Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = above and below-ground phenotyping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1172 KB  
Article
Identification and Comprehensive Evaluation of Drought Tolerance in Sorghum During Germination and Seedling Stages
by Manhong Wang, Irshad Ahmad, Bin Qin, Lei Chen, Weicheng Bu, Guanglong Zhu and Guisheng Zhou
Plants 2025, 14(12), 1793; https://doi.org/10.3390/plants14121793 - 11 Jun 2025
Cited by 2 | Viewed by 2073
Abstract
Drought is a major factor limiting crop growth and yield. Enhancing drought resistance is an important strategy to sustain higher yields, with an emphasis on developing drought-tolerant cultivars. In this study, 19 sorghum varieties from both domestic and international sources were selected as [...] Read more.
Drought is a major factor limiting crop growth and yield. Enhancing drought resistance is an important strategy to sustain higher yields, with an emphasis on developing drought-tolerant cultivars. In this study, 19 sorghum varieties from both domestic and international sources were selected as experimental materials. At the seedling stage, 11 above-ground and below-ground phenotypic traits were investigated. Under 25% PEG-6000 concentration, drought tolerance during the seedling stage was assessed using differential analysis, such as correlation analysis, principal component analysis (PCA), membership function analysis, regression analysis, and cluster analysis. The present results demonstrate that the principal component analysis could represent 77.18% of the data from the original 11 indicators. Total root length, stem diameter, and leaf area were identified as the main evaluation indicators for sorghum seedling drought tolerance. In addition, based on principal component scores (F) and drought tolerance metric values (D), the 19 sorghum varieties were classified into three categories through systematic cluster analysis: two varieties were classified as highly drought-tolerant, nine as moderately drought-tolerant, and eight as drought-sensitive. Two varieties, such as Longza 24 and Jinza 12, were identified as drought-tolerant during the seedling stage and can serve as valuable resources for evaluating drought tolerance throughout the full growth period and for breeding improvements. Hence, this study established a drought tolerance evaluation method by integrating above- and below-ground phenotypic traits indicators, providing theoretical support for the identification of drought-tolerant sorghum. Full article
Show Figures

Figure 1

20 pages, 2322 KB  
Article
Nitrogen Use Efficiency in Parent vs. Hybrid Canola under Varying Nitrogen Availabilities
by Shanay T. Williams, Sally Vail and Melissa M. Arcand
Plants 2021, 10(11), 2364; https://doi.org/10.3390/plants10112364 - 2 Nov 2021
Cited by 16 | Viewed by 4082
Abstract
Improving nitrogen use efficiency (NUE) is essential for sustainable agriculture, especially in high-N-demanding crops such as canola (Brassica napus). While advancements in above-ground agronomic practices have improved NUE, research on soil and below-ground processes are limited. Plant NUE—and its components, N [...] Read more.
Improving nitrogen use efficiency (NUE) is essential for sustainable agriculture, especially in high-N-demanding crops such as canola (Brassica napus). While advancements in above-ground agronomic practices have improved NUE, research on soil and below-ground processes are limited. Plant NUE—and its components, N uptake efficiency (NUpE), and N utilization efficiency (NUtE)—can be further improved by exploring crop variety and soil N cycling. Canola parental genotypes (NAM-0 and NAM-17) and hybrids (H151857 and H151816) were grown on a dark brown chernozem in Saskatchewan, Canada. Soil and plant samples were collected at the 5–6 leaf stage and flowering, and seeds were collected at harvest maturity. Soil N cycling varied with phenotypic stage, with higher potential ammonium oxidation rates at the 5–6 leaf stage and higher urease activity at flowering. Seed N uptake was higher under higher urea-N rates, while the converse was true for NUE metrics. Hybrids had higher yield, seed N uptake, NUtE, and NUE, with higher NUE potentially owing to higher NUtE at flowering, which led to higher yield and seed N allocation. Soil N cycling and soil N concentrations correlated for improved canola NUE, revealing below-ground breeding targets. Future studies should consider multiple root characteristics, including rhizosphere microbial N cycling, root exudates, and root system architecture, to determine the below-ground dynamics of plant NUE. Full article
Show Figures

Figure 1

12 pages, 1270 KB  
Article
Towards a Trait-Based Approach to Potentiate Yield under Drought in Legume-Rich Annual Forage Mixtures
by Susana T. Leitão, Mara Lisa Alves, Priscila Pereira, Aziza Zerrouk, Bruno Godinho, Ana Barradas and Maria Carlota Vaz Patto
Plants 2021, 10(9), 1763; https://doi.org/10.3390/plants10091763 - 25 Aug 2021
Cited by 2 | Viewed by 2849
Abstract
Mediterranean annual forage mixtures are facing the impact of climate change, especially higher frequencies of winter-time drought. Increased mixture plasticity to climate variability is needed to mitigate this impact. However, little information exists regarding the specificities and complementarities of each forage species component [...] Read more.
Mediterranean annual forage mixtures are facing the impact of climate change, especially higher frequencies of winter-time drought. Increased mixture plasticity to climate variability is needed to mitigate this impact. However, little information exists regarding the specificities and complementarities of each forage species component to potentiate mixture resilience under drought. In this study, we identified traits with breeding potential under water scarcity through a detailed characterization of leaf and root-related parameters of 10 legume and grass species components of Mediterranean annual forage mixtures, complemented by their photosynthetic response evaluation under well-watered and water deficit conditions. This integrated approach also allowed us to identify the most resilient species to water deficit. In particular, we found that the highest canopy height and root to shoot ratio of grass components complemented well the highest aerial and root biomass and superior photosynthetic performance of the legume components. Trifolium squarrosum and Triticosecale showed the most adequate combination of traits and the best photosynthetic performance under water deficit within each species family. Although some of these traits are not commonly used in annual forage selection, they may in part explain the potential higher resilience of the grass–legume mixture under water deficit and should be considered in forage breeding. Full article
Show Figures

Figure 1

29 pages, 4434 KB  
Article
Comparison of Plant Metabolites in Root Exudates of Lolium perenne Infected with Different Strains of the Fungal Endophyte Epichloë festucae var. lolii
by Aurora Patchett and Jonathan A. Newman
J. Fungi 2021, 7(2), 148; https://doi.org/10.3390/jof7020148 - 18 Feb 2021
Cited by 36 | Viewed by 4582
Abstract
Lolium perenne infected with the fungal endophyte Epichloë festucae var. lolii have specific, endophyte strain-dependent, chemical phenotypes in their above-ground tissues. Differences in these chemical phenotypes have been largely associated with classes of fungal-derived alkaloids which protect the plant against many insect pests. [...] Read more.
Lolium perenne infected with the fungal endophyte Epichloë festucae var. lolii have specific, endophyte strain-dependent, chemical phenotypes in their above-ground tissues. Differences in these chemical phenotypes have been largely associated with classes of fungal-derived alkaloids which protect the plant against many insect pests. However, the use of new methodologies, such as various omic techniques, has demonstrated that many other chemical changes occur in both primary and secondary metabolites. Few studies have investigated changes in plant metabolites exiting the plant in the form of root exudates. As root exudates play an essential role in the acquisition of nutrients, microbial associations, and defense in the below-ground environment, it is of interest to understand how plant root exudate chemistry is influenced by the presence of strains of a fungal endophyte. In this study, we tested the influence of four strains of E. festucae var. lolii (E+ (also known as Lp19), AR1, AR37, NEA2), and uninfected controls (E−), on L. perenne growth and the composition of root exudate metabolites. Root exudates present in the hydroponic water were assessed by untargeted metabolomics using Accurate-Mass Quadrupole Time-of-Flight (Q–TOF) liquid chromatography–mass spectrometry (LC–MS). The NEA2 endophyte strain resulted in the greatest plant biomass and the lowest endophyte concentration. We found 84 metabolites that were differentially expressed in at least one of the endophyte treatments compared to E− plants. Two compounds were strongly associated with one endophyte treatment, one in AR37 (m/z 135.0546 RT 1.17), and one in E+ (m/z 517.1987 RT 9.26). These results provide evidence for important changes in L. perenne physiology in the presence of different fungal endophyte strains. Further research should aim to connect changes in root exudate chemical composition with soil ecosystem processes. Full article
(This article belongs to the Special Issue Systems Biology in Fungal Research)
Show Figures

Figure 1

15 pages, 576 KB  
Article
Changes in Root Architecture and Aboveground Traits of Red Clover Cultivars Driven by Breeding to Improve Persistence
by Luis Inostroza, Fernando Ortega-Klose, Catalina Vásquez and Rosemarie Wilckens
Agronomy 2020, 10(12), 1896; https://doi.org/10.3390/agronomy10121896 - 1 Dec 2020
Cited by 10 | Viewed by 3297
Abstract
Red clover persistence has been one of the major targets for the most breeding programs worldwide. A phenotypic characterization at above- and belowground level was performed to a set of highly persistent red clover populations. The objective was to identify phenotypic changes occurring [...] Read more.
Red clover persistence has been one of the major targets for the most breeding programs worldwide. A phenotypic characterization at above- and belowground level was performed to a set of highly persistent red clover populations. The objective was to identify phenotypic changes occurring after empirical selection for plant survival, which is the consensus criteria of persistence. Eleven red clover populations were established on mesocosms of polyvinyl chloride (PVC) tubes of 11 cm in diameter and 100 cm depth, containing as substrate a mixture (v/v) of sand, vermiculite, soil and perlite. The trial was organized in a randomized complete block design with four replicates, each replicate consisting of five mesocosms per population and one plant per mesocosm. In total, 220 mesocosms were handled. At aboveground level, growth parameters, specific leaf area (SLA) and shoot dry matter (ShootDM) were measured. At belowground level, root morphology (volume, diameter and length) and topology (altitude, external path length [EPL] and dichotomous branching index [DBI]) were measured through image analyses. Analyses of variance were performed implementing a phenotypic linear mixed model using the Restricted Maximum Likelihood method. Additionally, variance components were estimated and broad-sense heritability was calculated for each phenotypic trait. Highly persistent cultivars exhibited 30% higher ShootDM and 10% lower leaf size and SLA than the oldest low-persistent cultivar Quiñequeli. At root level, they showed 20, 50 and 50% higher crown diameter, root length density and root volume than Quiñequeli, respectively, but 20% lower DBI. Root traits exhibited medium-low values of genetic control; broad sense heritability ranged between 0.20 and 0.48. In conclusion, highly persistent red clover cultivars and experimental lines bred in Chile modified their phenotypic expression of individual plants at shoot and root levels relative to the oldest low persistent cultivar Quiñequeli. Associations among above- and belowground traits offer opportunities for designing more efficient selection strategies. For instance, the strong relationship between SLA and root traits offers tremendous potential for indirect phenotypic selection. Full article
Show Figures

Figure 1

18 pages, 1079 KB  
Article
Reproductive Toxicity and Life History Study of Silver Nanoparticle Effect, Uptake and Transport in Arabidopsis thaliana
by Jane Geisler-Lee, Marjorie Brooks, Jacob R. Gerfen, Qiang Wang, Christin Fotis, Anthony Sparer, Xingmao Ma, R. Howard Berg and Matt Geisler
Nanomaterials 2014, 4(2), 301-318; https://doi.org/10.3390/nano4020301 - 22 Apr 2014
Cited by 118 | Viewed by 12195
Abstract
Concerns about nanotechnology have prompted studies on how the release of these engineered nanoparticles impact our environment. Herein, the impact of 20 nm silver nanoparticles (AgNPs) on the life history traits of Arabidopsis thaliana was studied in both above- and below-ground parts, at [...] Read more.
Concerns about nanotechnology have prompted studies on how the release of these engineered nanoparticles impact our environment. Herein, the impact of 20 nm silver nanoparticles (AgNPs) on the life history traits of Arabidopsis thaliana was studied in both above- and below-ground parts, at macroscopic and microscopic scales. Both gross phenotypes (in contrast to microscopic phenotypes) and routes of transport and accumulation were investigated from roots to shoots. Wild type Arabidopsis growing in soil, regularly irrigated with 75 μg/L of AgNPs, did not show any obvious morphological change. However, their vegetative development was prolonged by two to three days and their reproductive growth shortened by three to four days. In addition, the germination rates of offspring decreased drastically over three generations. These findings confirmed that AgNPs induce abiotic stress and cause reproductive toxicity in Arabidopsis. To trace transport of AgNPs, this study also included an Arabidopsis reporter line genetically transformed with a green fluorescent protein and grown in an optical transparent medium with 75 μg/L AgNPs. AgNPs followed three routes: (1) At seven days after planting (DAP) at S1.0 (stages defined by Boyes et al. 2001 [41]), AgNPs attached to the surface of primary roots and then entered their root tips; (2) At 14 DAP at S1.04, as primary roots grew longer, AgNPs gradually moved into roots and entered new lateral root primordia and root hairs; (3) At 17 DAP at S1.06 when the Arabidopsis root system had developed multiple lateral roots, AgNPs were present in vascular tissue and throughout the whole plant from root to shoot. In some cases, if cotyledons of the Arabidopsis seedlings were immersed in melted transparent medium, then AgNPs were taken up by and accumulated in stomatal guard cells. These findings in Arabidopsis are the first to document specific routes and rates of AgNP uptake in vivo and in situ. Full article
(This article belongs to the Special Issue Nanotoxicology)
Show Figures

Graphical abstract

Back to TopTop