Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ZMYND10

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4053 KiB  
Article
Molecular Insights into Outer Dynein Arm Defects in Primary Ciliary Dyskinesia: Involvement of ZMYND10 and GRP78
by İlker Levent Erdem, Zeynep Bengisu Kaya, Pergin Atilla, Nagehan Emiralioğlu, Cemil Can Eylem, Emirhan Nemutlu, Uğur Özçelik, Halime Nayır Büyükşahin, Ayşenur Daniş and Elif Karakoç
Cells 2025, 14(12), 916; https://doi.org/10.3390/cells14120916 - 17 Jun 2025
Viewed by 616
Abstract
Background: Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by recurrent sinopulmonary infections due to motile cilia defects. The disease is genetically heterogeneous, with abnormalities in structural ciliary proteins. Zinc finger MYND-type containing 10 (ZMYND10) is essential for the assembly of [...] Read more.
Background: Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by recurrent sinopulmonary infections due to motile cilia defects. The disease is genetically heterogeneous, with abnormalities in structural ciliary proteins. Zinc finger MYND-type containing 10 (ZMYND10) is essential for the assembly of outer dynein arms (ODA), with chaperones like Glucose-regulated protein 78 (GRP78) facilitating protein folding. This study investigates ZMYND10 and Dynein axonemal heavy chain 5 (DNAH5) mutations in individuals with PCD. Methods: Eight individuals aged 14–22 with clinical PCD symptoms and confirmed DNAH5 mutations were included. We analyzed the correlation between DNAH5 abnormalities and preassembly/chaperone proteins using immunofluorescence labeling. Nasal swabs were double-labeled (DNAH5–β-tubulin, β-tubulin–ZMYND10, β-tubulin–GRP78) and examined via fluorescence microscopy. Serum metabolomics and proteomics were also assessed. Results: The corrected total cell fluorescence (CTCF) levels of DNAH5, ZMYND10, and GRP78 were significantly different between PCD individuals and controls. Metabolomic analysis showed reduced valine, leucine, and isoleucine biosynthesis, with increased malate and triacylglycerol biosynthesis, malate-aspartate and glycerol phosphate shuttles, and arginine/proline metabolism, suggesting mitochondrial and ER stress. Conclusions: The altered expression of DNAH5, ZMYND10, and GRP78, along with metabolic shifts, points to a complex link between ciliary dysfunction and cellular stress in PCD. Further studies are needed to clarify the underlying mechanisms. Full article
(This article belongs to the Special Issue The Role of Cilia in Health and Diseases—2nd Edition)
Show Figures

Graphical abstract

17 pages, 4839 KiB  
Article
Functional Analysis of Antipsychotics in Human iPSC-Based Neural Progenitor 2D and 3D Schizophrenia Models
by Kiara Gitta Farkas, Katalin Vincze, Csongor Tordai, Ece İlay Özgen, Derin Gürler, Vera Deli, Julianna Lilienberg, Zsuzsa Erdei, Balázs Sarkadi, János Miklós Réthelyi and Ágota Apáti
Int. J. Mol. Sci. 2025, 26(9), 4444; https://doi.org/10.3390/ijms26094444 - 7 May 2025
Viewed by 727
Abstract
Schizophrenia is a complex psychiatric disorder of complex etiology. Despite decades of antipsychotic drug development and treatment, the mechanisms underlying cellular drug effects remain incompletely understood. Induced pluripotent stem cell (iPSC)-based disease and pharmacological modelling offer new avenues for drug development. In this [...] Read more.
Schizophrenia is a complex psychiatric disorder of complex etiology. Despite decades of antipsychotic drug development and treatment, the mechanisms underlying cellular drug effects remain incompletely understood. Induced pluripotent stem cell (iPSC)-based disease and pharmacological modelling offer new avenues for drug development. In this study, we explored the development of two- and three-dimensional neural progenitor cultures and the impact of different antipsychotics in a schizophrenia model. Four human iPSC lines, including two carrying a de novo ZMYND11 gene mutation associated with schizophrenia, were differentiated into hippocampal neural progenitor cells (NPCs), cultured either in monolayers or as 3D spheroids. While in monolayers the proliferation of the NPCs was similar, spheroids showed significant differences in scattered cell number and outgrowth size between schizophrenia mutant and wild-type NPCs. Since there is only limited information about the effects of antipsychotic agents on neural progenitor cell proliferation and differentiation, we investigated the effects of three molecules, representing three subgroups of antipsychotics, in the 2D and 3D NPC models. Our findings suggest that cell adhesion may play a crucial role in the molecular disease pathways of schizophrenia, highlighting the value of spheroid models for mechanistic and drug development studies. These studies may significantly help our understanding of the effects of schizophrenia on neural development and the response of progenitors to antipsychotic medications. Full article
(This article belongs to the Special Issue Molecular Underpinnings of Schizophrenia Spectrum Disorders)
Show Figures

Figure 1

18 pages, 4820 KiB  
Article
Exploring Regulatory Properties of Genes Associated with Nonsyndromic Male Infertility
by Daniela Hristov and Done Stojanov
Reprod. Med. 2024, 5(3), 136-153; https://doi.org/10.3390/reprodmed5030013 - 2 Aug 2024
Cited by 1 | Viewed by 2841
Abstract
In this study, we analyzed the regulatory properties of 26 (twenty-six) genes associated with nonsyndromic male infertility. We applied an in silico analysis in order to determine the number and distribution of promoters and identify relevant promoter consensus sequences and potential transcription factors. [...] Read more.
In this study, we analyzed the regulatory properties of 26 (twenty-six) genes associated with nonsyndromic male infertility. We applied an in silico analysis in order to determine the number and distribution of promoters and identify relevant promoter consensus sequences and potential transcription factors. Underlining the concept of alternative transcriptional initiation (ATI), we have found that 65.4% of genes associated with nonsyndromic male infertility have 1 (one) to 6 (six) promoters, located in the region 1 kb upstream of the TSS, and 41% of them are located at a position below −500 bp. Although the TATA box consensus sequence TAWAAA, such as W is A or T, appears at a common location in all genes, it is shifted for at least 10 bp in the EFCAB9 gene. The C2H2 zinc finger is found to be the most significant common transcription factor, binding genes’ promoters GLIS1, ZSCAN21, GLIS3, GLIS1, ZNF770, ZNF780A, ZNF81, and ZNF264. On the other hand, basic leucine zipper factors (bZIPs) bind the JUNB gene promoter specifically, exhibiting unique regulatory properties of all genes associated with nonsyndromic male infertility. Two genes, NANOS1 and ZMYND15, are expected to be less susceptible to DNA methylation, due to the high density of CpG content found in their promoter regions. Full article
Show Figures

Figure 1

14 pages, 11409 KiB  
Article
Further Delineation of Clinical Phenotype of ZMYND11 Variants in Patients with Neurodevelopmental Dysmorphic Syndrome
by Aleksandra Bodetko, Joanna Chrzanowska, Malgorzata Rydzanicz, Agnieszka Borys-Iwanicka, Pawel Karpinski, Joanna Bladowska, Rafal Ploski and Robert Smigiel
Genes 2024, 15(2), 256; https://doi.org/10.3390/genes15020256 - 19 Feb 2024
Cited by 2 | Viewed by 3109
Abstract
Intellectual disability with speech delay and behavioural abnormalities, as well as hypotonia, seizures, feeding difficulties and craniofacial dysmorphism, are the main symptoms associated with pathogenic variants of the ZMYND11 gene. The range of clinical manifestations of the ZMYND phenotype is constantly being expanded [...] Read more.
Intellectual disability with speech delay and behavioural abnormalities, as well as hypotonia, seizures, feeding difficulties and craniofacial dysmorphism, are the main symptoms associated with pathogenic variants of the ZMYND11 gene. The range of clinical manifestations of the ZMYND phenotype is constantly being expanded by new cases described in the literature. Here, we present two previously unreported paediatric patients with neurodevelopmental challenges, who were diagnosed with missense variants in the ZMYND11 gene. It should be noted that one of the individuals manifested with hyperinsulinaemic hypoglycaemia (HH), a symptom that was not described before in published works. The reason for the occurrence of HH in our proband is not clear, so we try to explain the origin of this symptom in the context of the ZMYND11 syndrome. Thus, this paper contributes to knowledge on the range of possible manifestations of the ZMYND disease and provides further evidence supporting its association with neurodevelopmental challenges. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 976 KiB  
Article
Excessive Gestational Weight Gain Alters DNA Methylation and Influences Foetal and Neonatal Body Composition
by Perla Pizzi Argentato, João Victor da Silva Guerra, Liania Alves Luzia, Ester Silveira Ramos, Mariana Maschietto and Patrícia Helen de Carvalho Rondó
Epigenomes 2023, 7(3), 18; https://doi.org/10.3390/epigenomes7030018 - 16 Aug 2023
Cited by 4 | Viewed by 3359
Abstract
Background: Changes in body weight are associated with the regulation of DNA methylation (DNAm). In this study, we investigated the associations between maternal gestational weight gain-related DNAm and foetal and neonatal body composition. Methods: Brazilian pregnant women from the Araraquara Cohort Study were [...] Read more.
Background: Changes in body weight are associated with the regulation of DNA methylation (DNAm). In this study, we investigated the associations between maternal gestational weight gain-related DNAm and foetal and neonatal body composition. Methods: Brazilian pregnant women from the Araraquara Cohort Study were followed up during pregnancy, delivery, and after hospital discharge. Women with normal pre-pregnancy BMI were allocated into two groups: adequate gestational weight gain (AGWG, n = 45) and excessive gestational weight gain (EGWG, n = 30). Foetal and neonatal body composition was evaluated via ultrasound and plethysmography, respectively. DNAm was assessed in maternal blood using Illumina Infinium MethylationEPIC BeadChip arrays. Linear regression models were used to explore the associations between DNAm and foetal and neonatal body composition. Results: Maternal weight, GWG, neonatal weight, and fat mass were higher in the EGWG group. Analysis of DNAm identified 46 differentially methylated positions and 11 differentially methylated regions (DMRs) between the EGWG and AGWG groups. Nine human phenotypes were enriched for these 11 DMRs located in 13 genes (EMILIN1, HOXA5, CPT1B, CLDN9, ZFP57, BRCA1, POU5F1, ANKRD33, HLA-B, RANBP17, ZMYND11, DIP2C, TMEM232), highlighting the terms insulin resistance, and hyperglycaemia. Maternal DNAm was associated with foetal total thigh and arm tissues and subcutaneous thigh and arm fat, as well as with neonatal fat mass percentage and fat mass. Conclusion: The methylation pattern in the EGWG group indicated a risk for developing chronic diseases and involvement of maternal DNAm in foetal lean and fat mass and in neonatal fat mass. Full article
Show Figures

Figure 1

22 pages, 6259 KiB  
Article
Identification of Five Tumor Antigens for Development and Two Immune Subtypes for Personalized Medicine of mRNA Vaccines in Papillary Renal Cell Carcinoma
by Jianpei Hu, Zhongze Yuan, Yifen Jiang and Zengnan Mo
J. Pers. Med. 2023, 13(2), 359; https://doi.org/10.3390/jpm13020359 - 18 Feb 2023
Cited by 1 | Viewed by 2662
Abstract
Increasing evidence has revealed the promise of mRNA-type cancer vaccines as a new direction for cancer immune treatment in several solid tumors, however, its application in papillary renal cell carcinoma (PRCC) remains unclear. The purpose of this study was to identify potential tumor [...] Read more.
Increasing evidence has revealed the promise of mRNA-type cancer vaccines as a new direction for cancer immune treatment in several solid tumors, however, its application in papillary renal cell carcinoma (PRCC) remains unclear. The purpose of this study was to identify potential tumor antigens and robust immune subtypes for the development and appropriate use of anti-PRCC mRNA vaccines, respectively. Raw sequencing data and clinical information of PRCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The cBioPortal was utilized for the visualization and comparison of genetic alterations. The TIMER was used to assess the correlation between preliminary tumor antigens and the abundance of infiltrated antigen presenting cells (APCs). Immune subtypes were determined by the consensus clustering algorithm, and clinical and molecular discrepancies were further explored for a deeper understanding of immune subtypes. Five tumor antigens, including ALOX15B, HS3ST2, PIGR, ZMYND15 and LIMK1, were identified for PRCC, which were correlated with patients’ prognoses and infiltration levels of APCs. Two immune subtypes (IS1 and IS2) were disclosed with obviously distinct clinical and molecular characteristics. Compared with IS2, IS1 exhibited a significantly immune-suppressive phenotype, which largely weakened the efficacy of the mRNA vaccine. Overall, our study provides some insights for the design of anti-PRCC mRNA vaccines and, more importantly, the selection of suitable patients to be vaccinated. Full article
(This article belongs to the Special Issue Bioinformatics and Medicine)
Show Figures

Figure 1

13 pages, 1117 KiB  
Article
The Genetics of Primary Ciliary Dyskinesia in Puerto Rico
by Wilfredo De Jesús-Rojas, José Muñiz-Hernández, Francisco Alvarado-Huerta, Jesús M. Meléndez-Montañez, Arnaldo J. Santos-López and Ricardo A. Mosquera
Diagnostics 2022, 12(5), 1127; https://doi.org/10.3390/diagnostics12051127 - 2 May 2022
Cited by 15 | Viewed by 3545
Abstract
Primary ciliary dyskinesia (PCD) has been linked to more than 50 genes that cause a spectrum of clinical symptoms, including newborn respiratory distress, sinopulmonary infections, and laterality abnormalities. Although the RSPH4A (c.921+3_6delAAGT) pathogenic variant has been related to Hispanic groups with Puerto Rican [...] Read more.
Primary ciliary dyskinesia (PCD) has been linked to more than 50 genes that cause a spectrum of clinical symptoms, including newborn respiratory distress, sinopulmonary infections, and laterality abnormalities. Although the RSPH4A (c.921+3_6delAAGT) pathogenic variant has been related to Hispanic groups with Puerto Rican ancestry, it is uncertain how frequently other PCD-implicated genes are present on the island. A retrospective chart review of n = 127 genetic reports from Puerto Rican subjects who underwent genetic screening for PCD variants was conducted from 2018 to 2022. Of 127 subjects, 29.1% subjects presented PCD pathogenic variants, and 13.4% were homozygous for the RSPH4A (c.921+3_6delAAGT) founder mutation. The most common pathogenic variants were in RSPH4A and ZMYND10 genes. A description of the frequency and geographic distribution of implicated PCD pathogenic variants in Puerto Rico is presented. Our findings reconfirm that the presence of PCD in Puerto Rico is predominantly due to a founder pathogenic variant in the RSPH4A (c.921+3_6delAAGT) splice site. Understanding the frequency of PCD genetic variants in Puerto Rico is essential to map a future genotype-phenotype PCD spectrum in Puerto Rican Hispanics with a heterogeneous ancestry. Full article
(This article belongs to the Special Issue Diagnosis and New Insights in Primary Ciliary Dyskinesia)
Show Figures

Figure 1

10 pages, 905 KiB  
Article
Expanding the Neurological Phenotype of Ring Chromosome 10 Syndrome: A Case Report and Review of the Literature
by Jacopo Pruccoli, Claudio Graziano, Chiara Locatelli, Lucia Maltoni, Hodman Ahmed Sheikh Maye and Duccio Maria Cordelli
Genes 2021, 12(10), 1513; https://doi.org/10.3390/genes12101513 - 26 Sep 2021
Cited by 4 | Viewed by 3201
Abstract
Ring chromosome 10 [r(10)] syndrome is a rare genetic condition, currently described in the medical literature in a small number of case report studies. Typical clinical features include microcephaly, short stature, facial dysmorphisms, ophthalmologic abnormalities and genitourinary malformations. We report a novel case [...] Read more.
Ring chromosome 10 [r(10)] syndrome is a rare genetic condition, currently described in the medical literature in a small number of case report studies. Typical clinical features include microcephaly, short stature, facial dysmorphisms, ophthalmologic abnormalities and genitourinary malformations. We report a novel case of r(10) syndrome and review the neurological and neuroradiological phenotypes of the previously described cases. Our patient, a 3 year old Italian girl, represents the 20th case of r(10) syndrome described to date. Intellectual disability/developmental delay (ID/DD), microcephaly, strabismus, hypotonia, stereotyped/aggressive behaviors and electroencephalographic abnormalities were identified in our patient, and in a series of previous cases. A brain MRI disclosed a complex malformation involving both the vermis and cerebellar hemispheres; in the literature, posterior cranial fossa abnormalities were documented by CT scan in another case. Two genes deleted in our case (ZMYND11 in 10p and EBF3 in 10q) are involved in autosomal dominant neurodevelopmental disorders, characterized by different expressions of brain and posterior cranial fossa abnormalities, ID/DD, hypotonia and behavioral problems. Our case expands the neurological and neuroradiological phenotype of r(10) syndrome. Although r(10) syndrome represents an extremely rare condition, with a clinical characterization limited to case reports, the recurrence of specific neurological and neuroradiological features suggests the need for specific genotype-phenotype studies. Full article
Show Figures

Figure 1

16 pages, 3747 KiB  
Article
Biomarker Identification through Multiomics Data Analysis of Prostate Cancer Prognostication Using a Deep Learning Model and Similarity Network Fusion
by Tzu-Hao Wang, Cheng-Yang Lee, Tzong-Yi Lee, Hsien-Da Huang, Justin Bo-Kai Hsu and Tzu-Hao Chang
Cancers 2021, 13(11), 2528; https://doi.org/10.3390/cancers13112528 - 21 May 2021
Cited by 39 | Viewed by 5163
Abstract
This study is to identify potential multiomics biomarkers for the early detection of the prognostic recurrence of PC patients. A total of 494 prostate adenocarcinoma (PRAD) patients (60-recurrent included) from the Cancer Genome Atlas (TCGA) portal were analyzed using the autoencoder model and [...] Read more.
This study is to identify potential multiomics biomarkers for the early detection of the prognostic recurrence of PC patients. A total of 494 prostate adenocarcinoma (PRAD) patients (60-recurrent included) from the Cancer Genome Atlas (TCGA) portal were analyzed using the autoencoder model and similarity network fusion. Then, multiomics panels were constructed according to the intersected omics biomarkers identified from the two models. Six intersected omics biomarkers, TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and cg02318866 (JMJD6; METTL23), were collected for multiomics panel construction. The difference between the Kaplan–Meier curves of high and low recurrence-risk groups generated from the multiomics panel achieved p-value = 5.33 × 10−9, which is better than the former study (p-value = 5 × 10−7). Additionally, when evaluating the selected multiomics biomarkers with clinical information (Gleason score, age, and cancer stage), a high-performance prediction model was generated with C-index = 0.713, p-value = 2.97 × 10−15, and AUC = 0.789. The risk score generated from the selected multiomics biomarkers worked as an effective indicator for the prediction of PRAD recurrence. This study helps us to understand the etiology and pathways of PRAD and further benefits both patients and physicians with potential prognostic biomarkers when making clinical decisions after surgical treatment. Full article
(This article belongs to the Special Issue Prognostic and Predictive Biomarkers of Prostate Cancer)
Show Figures

Figure 1

12 pages, 1689 KiB  
Review
Regulation of ZMYND8 to Treat Cancer
by Yun Chen, Ya-Hui Tsai and Sheng-Hong Tseng
Molecules 2021, 26(4), 1083; https://doi.org/10.3390/molecules26041083 - 18 Feb 2021
Cited by 16 | Viewed by 4744
Abstract
Zinc finger myeloid, nervy, and deformed epidermal autoregulatory factor 1-type containing 8 (Zinc finger MYND-type containing 8, ZMYND8) is a transcription factor, a histone H3-interacting protein, and a putative chromatin reader/effector that plays an essential role in regulating transcription during normal cellular growth. [...] Read more.
Zinc finger myeloid, nervy, and deformed epidermal autoregulatory factor 1-type containing 8 (Zinc finger MYND-type containing 8, ZMYND8) is a transcription factor, a histone H3-interacting protein, and a putative chromatin reader/effector that plays an essential role in regulating transcription during normal cellular growth. Mutations and altered expression of ZMYND8 are associated with the development and progression of cancer. Increased expression of ZMYND8 is linked to breast, prostate, colorectal, and cervical cancers. It exerts pro-oncogenic effects in breast and prostate cancers, and it promotes angiogenesis in zebrafish, as well as in breast and prostate cancers. In contrast, downregulation of ZMYND8 is also reported in breast, prostate, and nasopharyngeal cancers. ZMYND8 acts as a tumor suppressor in breast and prostate cancers, and it inhibits tumor growth by promoting differentiation; inhibiting proliferation, cell-cycle progression, invasiveness, and metastasis; and maintaining the epithelial phenotype in various types of cancers. These data together suggest that ZMYND8 is important in tumorigenesis; however, the existing data are contradictory. More studies are necessary to clarify the exact role of ZMYND8 in tumorigenesis. In the future, regulation of expression/activity of ZMYND8 and/or its binding partners may become useful in treating cancer. Full article
(This article belongs to the Special Issue Anticancer Inhibitors)
Show Figures

Figure 1

19 pages, 2345 KiB  
Article
Decorin Protects Cardiac Myocytes against Simulated Ischemia/Reperfusion Injury
by Renáta Gáspár, Kamilla Gömöri, Bernadett Kiss, Ágnes Szántai, János Pálóczi, Zoltán V. Varga, Judit Pipis, Barnabás Váradi, Bence Ágg, Tamás Csont, Péter Ferdinandy, Monika Barteková and Anikó Görbe
Molecules 2020, 25(15), 3426; https://doi.org/10.3390/molecules25153426 - 28 Jul 2020
Cited by 16 | Viewed by 4633
Abstract
Search for new cardioprotective therapies is of great importance since no cardioprotective drugs are available on the market. In line with this need, several natural biomolecules have been extensively tested for their potential cardioprotective effects. Previously, we have shown that biglycan, a member [...] Read more.
Search for new cardioprotective therapies is of great importance since no cardioprotective drugs are available on the market. In line with this need, several natural biomolecules have been extensively tested for their potential cardioprotective effects. Previously, we have shown that biglycan, a member of a diverse group of small leucine-rich proteoglycans, enhanced the expression of cardioprotective genes and decreased ischemia/reperfusion-induced cardiomyocyte death via a TLR-4 dependent mechanism. Therefore, in the present study we aimed to test whether decorin, a small leucine-rich proteoglycan closely related to biglycan, could exert cardiocytoprotection and to reveal possible downstream signaling pathways. Methods: Primary cardiomyocytes isolated from neonatal and adult rat hearts were treated with 0 (Vehicle), 1, 3, 10, 30 and 100 nM decorin as 20 h pretreatment and maintained throughout simulated ischemia and reperfusion (SI/R). In separate experiments, to test the mechanism of decorin-induced cardio protection, 3 nM decorin was applied in combination with inhibitors of known survival pathways, that is, the NOS inhibitor L-NAME, the PKG inhibitor KT-5823 and the TLR-4 inhibitor TAK-242, respectively. mRNA expression changes were measured after SI/R injury. Results: Cell viability of both neonatal and adult cardiomyocytes was significantly decreased due to SI/R injury. Decorin at 1, 3 and 10 nM concentrations significantly increased the survival of both neonatal and adult myocytes after SI/R. At 3nM (the most pronounced protective concentration), it had no effect on apoptotic rate of neonatal cardiac myocytes. No one of the inhibitors of survival pathways (L-NAME, KT-5823, TAK-242) influenced the cardiocytoprotective effect of decorin. MYND-type containing 19 (Zmynd19) and eukaryotic translation initiation factor 4E nuclear import factor 1 (Eif4enif1) were significantly upregulated due to the decorin treatment. In conclusion, this is the first demonstration that decorin exerts a direct cardiocytoprotective effect possibly independent of NO-cGMP-PKG and TLR-4 dependent survival signaling. Full article
(This article belongs to the Special Issue Biological Activity of Natural Substances and Their Derivatives)
Show Figures

Graphical abstract

17 pages, 4177 KiB  
Article
The Transcriptional Repressor BS69 is a Conserved Target of the E1A Proteins from Several Human Adenovirus Species
by Ali Zhang, Tanner M. Tessier, Kristianne J. C. Galpin, Cason R. King, Steven F. Gameiro, Wyatt W. Anderson, Ahmed F. Yousef, Wen T. Qin, Shawn S. C. Li and Joe S. Mymryk
Viruses 2018, 10(12), 662; https://doi.org/10.3390/v10120662 - 22 Nov 2018
Cited by 5 | Viewed by 4551
Abstract
Early region 1A (E1A) is the first viral protein produced upon human adenovirus (HAdV) infection. This multifunctional protein transcriptionally activates other HAdV early genes and reprograms gene expression in host cells to support productive infection. E1A functions by interacting with key cellular regulatory [...] Read more.
Early region 1A (E1A) is the first viral protein produced upon human adenovirus (HAdV) infection. This multifunctional protein transcriptionally activates other HAdV early genes and reprograms gene expression in host cells to support productive infection. E1A functions by interacting with key cellular regulatory proteins through short linear motifs (SLiMs). In this study, the molecular determinants of interaction between E1A and BS69, a cellular repressor that negatively regulates E1A transactivation, were systematically defined by mutagenesis experiments. We found that a minimal sequence comprised of MPNLVPEV, which contains a conserved PXLXP motif and spans residues 112–119 in HAdV-C5 E1A, was necessary and sufficient in binding to the myeloid, Nervy, and DEAF-1 (MYND) domain of BS69. Our study also identified residues P113 and L115 as critical for this interaction. Furthermore, the HAdV-C5 and -A12 E1A proteins from species C and A bound BS69, but those of HAdV-B3, -E4, -D9, -F40, and -G52 from species B, E, D, F, and G, respectively, did not. In addition, BS69 functioned as a repressor of E1A-mediated transactivation, but only for HAdV-C5 and HAdV-A12 E1A. Thus, the PXLXP motif present in a subset of HAdV E1A proteins confers interaction with BS69, which serves as a negative regulator of E1A mediated transcriptional activation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop