Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = ZSM-5 pretreatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2994 KiB  
Article
How the Pretreatment Temperature of Zeolitic Catalysts Can Affect the Reaction Temperature of Methanol to Olefins and Gasoline Processes
by Simón Yunes, Abel Gaspar Rosas and Antonio Gil
Materials 2025, 18(6), 1370; https://doi.org/10.3390/ma18061370 - 20 Mar 2025
Viewed by 578
Abstract
The dehydration of methanol to produce light olefins and gasoline, known as MTO (methanol-to-olefins) process requires acidic catalysts that maintain their acidity at reaction temperatures. Zeolites, such as SAPOs and ZSM-5, are commonly used for this purpose due to their acidic centers. The [...] Read more.
The dehydration of methanol to produce light olefins and gasoline, known as MTO (methanol-to-olefins) process requires acidic catalysts that maintain their acidity at reaction temperatures. Zeolites, such as SAPOs and ZSM-5, are commonly used for this purpose due to their acidic centers. The initial step in these experiments involves the activation or pretreatment of these solids to remove physically adsorbed water from their pores. Inadequate pretreatment can lead to the destruction of the existing Brönsted sites through the dihydroxylation of surface -OH groups. Therefore, it is crucial to pretreat the zeolites properly to preserve the Brönsted sites. One method is to subject the fresh catalyst to programmed dehydration, which involves desorption at a controlled temperature while monitoring the appearance of water that results from Brönsted site dihydroxylation. The temperature at which the dehydration peak appears determines the optimal reaction temperature. The results presented in this work will demonstrate the progressive deactivation of the catalysts when the reaction temperature exceeds 400 °C. Full article
Show Figures

Figure 1

17 pages, 5577 KiB  
Article
Y and ZSM-5 Hierarchical Zeolites Prepared Using a Surfactant-Mediated Strategy: Effect of the Treatment Conditions
by Andrea Ruggiu, Ana Paula Carvalho, Elisabetta Rombi, Angela Martins, João Rocha, Pier Parpot, Isabel C. Neves and Maria Giorgia Cutrufello
Materials 2024, 17(17), 4401; https://doi.org/10.3390/ma17174401 - 6 Sep 2024
Cited by 1 | Viewed by 1306
Abstract
Diffusional limitations associated with zeolite microporous systems can be overcome by developing hierarchical zeolites, i.e., materials with a micro- and mesoporous framework. In this work, Y and ZSM-5 zeolites were modified using a surfactant-mediated hydrothermal alkaline method, with NaOH and cetyltrimethylammonium bromide (CTAB). [...] Read more.
Diffusional limitations associated with zeolite microporous systems can be overcome by developing hierarchical zeolites, i.e., materials with a micro- and mesoporous framework. In this work, Y and ZSM-5 zeolites were modified using a surfactant-mediated hydrothermal alkaline method, with NaOH and cetyltrimethylammonium bromide (CTAB). For Y zeolite, after a mild acidic pretreatment, the effect of the NaOH+CTAB treatment time was investigated. For ZSM-5 zeolite, different concentrations of the base and acid solutions were tested in the two-step pretreatment preceding the hydrothermal treatment. The properties of the materials were studied with different physical–chemical techniques. Hierarchical Y zeolites were characterized by 3.3–5 nm pores formed during the alkaline treatment through the structure reconstruction around the surfactant aggregates. The effectiveness of the NaOH+CTAB treatment was highly dependent on the duration. For intermediate treatment times (6–12 h), both smaller and larger mesopores were also obtained. Hierarchical ZSM-5 zeolites showed a disordered mesoporosity, mainly resulting from the pretreatment rather than from the subsequent hydrothermal treatment. High mesoporosity was obtained when the concentration of the pretreating base solution was sufficiently high and that of the acid one was not excessive. Hierarchical materials can be obtained for both zeolite structures, but the pretreatment and treatment conditions must be tailored to the starting zeolite and the desired type of mesoporosity. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

15 pages, 4126 KiB  
Article
Kinetic and Spectroscopic Studies of Methyl Ester Promoted Methanol Dehydration to Dimethyl Ether on ZSM-5 Zeolite
by Zhiqiang Yang, Benjamin J. Dennis-Smither, Zhuoran Xu, Zhenchao Zhao, Meiling Guo, Neil Sainty, Guangjin Hou, Xuebin Liu and Glenn J. Sunley
Chemistry 2023, 5(1), 511-525; https://doi.org/10.3390/chemistry5010037 - 6 Mar 2023
Cited by 3 | Viewed by 3022
Abstract
Methyl carboxylate esters have been shown to be potent promoters of low-temperature methanol dehydration to dimethyl ether (DME) using various zeolite catalysts. In the present work, catalytic kinetic studies, in-situ Fourier-transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance spectroscopy (NMR) techniques were [...] Read more.
Methyl carboxylate esters have been shown to be potent promoters of low-temperature methanol dehydration to dimethyl ether (DME) using various zeolite catalysts. In the present work, catalytic kinetic studies, in-situ Fourier-transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance spectroscopy (NMR) techniques were used to elucidate the promotional mechanism of methyl carboxylate esters on methanol dehydration to DME, using the medium pore zeolite H-ZSM-5 (MFI) as the catalyst. Kinetic studies were performed using the very potent methyl n-hexanoate promoter. The DME yield was dependent on both the methanol and methyl n-hexanoate partial pressures across the temperature ranges used in this study (110 to 130 °C). This is consistent with the promoted reaction being a bimolecular reaction between methanol and ester species adsorbed at the catalyst active sites, via an SN2 type reaction, as previously postulated. The in-situ FT-IR studies reveal that the Brønsted acid (BA) sites on H-ZSM-5 were very rapidly titrated by ester carbonyl group adsorption and bonded more strongly with esters than with methanol. Upon methanol addition, an even lower DME formation temperature (30 °C) was observed with methyl n-hexanoate pretreated H-ZSM-5 samples in the in-situ NMR studies, further confirming the strong promotion of this methyl ester on methanol dehydration to DME. The adsorption and reactivity of different methyl esters on H-ZSM-5 indicates that while methyl formate more easily dissociates into a surface methoxy species, [Si(OMe)Al], and carboxylic acid, it is a less potent promoter than alkyl-chain-containing methyl esters in methanol dehydration to DME, which in turn did not show this dissociative behavior in the low-temperature NMR studies. This indicates that methyl alkyl carboxylates do not need to be dissociated to a surface methoxy species to promote the methanol dehydration reaction and that a bimolecular associative mechanism plays an important role in promoting DME formation. Full article
Show Figures

Figure 1

12 pages, 1389 KiB  
Article
Transformation of Corn Stover into Furan Aldehydes by One-Pot Reaction with Acidic Lithium Bromide Solution
by Meixiang Gao, Qi Xin, Wan Sun, Jiaqi Xiao and Xianqin Lu
Int. J. Mol. Sci. 2022, 23(23), 14901; https://doi.org/10.3390/ijms232314901 - 28 Nov 2022
Cited by 4 | Viewed by 2255
Abstract
Currently, the production of furan aldehydes from raw biomass suffers from low furfural yield and high energy consumption. In this study, a recyclable and practical method was explored for the preparation of furfural from corn stover by the one-pot reaction by acidic lithium [...] Read more.
Currently, the production of furan aldehydes from raw biomass suffers from low furfural yield and high energy consumption. In this study, a recyclable and practical method was explored for the preparation of furfural from corn stover by the one-pot reaction by acidic lithium bromide solution (ALBS) without pretreatment and enzymolysis. In the ALBS reaction, the furan aldehydes were generated by the degradation of lignocellulose; however, the products were unstable and were further dehydrated to form humins. So, dehydration reaction was inhibited in this study, and the high yield of furan aldehydes was obtained, in which 2.94 g/L of furfural and 2.78 g/L of 5-hydroxymethyl furfural (5-HMF) were generated with high solid loading (10 wt%), the presence of commercial catalyst ZSM-5 and co-solvent tetrahydrofuran (THF) at 140 °C for 200 min. Via this method, almost 100% of hemicellulose was transformed to furfural, and 40.71% of cellulose was transformed to 5-HMF, which was based on the theoretical yield of HMF (8.35 g) from glucose (29.30 g) produced from cellulose. After the reaction, the catalyst ZSM-5 was the main component in the solid residue and kept a suitable performance. THF azeotrope was easily separated from the slurry by evaporation. During the removal of THF, lignin was precipitated from the liquid phase and showed lower molecular weight and abundant active groups, which was a potential feedstock for producing valuable aromatics and polymers. Thus, in a one-pot reaction, the ideal yield of furan aldehydes from raw biomass was obtained on a lab scale, and the catalyst, THF, and LiBr were easily recycled, which provided an option to realize the economical production of sustainable furan aldehydes from raw biomass. Full article
(This article belongs to the Special Issue Bio-Polymer Materials and Bio-Refinery)
Show Figures

Figure 1

30 pages, 6228 KiB  
Article
Catalytic Fast Pyrolysis of Lignin Isolated by Hybrid Organosolv—Steam Explosion Pretreatment of Hardwood and Softwood Biomass for the Production of Phenolics and Aromatics
by Ioannis Charisteidis, Polykarpos Lazaridis, Apostolos Fotopoulos, Eleni Pachatouridou, Leonidas Matsakas, Ulrika Rova, Paul Christakopoulos and Konstantinos Triantafyllidis
Catalysts 2019, 9(11), 935; https://doi.org/10.3390/catal9110935 - 8 Nov 2019
Cited by 38 | Viewed by 5847
Abstract
Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, [...] Read more.
Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, are available in vast amounts, other types of lignins, such as the organosolv or the hydrolysis lignin, are becoming increasingly important, as they are side-streams of new biorefinery processes aiming at the (bio)catalytic valorization of biomass sugars. Within this context, in this work, we studied the thermal (non-catalytic) and catalytic fast pyrolysis of softwood (spruce) and hardwood (birch) lignins, isolated by a hybrid organosolv–steam explosion biomass pretreatment method in order to investigate the effect of lignin origin/composition on product yields and lignin bio-oil composition. The catalysts studied were conventional microporous ZSM-5 (Zeolite Socony Mobil–5) zeolites and hierarchical ZSM-5 zeolites with intracrystal mesopores (i.e., 9 and 45 nm) or nano-sized ZSM-5 with a high external surface. All ZSM-5 zeolites were active in converting the initially produced via thermal pyrolysis alkoxy-phenols (i.e., of guaiacyl and syringyl/guaiacyl type for spruce and birch lignin, respectively) towards BTX (benzene, toluene, xylene) aromatics, alkyl-phenols and polycyclic aromatic hydrocarbons (PAHs, mainly naphthalenes), with the mesoporous ZSM-5 exhibiting higher dealkoxylation reactivity and being significantly more selective towards mono-aromatics compared to the conventional ZSM-5, for both spruce and birch lignin. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Sustainable Processes in Biorefineries)
Show Figures

Figure 1

11 pages, 2222 KiB  
Article
Aromatics from Beechwood Organosolv Lignin through Thermal and Catalytic Pyrolysis
by Konstantinos G. Kalogiannis, Leonidas Matsakas, Angelos A. Lappas, Ulrika Rova and Paul Christakopoulos
Energies 2019, 12(9), 1606; https://doi.org/10.3390/en12091606 - 27 Apr 2019
Cited by 24 | Viewed by 3545
Abstract
Biomass fractionation, as an alternative to biomass pretreatment, has gained increasing research attention over the past few years as it provides separate streams of cellulose, hemicellulose, and lignin. These streams can be used separately and can provide a solution for improving the economics [...] Read more.
Biomass fractionation, as an alternative to biomass pretreatment, has gained increasing research attention over the past few years as it provides separate streams of cellulose, hemicellulose, and lignin. These streams can be used separately and can provide a solution for improving the economics of emerging biorefinery technologies. The sugar streams are commonly used in microbial conversions, whereas during recent years lignin has been recognized as a valuable compound as it is the only renewable and abundant source of aromatic chemicals. Successfully converting lignin into valuable chemicals and products is key in achieving both environmental and economic sustainability of future biorefineries. In this work, lignin retrieved from beechwood sawdust delignification pretreatment via an organosolv process was depolymerized with thermal and catalytic pyrolysis. ZSM-5 commercial catalyst was used in situ to upgrade the lignin bio-oil vapors. Lignins retrieved from different modes of organosolv pretreatment were tested in order to evaluate the effect that upstream pretreatment has on the lignin fraction. Both thermal and catalytic pyrolysis yielded oils rich in phenols and aromatic hydrocarbons. Use of ZSM-5 catalyst assisted in overall deoxygenation of the bio-oils and enhanced aromatic hydrocarbons production. The oxygen content of the bio-oils was reduced at the expense of their yield. Organosolv lignins were successfully depolymerized towards phenols and aromatic hydrocarbons via thermal and catalytic pyrolysis. Hence, lignin pyrolysis can be an effective manner for lignin upgrading towards high added value products. Full article
(This article belongs to the Special Issue Biorefineries for the Production of Fuel)
Show Figures

Figure 1

13 pages, 5493 KiB  
Article
Effect of Degassing on the Stability and Reversibility of Glycerol/ZSM-5 Zeolite System
by Yafei Zhang, Rui Luo, Qulan Zhou, Xi Chen and Yihua Dou
Appl. Sci. 2018, 8(7), 1065; https://doi.org/10.3390/app8071065 - 29 Jun 2018
Cited by 6 | Viewed by 5504
Abstract
Gaseous phase plays roles in a liquid/nanoporous system during application that adequate attention should be paid to the gaseous effects and the nanoscale gas-liquid interaction. In the present study, two glycerol/ZSM-5 zeolite systems with different amount of residual gas are compared by performing [...] Read more.
Gaseous phase plays roles in a liquid/nanoporous system during application that adequate attention should be paid to the gaseous effects and the nanoscale gas-liquid interaction. In the present study, two glycerol/ZSM-5 zeolite systems with different amount of residual gas are compared by performing a series of experiments. Influences of loading rate, as well as system temperature on the gas-liquid interactions, are studied. Results show that vacuum degassing pretreatment is required to obtain a reversible and stable energy absorption system. Moreover, the influence of gas on a liquid/nanoporous system is found to mainly act on the liquid outflow. After the routine vacuum degassing pretreatment, the residual air that is left in the nanopores is around 0.9014 nm–3 per unit specific pore volume, as presented in the current study. During compression, the existing gas left in the nanochannel tends to gather into the gas cluster, which further promotes the liquid outflow during unloading. However, excessively dissolved gas may reduce the driving force for liquid outflow by breaking the continuity of the liquid molecular chain in nanochannel. Consequently, small bubbles as a labile factor in the system must be excluded for the steady use of the system. This work sheds some light on the effect of the amount of residual gas on the liquid/nanoporous system and gives guidance on the pretreatment of the liquid/nanoporous material mixture before encapsulating. Full article
(This article belongs to the Special Issue Nanoporous Materials and Their Applications)
Show Figures

Graphical abstract

Back to TopTop