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Abstract: Red clover persistence has been one of the major targets for the most breeding programs
worldwide. A phenotypic characterization at above- and belowground level was performed to a set of
highly persistent red clover populations. The objective was to identify phenotypic changes occurring
after empirical selection for plant survival, which is the consensus criteria of persistence. Eleven red
clover populations were established on mesocosms of polyvinyl chloride (PVC) tubes of 11 cm in
diameter and 100 cm depth, containing as substrate a mixture (v/v) of sand, vermiculite, soil and perlite.
The trial was organized in a randomized complete block design with four replicates, each replicate
consisting of five mesocosms per population and one plant per mesocosm. In total, 220 mesocosms
were handled. At aboveground level, growth parameters, specific leaf area (SLA) and shoot dry
matter (ShootDM) were measured. At belowground level, root morphology (volume, diameter and
length) and topology (altitude, external path length [EPL] and dichotomous branching index [DBI])
were measured through image analyses. Analyses of variance were performed implementing a
phenotypic linear mixed model using the Restricted Maximum Likelihood method. Additionally,
variance components were estimated and broad-sense heritability was calculated for each phenotypic
trait. Highly persistent cultivars exhibited 30% higher ShootDM and 10% lower leaf size and SLA than
the oldest low-persistent cultivar Quiñequeli. At root level, they showed 20, 50 and 50% higher crown
diameter, root length density and root volume than Quiñequeli, respectively, but 20% lower DBI.
Root traits exhibited medium-low values of genetic control; broad sense heritability ranged between
0.20 and 0.48. In conclusion, highly persistent red clover cultivars and experimental lines bred in
Chile modified their phenotypic expression of individual plants at shoot and root levels relative to the
oldest low persistent cultivar Quiñequeli. Associations among above- and belowground traits offer
opportunities for designing more efficient selection strategies. For instance, the strong relationship
between SLA and root traits offers tremendous potential for indirect phenotypic selection.

Keywords: root traits; root topology; forage legume; dichotomous branching index; plant survival

1. Introduction

Red clover (Trifolium pratense L.) is a major forage legume species in temperate regions of the
world. It is grown on approximately four million hectares worldwide and it is noted for its high-protein
feed and high rate of biological nitrogen fixation [1–3]. In Chile, red clover has been a highly significant
species for animal production and the seed industry, representing in the last decades nearly 15% of the
sown pastures and 60% of the forage seed exports [4].
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The main issue limiting red clover worldwide is its lack of persistence due to the high mortality
of plants [1,4–8]. There are many biotic (pests, diseases, competition and morpho-physiology of the
red clover plant itself), abiotic (pH, soil fertility and climatic conditions) and management factors
(frequency and intensity of cutting and/or grazing) that are important in determining the survival of
red clover plants. These factors interact, acting as a complex, and the importance of each one varies
depending on the environment [4]. Persistence is an economically important trait that may be defined
as sustained forage yield over several years [9]. From a pasture production point of view, its definition
depends on the level of intensity of the livestock system. In high-insensitive systems is most related
to biomass production and stability, whereas in extensive systems it is just related to plant survival.
However, a global consensus definition involves the maintenance of adequate plant numbers across
growing seasons [10].

Today, forage species are facing new challenges. They must persist and produce biomass in a range
of marginal environments [11–15]. Furthermore, forage species must also confront the negative effects
of water availability and environmental temperature caused of climate change [16]. Thus, currently,
plant persistence is also associated with the ability of the pasture to tolerate abiotic stresses [2,11–13].

From a plant breeding point of view, persistence has been a major target in red clover [1,4–8].
In general, breeding for persistence has been successful across the world. Modern cultivars can persist
3–4 years, whereas in the past, red clover was sometimes considered a biannual species [1]. The most
direct way to breed for persistence has been exposing plants to their environment and selecting for
survival [4–8]. This approach has been time consuming and it may take many years before superior
genotypes can be identified [8].

Despite the importance of red clover persistence, few works have attempted to identify phenotypic
traits related to plant survival in a given environment. For instance, Montpetit and Coulman [17]
demonstrated that red clover persistence is improved by the growth of adventitious roots from the
crown. In the UK, greater red clover persistence has been associated with larger crown diameter [6].
Herrmann et al. [8] found chromosomal regions (QTLs) modulating red clover persistence. Their results
showed that persistence was correlated with the length of the stem and seed yield. Additionally,
they detected QTLs for all these traits in the same genome region.

In Chile, the major objective of the red clover breeding program led by INIA is to improve
persistence and forage yield [4,18]. Using a geno-phenotypic breeding scheme and selecting empirically
for plant survival at the end of the third or fourth growing season, new cultivars with greater persistence
have been released. In a timeline of 30 years of red clover breeding, modern cultivars exhibit three to
five times higher plant survival than the oldest cultivar Quiñequeli, released in 1962 [4]. In the last
decade, research efforts have been done to elucidate mechanisms involved in plant survival of red
clover. First, it was found that biotic stress caused by the curculionid Hylastinus obscurus (Marsham) is
the main deleterious factor determining red clover plant survival [19]. Then, plant-insect interaction
studies have demonstrated that red clover root synthetize some volatile compounds that play an
important role on the insect behavior as attractive/repellent [20,21]. Currently, red clover genetic
variability for the ability to synthetize different semiochemicals interacting with the curculionid that is
being studied.

Morphological changes at aboveground traits have not been evaluated in the modern highly
persistent red clover Chilean cultivars. An increase in the total dry matter yield associated with higher
plant survival has been realized. For future breeding, it is important to reach a better comprehension
of the genetic and phenotypic components of plant survival in the Chilean environmental conditions.
If the main biotic factor affecting plant survival is an insect that destroys the root system [19], the root
morphology and architecture likely play an important role in plant survival.

At the end of the 1980s, the red clover root system was deeply studied, because it was considering
a tap-rooted model species for topological and architecture root studies [22–24]. However, all those
studies were related to the role or root architecture on soil resources capture (water and nutrients).
Few works have associated root traits with plant persistence. As mentioned before, Montpetit and
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Coulman [17] demonstrated that red clover persistence was improved by the growth of adventitious
roots from the crown. However, the methodology performed at the beginning of the 1990s was
excessive time consuming and barely quantitative. In this situation, low values of narrow-sense
heritability for adventitious root trait was reported (0.3). Skipp and Christensen [25] studied root
diseases affecting red clover plant survival. They found that plant survival was associated with
vigorous, deeply penetrating adventitious roots and also with genetic resistance to some diseases.

In recent years, interest to study plant root systems have increased given climate change (drought)
and the technological advances for evaluating them in a quantitative way. It is believed that plant root
system breeding can prompt a second green revolution [26,27]. In this sense, high-throughput image
analysis systems have enabled to determine root morphology and architecture traits. Some root traits,
such as the external path length (EPL), altitude and dichotomous branching index (DBI), describe
the branching pattern of a root system. Roots can vary significantly in their topology between two
extreme branching patterns, dichotomous and herringbone [22,23]. A herringbone pattern consists of
root branches primarily confined to a main axis, whereas dichotomous structures are more randomly
branched with each branch leading to a similar number of distal root segments. Higher values of
altitude and EPL indicate that the branches conforming the root system have a high number of links.
On the other hand, DBI describes the branching patterns. When DBI values tend to one or zero, the root
system tends to a herringbone or dichotomous pattern, respectively [28,29].

In this work, we hypothesized that the persistence of red clover cultivars bred in Chile is associated
with their phenotypic expression of some of the traits at above- and belowground level. Realizing and
understanding that those phenotypic traits confer higher persistence could help to develop new and
more efficient breeding methodologies. The present work aims to identify phenotypic traits associated
with the improved persistence of the modern Chilean red clover cultivars and new experimental lines.

2. Materials and Methods

2.1. Plant Material

The experiment was carried out at the greenhouse facilities of the Quilamapu Research Center
of INIA-Chile located in Chillán City (36◦34′ S; 72◦06′ O). The experimental period was extended
from October 2013 to May 2014. The plant material included three cultivars released by the red
clover breeding program of INIA-Chile (INIA-RCbp) in its 30 years of existence [Quiñequeli (1962),
Redqueli (1997) and Superqueli (2011)], two cultivars introduced to Chile [Tuscan (New Zeeland) and
StarFire (USA)] and six advanced synthetic lines (ASL) developed by the INIA-RCbp (Sel Syn IntIV,
Syn IntIV, Syn IntV, Sel Syn PreI, Sel Syn PreIII and Syn PreIII). Chilean cultivars and ASL are all
diploids. Persistence of the Chilean germplasm was previously characterized as the number of survival
plants at the end of a growing cycle including three or four growing seasons [4]. This persistence
data set was re-analyzed in order to build up a persistence ranking with the GGE biplot method [29]
(Supplementary Materials Figure S1). The ranking included only Chilean populations. The persistence
of the introduced cultivars was not evaluated.

The introduced cultivar was included in order to compare the phenotypic mechanisms expressed
by highly persistent cultivars bred in Chile and internationally. Tuscan and StarFire are diploid
cultivars bred in New Zealand and the USA, respectively. Tuscan was described as a highly persistent
cultivar under grazing conditions, whereas StarFire was described as a highly persistent cultivar under
cutting conditions. Improved persistence of Tuscan and Starfire was achieved through pest and disease
resistance, respectively.

2.2. Plant Establishment and Growing Conditions

Seeds of similar size were sown in mesocosms consisting of PVC cylinders 11 cm in diameter
and 100 cm high. The cylinders were lined inside with plastic sleeves of hi-density polyethylene
film. The substrate consisted of a mixture (volume based) of 50% medium size sand (0.5–0.3 mm),
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35% vermiculite, 10% volcanic ash derived soil (Andisol) and 5% perlite. Ten liters of the mixture were
used in each cylinder. Mesocosms were organized in racks wrapped with a reflective insulation film.
Two days before sowing, the substrate was watered with 1.6 L of a nutrient solution adjusted to pH 6.0
and consisting of (in µM): NO3 (7000), NH4 (1000), P (1000), K (3000), Ca (2000), SO4 (500), Mg (500),
Cl (25), B (12.5), Mn (1), Zn (1), Cu (0.25) Mo (0.25) and EDTA-Fe (25). Three seeds per mesocosm were
sown to 5 mm deep on 10 October 2013. Twenty-one days after sowing (DAS), plants were thinned to
leave one plant per pot. Plants were grown in a temperature-controlled greenhouse (20 ◦C) with a
relative humidity of 57%.

Substrate moisture was kept at field capacity with a pressurized irrigation system including 2 Lh−1

drip emitters (PCJ, Netafim, Israel). Mesocosms were daily irrigated and substrate water potential was
recorded at 15 min interval with capacitance sensors (MPS-2, Decagon, WA, USA) located 5, 25, 45,
65 and 85 cm deep in two no-experimental unit mesocosms (Supplemental Figure S2a). During the
germination period, substrate temperature at five cm deep was recorded in five random selected
experimental units with 5TE capacitance sensors (Decagon, WA, USA) (Supplemental Figure S1b).

2.3. Phenotypic Characterization of Shoot System

The experiment included two periods. The first one (Period I) extended from sowing to first
biomass harvest (147 DAS). This period was considered as the establishment phase, and only shoot
traits were measured. The second period extended from 147 to 194 DAS, and shoot and root traits
were measured.

Plant height was measured seven times during Period I (24, 34, 38, 52, 61, 101 and 147 DAS).
Stem growth parameters were estimated fitting a parametric logistic growth curve in the grofit
package [30] in R software. Stem elongation rate (Grate), lag phase (LagTime) and maximal plant
height (Hmax) were estimated with the fitted model. Five totally expanded leaves were collected from
the middle part of each plant in three sampling times (93, 147 and 194 DAS). Leaf area (LA) and dry
weight (Ldw) were determined and specific leaf area was calculated (SLA = LA/Ldw). Leaf chlorophyll
content was estimated in four central leaflets from the middle part of each plant (147 and 194 DAS).
Chlorophyll measurements were taken with a SPAD-meter (SPAD-502Plus Konica Minolta Optics,
Inc., Osaka, Japan). Shoot dry matter (DM) production was measured in two harvest times (147 and
194 DAS). Plants were cut 5 cm above ground level and dried in forced air oven at 65 ◦C until reach
constant weight. Then, leaves (LeavesDM), stems (StemDM) and shoot DM (ShootDM = LeavesDM +

StemDM) were recorded with an analytical scale (Radwag AS220/C2, Poland).

2.4. Phenotypic Characterization of Root System

At 194 DAS, roots were separated from the substrate by washing them with running tap water.
Cylinders were placed on a root-washer consisting of a 50 × 150 cm tray with concave shape. The tray
was built with a 3 mm sieve. The top 20 cm of each cylinder was separated from the remaining root
system. Both parts of the root system were immediately stored at 4 ◦C in hermetic containers with
70% ethanol. In a dark room, the root system was totally extended on a black background tray with
a 2-cm layer of water. Tray was illuminated with two 160 LED panel. Then, each root system was
digitalized with a digital-SLR camera (Eos Rebel T5i, Canon, Tokyo, Japan) located 1.5 m above the
tray. All digital images were collected under a standardized light-environment and camera set up.
Average root diameter (avgD), total root volume (Vol), total root length (TrootL) and root length density
(RLD = TrootL/mesocosm volume) were determined for the entire root system. For the top 20 cm section,
crown diameter, altitude (a), magnitude (µ) and external path length (Pe) were determined. All root
traits were obtained with image analysis software (WinRhizo TRON, Régent Instruments, Québec, QC,
Canada). Dichotomous branching index (DBI) was calculated in accordance with Beidler et al. [29]
as follows:

DBI = [Pe −min(Pe)]/[max(Pe) −min(Pe)] (1)
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max(Pe) = 0.5 (µ2 + 3µ − 2) (2)

min(Pe) = µ [min(a) + 1] − 2min(a)−1 (3)

where max(Pe) and min(Pe) are the theoretical external path length (Pe) for a system of a given
magnitude (µ) that has a completely herringbone or a completely dichotomous topology, respectively.
The min (a) is the theoretical altitude (a) for a system of given magnitude that has a completely
dichotomous topology.

Once root image analyses were performed, root biomass was dried in forced air oven at 65 ◦C
until reaching constant weight. Then, root dry matter of the top 20 cm (RootDM20 cm), fine root DM
(root < 2 mm diameter; FineRootDM) and total root DM (RootDM = RootDM20 cm + FineRootDM)
were measured with an analytical scale (Radwag AS220/C2, Poland). Finally, the RootDM:ShootDM
ratio was calculated.

2.5. Experimental Design and Statistical Analyses

Experiment was arranged in a randomized complete block design with four blocks. Each replicate
included five mesocosms per red clover accessions (treatments). In total, 220 mesocosms were handled
(11 treatments × 5 mesocosms per replicate × 4 replicates = 220 mesocosms). Analyses of variance were
performed implementing a phenotypic linear mixed model using the Restricted Maximum Likelihood
(REML) method within the ASReml-R package [31] within the R software (https://www.r-project.org/)
based on the following expression:

Yi j = µ+ acci + r j + εi j (4)

where Yij is the phenotypic value of ith plant accession (acc) in the jth replicate (r); µ is the overall
population mean and ε the random experimental error~IDD (0,σ2

ε). The acc term was considered as
a fixed effect and the replicate as a random effect~IDD (0,σ2

r ). With this model, the acc effect was
determined and acc means were compared using a least significant difference test (LSD) with the
asremlPlus package [32]. A similar phenotypic model to the previously described, but considering the
acc term as a random effect~IDD (0,σ2

acc) ~it was fitted in order to estimate the variance components
and broad-sense heritability (H2) as follows:

H2 =
σ2

acc

σ2
acc + σ2

r +
σ2
ε
r

(5)

Finally, a principal component analysis was performed with the FactorMiner [33] and factoextra [34]
R-packages for visualizing the relationship among phenotypic traits and the red clover populations.

3. Results

3.1. Shoot System

Shoot growth parameters varied significantly among the red clover accessions (p < 0.05; Table 1).
Cultivars Tuscan and Redqueli showed the lowest and highest stem elongation rate (Grate), respectively.
Modern cultivar Superqueli and ASLs showed similar Grate to the oldest cultivar Quiñequeli. Lag time
varied between 59.3 (Tuscan) and 77.8 (Redqueli) days. Modern cultivars and ASL showed similar lag
time to the oldest cultivar. Plant height (Hmax) was 105 cm in average, ranging from 93.5 (Syn IntV)
and 115.3 (Redqueli) cm. It is important to highlight that cultivars Redqueli and Superqueli did not
show difference in growth parameters with regard to the oldest cultivar. However, significant difference
was observed between them. Leaf traits also varied significantly among the red clover accessions
(p < 0.05; Table 1). Leaf size ranged between 18.2 (Tuscan) and 29.9 cm2 (Quiñequeli). Modern cultivar
Superqueli and the ASL Sel Syn PreI and Syn PreIII showed significant lower leaf size than the oldest
cultivar. The SLA did not show significant differences among the Chilean germplasm (p > 0.05),

https://www.r-project.org/
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with the exception of Syn IntV (Table 1). However, modern cultivars and ASL showed, on average, 10%
lower SLA than the oldest cultivar. Chlorophyll content varied between 47.4 (Syn IntV) and 53.3 SPAD
units (Sel Syn PreIII and Syn PreIII). Modern cultivars and ASLs showed a similar chlorophyll content
to the oldest cultivar Quiñequeli. In general, shoot traits showed medium-high level of genetic control;
broad sense heritability ranged between 0.38 (SLA) and 0.61 (lag time; Table 1).

Table 1. Stem elongation rate (Grate), lag time, plant height (Hmax), leaf size, specific leaf area (SLA)
and chlorophyll content of 11 red clover populations grown in mesocosms under greenhouse conditions.

Populations Grate (cm
day−1)

Lag Time
(days)

Hmax
(cm)

Leaf Size
(cm2)

SLA (cm2

g−1)
Chlorophyll Content

(SPAD Unit)

Quiñequeli 1.48 71.6 109.8 29.9 430.9 50.3
Redqueli 1.73 77.8 115.3 29.3 400.0 51.5

Superqueli 1.27 66.5 106.2 25.4 399.1 52.6
Starfire 1.41 67.9 109.2 27.3 380.5 51.8
Tuscan 1.17 59.3 99.6 18.2 450.5 48.0

Sel Syn IntIV 1.32 67.5 104.4 27.4 407.6 49.6
Syn IntIV 1.26 64.8 101.4 28.3 392.1 50.4
Syn IntV 1.30 73.4 93.1 22.2 505.5 47.4

Sel Syn PreI 1.37 73.6 103.9 23.0 410.7 49.3
Sel Syn PreIII 1.36 69.5 100.5 25.1 429.0 53.3

Syn PreIII 1.37 65.8 112.5 27.1 394.2 53.3
LSD value 0.280 9.15 12.48 3.9 48.76 3.25

p value ** ** * *** *** **
H2 0.51 ± 0.10 0.61 ± 0.15 0.54 ± 0.12 0.51 ± 0.13 0.38 ± 0.14 0.22 ± 0.08

LSD: least significant difference; H2: broad sense heritability. *, **, *** refer to p < 0.05, p < 0.01 and
p < 0.001, respectively.

Introduced cultivar Tuscan expressed lower values of growth parameters (Grate, Lag time and
Hmax) than the Chilean populations. Otherwise, StarFire and the Chilean populations exhibited
similar growth parameters because all of them were selected mainly for cutting. Tuscan showed 30%
smaller leaf size than the Chilean populations with similar values of SLA, whereas StarFire showed a
similar leaf size but with a 10% smaller SLA than the Chilean populations (Table 1).

3.2. Root System

Root traits varied significantly among the red clover accessions (p < 0.05; Table 2). Crown diameter
(CrownD) was 20% higher in modern red clover accessions compared to the oldest cultivar Quiñequeli.
Cultivars Tuscan and Quiñequeli and ASL Syn IntV showed the lowest CrownD values. The root system
average diameter (avgD) was almost 50% higher in cultivars Redqueli and Superqueli than Quiñequeli.
Among the ASL, only Syn PreIII showed significant higher avgD than Quiñequeli. The root length
density (RLD) ranged between 0.19 (Tuscan) and 0.37 cm cm−3 (Superqueli). Cultivars Quiñequeli and
Redqueli exhibited similar values of RLD; they were nearly 60% lower than Superqueli. Three ASL
(Syn IntIV, Sel Syn PreI and Syn PreIII) obtained higher RLD values than Quiñequeli. The total root
volume (Vol) varied between 9.5 (Syn IntV) and 21.5 cm3 (Superqueli). Redqueli and Superqueli showed
same Vol values, but they were more than 50% higher than the oldest cultivar Quiñequeli. All ASL
exhibited statistically similar Vol values compared to the modern cultivar Superqueli. Topological root
traits also showed significant difference among red clover accessions (p < 0.05; Table 2). Quiñequeli
and Redqueli exhibited similar values of altitude and external path length (EPL). However, Superqueli
reached nearly 20 and 50% higher altitude and EPL, respectively, than the older cultivars. Additionally,
ASL Syn IntIV and Syn PreIII obtained significantly higher altitude and EPL than the older cultivars
Quiñequeli and Redqueli. Dichotomous branching index (DBI) varied significantly among populations
(p < 0.001). Modern cultivars and ASL sowed almost 20% lower DBI values than Quiñequeli. Root traits
exhibited medium-low values of genetic control; broad sense heritability ranged between 0.20 (altitude)
and 0.48 (RLD; Table 2).
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Table 2. Crown diameter (CrownD), average root diameter (avgD), root length density (RLD), root
volume (Vol), altitude, external path length (EPL) and dichotomous branching index (DBI) of 11 red
clover populations grown in mesocosms under greenhouse conditions.

Populations CrownD (cm) avgD (cm) RLD (cm cm3) Vol (cm3) Altitude EPL DBI

Quiñequeli 8.66 1.79 0.23 12.3 36.5 638.6 0.64
Redqueli 10.57 2.62 0.25 18.8 37.3 686.3 0.52

Superqueli 10.50 2.68 0.37 21.5 45.0 976.8 0.52
Starfire 10.64 2.11 0.24 18.9 37.7 658.1 0.55
Tuscan 8.47 1.67 0.19 10.4 38.4 503.2 0.67

Sel Syn IntIV 11.17 2.08 0.28 16.7 39.7 753.7 0.58
Syn IntIV 10.02 2.20 0.34 18.8 44.6 1171.6 0.47
Syn IntV 8.49 1.69 0.21 9.5 40.1 617.3 0.57

Sel Syn PreI 10.71 1.92 0.32 16.7 38.2 933.6 0.45
Sel Syn PreIII 9.56 1.86 0.28 16.0 38.0 766.8 0.55

Syn PreIII 11.63 2.32 0.32 20.0 44.2 1118.9 0.50
LSD 1.7 0.51 0.07 5.61 5.84 325.06 0.11

p value *** *** *** *** * *** ***

H2 0.30 ± 0.09 0.34 ± 0.08 0.48 ± 0.10 0.36 ± 0.09 0.20 ± 0.08 0.32 ±
0.08

0.37 ±
0.10

LSD: least significant difference; H2: broad sense heritability. *, *** refer to p < 0.05 and p < 0.001, respectively.

3.3. Dry Matter Partitioning and Phenotypic Relationship among Traits

Dry matter partitioning showed broad variability among red clover accessions (Table 3). ShootDM
and its components (Leaves + Stems) showed significant differences among accessions (p < 0.05).
ShootDM ranged from 25.1 (Syn IntV) to 58.7 g plant−1 (Redqueli). Modern cultivars and ASL Syn
IntIV exhibited almost 30% higher ShootDM than Quiñequeli (p < 0.05). Excluding ASL Syn IntV,
all remaining accessions obtained similar ShootDM compared to Quiñequeli (p > 0.05). The fraction of
biomass invested in leaves and stems components were on average 57 and 43% of the total ShootDM.
Both traits showed broad phenotypic variability ranging from 17.5 (Syn IntV) to 33.6 g (Superqueli) and
from 7.7 (Syn IntV) to 28.8 g (Redqueli) for LeavesDM and StemDM, respectively. Cultivars Redqueli
and Superqueli showed similar ShootDM, but with different allocation. Superqueli achieved higher
leaves and lower stem dry matter accumulation than Redqueli (Table 3).

Table 3. Dry matter (DM) production at above- and belowground level of 11 red clover populations
grown in mesocosms under greenhouse conditions.

Populations LeavesDM
(g)

StemDM
(g)

ShootDM
(g)

RootDM20 cm
(g)

FineRootDM
(g) RootDM (g) RootDM:ShootDM

Quiñequeli 24.8 20.2 45.0 2.97 0.66 6.47 0.12
Redqueli 29.9 28.8 58.7 4.31 1.12 7.66 0.11

Superqueli 33.6 23.3 56.9 4.25 1.04 7.35 0.13
Starfire 22.7 19.1 41.8 4.63 1.03 7.40 0.18
Tuscan 15.9 11.0 26.8 2.98 0.68 4.85 0.18

Sel Syn IntIV 31.9 19.5 51.4 3.67 1.01 6.16 0.12
Syn IntIV 30.5 27.2 57.7 4.38 1.08 7.34 0.13
Syn IntV 17.5 7.7 25.1 1.87 0.41 3.34 0.13

Sel Syn PreI 31.5 22.5 54.0 2.94 0.85 6.13 0.11
Sel Syn PreIII 23.2 17.4 40.6 3.35 1.07 6.77 0.14

Syn PreIII 26.6 22.1 48.7 4.05 0.86 6.79 0.14
LSD 6.56 5.80 11.8 0.98 0.28 1.47 0.035

p value ** *** *** * ** * *
H2 0.39 ± 0.10 0.55 ± 0.14 0.51 ± 0.11 0.21 ± 0.08 0.18 ± 0.08 0.15 ± 0.05 0.22 ± 0.04

LSD: least significant difference; H2: broad sense heritability. *, **, *** refer to p < 0.05, p < 0.01 and
p < 0.001, respectively.
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Total RootDM ranged between 3.34 (Syn IntV) and 7.66 g (Redqueli). Chilean accessions did
not show significant difference among them (p > 0.05), excluding Syn IntV, which showed a RootDM
significantly lower than the older cultivar (Table 3). The RootDM in the top 20 cm of mesocosm
(RootDM20 cm) represented on average almost the 60% of the total RootDM. Cultivars Redqueli and
Superqueli and two ASLs (Syn IntIV and Syn PreIII) showed higher RootDM20 cm than the oldest
cultivar Quiñequeli. Dry matter production of fine roots (FineRootDM) varied significantly among
red clover accessions (p < 0.05). The FineRootDM represented on average between 10 and 15% of
total RootDM. Modern cultivars and ASL showed almost 50% higher FineRootDM than older cultivar
Quiñequeli (Table 3). The Chilean accessions exhibited a RootDM:ShootDM relationship statistically
similar among them. The RootDM:ShootDM relationship of the Chilean accessions was significantly
lower than introduced-cultivars Starfire and Tuscan (Table 3). Biomass production and partitioning
exhibited low-medium level of genetic control; H2 values ranged between 0.15 (RootDM) and 0.51
(ShootDM) (Table 3).

Correlation analyses among phenotypic traits showed that SLA was the aboveground trait more
related to the expression of belowground traits. SLA was negatively correlated with CrownD (r = −0.79;
p < 0.01), RLD (r = −0.60; p < 0.05), avgD (r = −0.68; p < 0.05), rootDM (r = −0.91; p < 0.001) and
Vol (r = −0.79; p < 0.001) (Figure 1A). The first two principal components (PC) accounted for 76.6%
of the total variation for the 14 phenotypic traits (Figure 1B); the PC1 and PC2 captured 58.3 and
18.3%, respectively. The phenotypic relationship among traits allowed to differentiate the red clover
populations. For instance, SLA was negatively correlated with several root and shoot system-related
traits (Figure 1B). Among the Chilean cultivars, Quiñequeli reached the highest value of SLA, which was
associated with low values of growth parameters and Shoot and Root system related traits. On the other
hand, Redqueli and Superqueli were similar and showed lower values of SLA compared to Quiñequeli
However, these cultivars exhibited a different phenotypic expression (Figure 1B). Superqueli and
Redqueli reached similar values on PC1 but with divergent values on PC2. In fact, both cultivars
accounted for similar values of root and shoot DM accumulation but with different root morphology
and architecture and growth parameters (Figure 1B). For instance, Superqueli showed higher RLD and
lower Lag time and Grate than Quiñequeli.
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Figure 1. Correlogram (A) and Biplot (B) of the first two principal components (PC1 and PC2) for the
principal component analysis of 14 traits evaluated in eleven red clover populations. The traits are:
dry matter production of leaves (LeavesDM), stems (StemDM), shoot (ShootDM) and roots (rootDM).
Specific leaf area (SLA), plant height (Hmax), lag time (LagTime), crown diameter (CrownD), average
root diameter (avgD), root length density (RLD), total root volume (Vol), dichotomous branching index
and root to shoot ratio (RootDM:ShootDM). In the correlogram *, ** and *** refer to p < 0.05, p < 0.01
and p < 0.001, respectively.

4. Discussion

Differences in phenotypic expression among the oldest low-persistent cultivar Quiñequeli and
modern germplasm bred in Chile reveal some phenotypic traits conferring higher persistence to
red clover. Aboveground, highly persistent red clover exhibited lower SLA and higher ShootDM.
Belowground, they did not change total RootDM but noticeably changed root biomass allocation,
morphology and architecture.
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Aboveground, highly persistent red clover population (modern cultivars and ASL; Figure S1 and
Table S1) showed up to 30% higher ShootDM than the oldest cultivar Quiñequeli (low persistence).
Alarcon et al. [19] evaluated the ShootDM of the same set of Chilean red clover populations during two
growing seasons. Their results coincide with what we observed in this work. However, at the sward
level, broad genetic variability in ShootDM was also observed only from the second growing season.
In perennial forage clovers, genetic investigations of the yield per se are scarce [35]. Genetic gains for
the DM yield have been mostly related to disease and insect resistance and plant persistence [1,35].
For diploid red clover, a single work has reported genetic gains between 0.21 and 0.43% year−1 for
DM yield per se [1], which is lower than the realized genetic gain achieved by the Chilean red clover
breeding program in the last 30 years (0.4 to 2.6% year−1) [4].

Modern cultivar Superqueli and ASL Sel Syn IntIV and Sel Syn PreI achieved higher ShootDM
with higher LeavesDM, but achieved similar StemDM compared to the older cultivar Quiñequeli
(p < 0.05). Since forage quality is associated positively with the leaf-to-stem ratio, owing to the greater
quality of leaves relative to stems [36], it is possible to infer that the breeding of highly persistent red
clover indirectly improved forage quality.

Despite some highly persistent populations (ASL) reached similar ShootDM than the older cultivar
as individual plant, they surely overcome it at the sward level because of the higher survival of plants.
Hoekstra et al. (2018) evaluated the agronomic performance of cultivars of two different types of
European red clover (Mattenklee vs. Ackerklee). They found that during the first growing season,
both types of cultivars obtained similar biomass production. However, during the third growing season,
cultivars with higher persistence (Mattenklee) showed 42% higher biomass production. The relationship
between plant survival and total biomass production has also been found in North American [1],
European [6], Australian [7] and Chilean cultivars [4].

Growth parameters were similar among Chilean accessions; however, significant differences were
found between cultivars Redqueli and Superqueli (Table 3). The latest one expressed 11 days lower Lag
time than Redqueli, which might confer a higher seedling vigor [37]. Seedling vigor is an important
phenotypic trait for small seeded perennials clovers because confer competitive ability during the
stand establishment [2,35].

In this work, highly persistent red clover cultivars and ASLs exhibited lower values of SLA
(Figure S1 and Figure 1). Additionally, SLA was negatively correlated with ShootDM and roots traits
(CrownD, Vol, RLD and RootDM). Hoekstra et al. [5] measured SLA in red clover populations with
divergent plant persistence. Their results were completely consistent with what it was observed in the
Chilean populations. Populations with higher plant persistence also showed significantly lower SLA
and this was also correlated negatively with shoot biomass production. SLA is a linear estimator of
leaf thickness, which has been negative associated with photosynthetic capacity and growth rate [38].
Plants with thicker leaves (lower SLA) have been associated with increased leaves longevity but with
higher construction/respiration costs [38,39].

The ASL Syn IntV, was the unique population that exhibited a phenotypic expression similar
to the older cultivar Quiñequeli (Tables 1–3). Despite of that, it is one of the ASL with the higher
plant persistence at field condition (Figure 1). Alarcón et al. [19] demonstrated the importance of the
root borer (Hylastinus obscurus) in the persistence of red clover in Chile. Furthermore, Tapia et al. [40]
reported that red clover can synthetize limonene, a volatile compound that plays a repellent function
against root borer. Studies of plant-pest interaction, demonstrated that ASL Syn IntV was a population
that achieved the lowest root borer populations in a two growing seasons field experiment [4,19].
This result may suggest that plant persistence of the ASL Syn IntV is mostly modulated by its repellency
to herbivores.

In general, introduced cultivar Tuscan showed the most divergent phenotypic expression relative
to the Chilean cultivars and ASLs. Tuscan expressed lower values of growth parameters (Grate, Lag time
and Hmax), ShootDM and leaf size than the Chilean populations. Belowground, Tuscan showed
lower CrwonD, RLD and root Vol, but higher DBI than the Chilean populations. StarFire and the
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Chilean populations exhibited similar phenotypic expression because all of them were selected mainly
for cutting. On the other hand, Tuscan and the ASL Syn IntV exhibited almost identical phenotypic
expression (Figure 1). The persistence of both materials is mainly based on their pest resistance.
Tuscan is able to synthetize high level of formononetin [7], which is an isoflavonoid with antifeedant
properties [41]. As mentioned before, ASL Syn IntV could contain herbivore-repellant mechanisms
associated with the synthesis of semiochemicals. The results are suggesting that the phenotypic
expression of highly persistent red clover, with capacity for synthetizing chemical compounds with
antifeedant/repellency properties, is associated with lower biomass productivity at an individual plant
level (Figure 1).

The total RootDM and RootDM:ShootDM ratio were similar in the gradient of persistence of the
Chilean red clover populations (Table 3). Maintain a stable RootDM:ShootDM ratio could be considered
as an efficient metabolic strategy of DM partitioning, because the root system can lose around 30 to
50% of the total energy in respiratory processes [42]. Thilakarathna et al. [43] characterized RootDM of
a set of six Canadian red clover cultivars. They found a broad difference among cultivars in RootDM,
which was mainly attributed to the ploidy level and nitrogen metabolism; tetraploid cultivars reached
almost twice the RootDM compared to diploids. With a soil-core sampling methodology, Bolinder et
al. [44] measured root biomass at the 0–45 cm soil layer. Their results showed that, during the first
growing season, red clover produces 740 g of RootDM per square meter with a RootDM:ShootDM ratio
near to one, which is almost seven times higher than the values observed in this work. Skinner and
Comas [45] determined the allometric coefficient (k) between the root and shoot biomass production of
red clover. Their results showed that the k value tends to 1 in optimal growing condition (k = 1; relative
shoot growth = relative root growth). The lower values of the Root:Shoot relationship obtained in this
work was due to the ShootDM included the biomass accumulated in two harvest performed during
the entire experimental period. Furthermore, the broad range of variation in the RootDM:ShootDM
ratio found in different works reported in the literature also represent the high level of environmental
effect on the trait, which was evident in the low value of broad sense heritability (Table 3).

Despite that the root biomass was not changed in the red clover Chilean populations, large
modifications were observed in the biomass allocation within the root system. Root biomass distribution
across the soil profile and fine root biomass production were significantly changed in modern
populations (Table 3). The RootDM20 cm represented almost the 60% of total RootDM of red clover,
which is consistent with others studies [45,46]. Modern cultivar Superqueli and most ASL showed
45% higher RootDM20 cm than the older cultivar Quiñequeli (Table 3), which indicates that highly
persistent red clover populations have shallower root systems. This is the first time that shallower root
systems are associated with higher persistence red clover. Several studies have associated shallower
root growth with enhances topsoil foraging and higher phosphorus acquisition [26,27,47]. In the
livestock area of Chile, soil originated from volcanic ash (Andisol) are predominant. They are mainly
characterized by phosphorus adsorption and immobilization. Probably, P-efficiency is playing an
important role in red clover persistence in the Chilean environments.

The fine root system (<2 mm diameter) is the principal pathway for water and nutrient
absorption [42]. Species with high investment in the biomass in fine roots develop high root system
lengths, which confer a greater soil foraging capacity [26,42]. Highly persistent red clover population
increased the fine root biomass by almost 50% relative to the low-persistence cultivar Quiñequeli.
Root length is expressed in relative terms as the specific root length (SRL = root length/root biomass)
or the root length density (RLD = root length/soil volume). Both terms are narrowly related to the
root diameter. Higher RLD or SRL genotypes tend to have greater plasticity in root growth, greater
physiological capacity for water and nutrient uptake, but less root longevity and less mycorrhizal
dependency than species of low root length. In this work, modern cultivar Superqueli and some
modern ASLs (Syn IntIV, Sel Syn PreI and Syn PreIII) expressed up to 50% higher RLD value than
Quiñequeli, which means that Superqueli and these ASLs built a root system with a longer length or
higher exploratory capacity.
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Few efforts have been made to interpret the role of the root system on plant persistence in red
clover. Montpetit and Coulman [17], using a visual score, demonstrated that red clover persistence
is improved by the growth of adventitious roots from the crown. At the same time, they reported
low values of narrow sense heritability for the trait (0.3). Marshall et al. [6] demonstrated that higher
crown root diameter improved plant persistence of modern cultivars of red clover bred in the UK. Both
reports confirm the results obtained in this work, that is, most root traits exhibited low values of broad
sense heritability and highly persistent populations exhibited 20% higher crown diameter than the
lowest persistence cultivar Quiñequeli.

Topological parameters (EPL, altitud and DBI) describe the branching pattern of a root system.
In this work, highly persistent cultivar Superqueli exhibited 20% and 50% higher Altitude and EPL
than the lowest persistent cultivar Quiñequeli. Furthermore, higher persistent red clover populations
exhibited almost 20% lower DBI values (Table 2, Figure 1). Fitter [22] pointed out that the branching
pattern is modulated by soil resources, and plant modify it for increasing the root efficiency to capture
water and nutrients. For instance, low-branched systems (herringbones type) are the most efficient
at exploitation of the soil; however, they are the least efficient at transporting materials to the shoot
system. On the other hand, highly branched systems are typically developed in soils where resources
are abundant and exploitation efficiency may not be of prime importance. In this work, plants grew
in abundant soil resources; thus, their potential root branching was expressed. Under this condition,
modern cultivars and ASLs exhibited a more dichotomous root system compared to the oldest cultivar
Quiñequeli.

5. Conclusions

Highly persistent red clover cultivars and ASLs bred in Chile modified their phenotypic
expression of individual plants at shoot and root levels. At shoot level, highly persistent populations
were associated with higher ShootDM, higher LeavesDM and lower SLA. At root level, highly
persistent populations did not change total RootDM, but noticeably changed root biomass allocation
(RootDM20 cm and FineRootDM), morphology (crownD, RLD) and architecture (Altitude, EPL and
DBI). Highly persistent red clover exhibited lower DBI but higher RLD, CrownD and root Vol. In an
applied plant breeding scenario, these results may help to design more efficient selection criteria.
For instance, the strong relationship between SLA and root traits offers tremendous potential for
indirect phenotypic selection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/12/1896/s1,
Figure S1: Ranking of persistence estimated according to the GGE biplot method of nine red clover populations
developed by the Chilean breeding program. Persistence was evaluated in eight experiments managed under
rainfed (Rn) and irrigated (Ir) conditions. Persistence was evaluated as plant survival at the end of the third and
fourth growing season in Rn and Ir experiments, respectively. Number in the environments (Ir and Rn) indicate
the establishment year, Figure S2: A) Daily substrate water potential (kPa) recorded at 1 h interval with capacitance
sensors (MPS-2, Decagon, USA) located 5, 25, 45, 65, and 85 cm deep in two no-experimental unit mesocosms.
B) Daily mean, maximum and minimum substrate temperatures recorded at 5 cm depth. Values correspond to the
mean of five values recorded in five random selected experimental units. Sowing was performed on October 10th
2013, Table S1: Description of cultivars and advanced synthetic lines (ASLs) used in this study.
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