobic interactions under reversed-phase conditions, while the feasibility of the column allowed high efficiency and high throughput nano-LC separations. The potential of the final HFSNP monolith in relation to intact protein separation was successfully demonstrated using six intact proteins, including ribonuclease A, cytochrome C, carbonic anhydrase isozyme II, lysozyme, myoglobin, and α-chymotrypsinogen A in nano-LC. The results showed that HFSNP-based monolithic nanocolumns are promising materials and are powerful tools for sensitive separations. Full article
Show Figures

Figure 1

18 pages, 5851 KiB  
Article
Curing Behaviors, Mechanical and Dynamic Properties of Composites Containing Chloroprene and Butadiene Rubbers Crosslinked with Nano-Iron(III) Oxide
by Anna Słubik, Aleksandra Smejda-Krzewicka and Krzysztof Strzelec
Polymers 2021, 13(6), 853; https://doi.org/10.3390/polym13060853 - 10 Mar 2021
Cited by 9 | Viewed by 2694
Abstract
This paper discusses the curing behaviors, mechanical and dynamical properties of composites containing chloroprene rubber (CR) and butadiene rubber (BR) reinforced with mineral fillers. The iron(III) oxide nanoparticles were used as a crosslinking agent of the CR/BR blends. The research aimed to evaluate [...] Read more.
This paper discusses the curing behaviors, mechanical and dynamical properties of composites containing chloroprene rubber (CR) and butadiene rubber (BR) reinforced with mineral fillers. The iron(III) oxide nanoparticles were used as a crosslinking agent of the CR/BR blends. The research aimed to evaluate the effectiveness of nano-iron(III) oxide (nano-Fe2O3) as a new crosslinking agent while producing elastomeric materials with good mechanical properties and reduced flammability. The CR/BR (chloroprene rubber/butadiene rubber) blends were filled with silicas from natural resources (chalcedony, Neuburg silica earth) or silicas used in elastomer technology in many fields (aerosil, ultrasil). The results revealed that all composites were characterized by satisfactory tensile strength, tear resistance, and high resistance to fire. The filler dispersion in the elastomer matrix was carried out by using scanning electron microscopy (SEM), while the possibility of the filler–filler or filler–rubber interaction in the designed compositions was determined using the Payne effect and the Mullins effect. Full article
(This article belongs to the Special Issue Metal Nanoparticles–Polymers Hybrid Materials II)
Show Figures

Graphical abstract

Back to TopTop