Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ZKSCAN3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1698 KiB  
Review
Research Progress on the Functional Regulation Mechanisms of ZKSCAN3
by Jianxiong Xu, Xinzhe Li, Jingjing Xia, Wenfang Li and Zhengding Su
Biomolecules 2025, 15(7), 1016; https://doi.org/10.3390/biom15071016 - 14 Jul 2025
Viewed by 447
Abstract
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating [...] Read more.
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating protein–protein interaction, and a KRAB repression domain implicated in transcriptional regulation. Post-translational modifications, such as phosphorylation and ubiquitination, dynamically modulate its subcellular localization and activity, enabling context-dependent functional plasticity. Functionally, ZKSCAN3 acts as a master switch in autophagy by repressing the transcription of autophagy-related genes under nutrient-replete conditions, while its nuclear-cytoplasmic shuttling under stress conditions links metabolic reprogramming to cellular survival. Emerging evidence also underscores its paradoxical roles in cancer: it suppresses tumor initiation by maintaining genomic stability yet promotes metastasis through epithelial–mesenchymal transition induction. Furthermore, epigenetic mechanisms, including promoter methylation and non-coding RNA regulation, fine-tune ZKSCAN3 expression, contributing to tissue-specific outcomes. Despite these insights, gaps remain in understanding the structural determinants governing its interaction with chromatin-remodeling complexes and the therapeutic potential of targeting ZKSCAN3 in diseases. Future investigations should prioritize integrating multi-omics approaches to unravel context-specific regulatory networks and explore small-molecule modulators for translational applications. This comprehensive analysis provides a framework for advancing our mechanistic understanding of ZKSCAN3 and its implications in human health and disease. This review synthesizes recent advances in elucidating the regulatory networks and functional complexity of ZKSCAN3, highlighting its dual roles in physiological and pathological contexts. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

20 pages, 3939 KiB  
Review
The Biological Roles of ZKSCAN3 (ZNF306) in the Hallmarks of Cancer: From Mechanisms to Therapeutics
by Wenfang Li, Han Zhang, Jianxiong Xu, Ayitila Maimaitijiang, Zhengding Su, Zhongxiong Fan and Jinyao Li
Int. J. Mol. Sci. 2024, 25(21), 11532; https://doi.org/10.3390/ijms252111532 - 27 Oct 2024
Cited by 2 | Viewed by 2130
Abstract
ZKSCAN3 (also known as ZNF306) plays a pivotal role in the regulation of various cellular processes that are fundamental to the development of cancer. It has been widely acknowledged as a key contributor to cancer progression, with its overexpression consistently reported in a [...] Read more.
ZKSCAN3 (also known as ZNF306) plays a pivotal role in the regulation of various cellular processes that are fundamental to the development of cancer. It has been widely acknowledged as a key contributor to cancer progression, with its overexpression consistently reported in a broad spectrum of malignancies. Importantly, clinical studies have demonstrated a significant association between elevated ZKSCAN3 levels and adverse prognosis, as well as resistance to therapeutic drugs. Specifically, ZKSCAN3 promotes tumor progression by enhancing multiple hallmark features of cancer and promoting the acquisition of cancer-specific phenotypes. These effects manifest as increased tumor cell proliferation, invasion, and metastasis, accompanied by inhibiting tumor cell apoptosis and modulating autophagy. Consequently, ZKSCAN3 emerges as a promising prognostic marker, and targeting its inhibition represents a potential strategy for anti-tumor therapy. In this review, we provide an updated perspective on the role of ZKSCAN3 in governing tumor characteristics and the underlying molecular mechanisms. Furthermore, we underscore the clinical relevance of ZKSCAN3 and its potential implications for tumor prognosis and therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Research on Cancer and Molecular Imaging)
Show Figures

Figure 1

14 pages, 6918 KiB  
Article
Effect of Lacking ZKSCAN3 on Autophagy, Lysosomal Biogenesis and Senescence
by Xiao-Min Li, Jun-Hao Wen, Ze-Sen Feng, Yun-Shan Wu, Dong-Yi Li, Shan Liang, Dan Wu, Hong-Luan Wu, Shang-Mei Li, Zhen-Nan Ye, Chen Yang, Lin Sun, Ji-Xin Tang and Hua-Feng Liu
Int. J. Mol. Sci. 2023, 24(9), 7786; https://doi.org/10.3390/ijms24097786 - 24 Apr 2023
Cited by 4 | Viewed by 2541
Abstract
Transcription factors can affect autophagy activity by promoting or inhibiting the expression of autophagic and lysosomal genes. As a member of the zinc finger family DNA-binding proteins, ZKSCAN3 has been reported to function as a transcriptional repressor of autophagy, silencing of which can [...] Read more.
Transcription factors can affect autophagy activity by promoting or inhibiting the expression of autophagic and lysosomal genes. As a member of the zinc finger family DNA-binding proteins, ZKSCAN3 has been reported to function as a transcriptional repressor of autophagy, silencing of which can induce autophagy and promote lysosomal biogenesis in cancer cells. However, studies in Zkscan3 knockout mice showed that the deficiency of ZKSCAN3 did not induce autophagy or increase lysosomal biogenesis. In order to further explore the role of ZKSCAN3 in the transcriptional regulation of autophagic genes in human cancer and non-cancer cells, we generated ZKSCAN3 knockout HK-2 (non-cancer) and Hela (cancer) cells via the CRISPR/Cas9 system and analyzed the differences in gene expression between ZKSCAN3 deleted cells and non-deleted cells through fluorescence quantitative PCR, western blot and transcriptome sequencing, with special attention to the differences in expression of autophagic and lysosomal genes. We found that ZKSCAN3 may be a cancer-related gene involved in cancer progression, but not an essential transcriptional repressor of autophagic or lysosomal genes, as the lacking of ZKSCAN3 cannot significantly promote the expression of autophagic and lysosomal genes. Full article
(This article belongs to the Special Issue Autophagy in Immune-Mediated Disease)
Show Figures

Figure 1

14 pages, 1687 KiB  
Article
Transcriptional Regulation of Liver-Type OATP1B3 (Lt-OATP1B3) and Cancer-Type OATP1B3 (Ct-OATP1B3) Studied in Hepatocyte-Derived and Colon Cancer-Derived Cell Lines
by Bastian Haberkorn, Dennis Löwen, Lukas Meier, Martin F. Fromm and Jörg König
Pharmaceutics 2023, 15(3), 738; https://doi.org/10.3390/pharmaceutics15030738 - 23 Feb 2023
Cited by 2 | Viewed by 2180
Abstract
Due to alternative splicing, the SLCO1B3 gene encodes two protein variants; the hepatic uptake transporter liver-type OATP1B3 (Lt-OATP1B3) and the cancer-type OATP1B3 (Ct-OATP1B3) expressed in several cancerous tissues. There is limited information about the cell type-specific transcriptional regulation of both variants and about [...] Read more.
Due to alternative splicing, the SLCO1B3 gene encodes two protein variants; the hepatic uptake transporter liver-type OATP1B3 (Lt-OATP1B3) and the cancer-type OATP1B3 (Ct-OATP1B3) expressed in several cancerous tissues. There is limited information about the cell type-specific transcriptional regulation of both variants and about transcription factors regulating this differential expression. Therefore, we cloned DNA fragments from the promoter regions of the Lt-SLCO1B3 and the Ct-SLCO1B3 gene and investigated their luciferase activity in hepatocellular and colorectal cancer cell lines. Both promoters showed differences in their luciferase activity depending on the used cell lines. We identified the first 100 bp upstream of the transcriptional start site as the core promoter region of the Ct-SLCO1B3 gene. In silico predicted binding sites for the transcription factors ZKSCAN3, SOX9 and HNF1α localized within these fragments were further analyzed. The mutagenesis of the ZKSCAN3 binding site reduced the luciferase activity of the Ct-SLCO1B3 reporter gene construct in the colorectal cancer cell lines DLD1 and T84 to 29.9% and 14.3%, respectively. In contrast, using the liver-derived Hep3B cells, 71.6% residual activity could be measured. This indicates that the transcription factors ZKSCAN3 and SOX9 are important for the cell type-specific transcriptional regulation of the Ct-SLCO1B3 gene. Full article
Show Figures

Figure 1

18 pages, 4634 KiB  
Article
Role of the WNT/β-catenin/ZKSCAN3 Pathway in Regulating Chromosomal Instability in Colon Cancer Cell lines and Tissues
by Young-Eun Cho, Jeong-Hee Kim, Young-Hyun Che, Yong-Jun Kim, Ji-Youn Sung, Yoon-Wha Kim, Bong-Geun Choe, Sun Lee and Jae-Hoon Park
Int. J. Mol. Sci. 2022, 23(16), 9302; https://doi.org/10.3390/ijms23169302 - 18 Aug 2022
Cited by 15 | Viewed by 2854
Abstract
Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) acts as an oncogenic transcription factor in human malignant tumors, including colon and prostate cancer. However, most of the ZKSCAN3-induced carcinogenic mechanisms remain unknown. In this study, we identified ZKSCAN3 as a downstream [...] Read more.
Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) acts as an oncogenic transcription factor in human malignant tumors, including colon and prostate cancer. However, most of the ZKSCAN3-induced carcinogenic mechanisms remain unknown. In this study, we identified ZKSCAN3 as a downstream effector of the oncogenic Wnt/β-catenin signaling pathway, using RNA sequencing and ChIP analyses. Activation of the Wnt pathway by recombinant Wnt gene family proteins or the GSK inhibitor, CHIR 99021 upregulated ZKSCAN3 expression in a β-catenin-dependent manner. Furthermore, ZKSCAN3 upregulation suppressed the expression of the mitotic spindle checkpoint protein, Mitotic Arrest Deficient 2 Like 2 (MAD2L2) by inhibiting its promoter activity and eventually inducing chromosomal instability in colon cancer cells. Conversely, deletion or knockdown of ZKSCAN3 increased MAD2L2 expression and delayed cell cycle progression. In addition, ZKSCAN3 upregulation by oncogenic WNT/β-catenin signaling is an early event of the adenoma–carcinoma sequence in colon cancer development. Specifically, immunohistochemical studies (IHC) were performed using normal (NM), hyperplastic polyps (HPP), adenomas (AD), and adenocarcinomas (AC). Their IHC scores were considerably different (61.4 in NM; 88.4 in HPP; 189.6 in AD; 246.9 in AC). In conclusion, ZKSCAN3 could be responsible for WNT/β-catenin-induced chromosomal instability in colon cancer cells through the suppression of MAD2L2 expression. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 5523 KiB  
Article
Alcohol-Induced Lysosomal Damage and Suppression of Lysosome Biogenesis Contribute to Hepatotoxicity in HIV-Exposed Liver Cells
by Moses New-Aaron, Paul G. Thomes, Murali Ganesan, Raghubendra Singh Dagur, Terrence M. Donohue, Kharbanda K. Kusum, Larisa Y. Poluektova and Natalia A. Osna
Biomolecules 2021, 11(10), 1497; https://doi.org/10.3390/biom11101497 - 11 Oct 2021
Cited by 17 | Viewed by 3565
Abstract
Although the causes of hepatotoxicity among alcohol-abusing HIV patients are multifactorial, alcohol remains the least explored “second hit” for HIV-related hepatotoxicity. Here, we investigated whether metabolically derived acetaldehyde impairs lysosomes to enhance HIV-induced hepatotoxicity. We exposed Cytochrome P450 2E1 (CYP2E1)-expressing Huh 7.5 (also [...] Read more.
Although the causes of hepatotoxicity among alcohol-abusing HIV patients are multifactorial, alcohol remains the least explored “second hit” for HIV-related hepatotoxicity. Here, we investigated whether metabolically derived acetaldehyde impairs lysosomes to enhance HIV-induced hepatotoxicity. We exposed Cytochrome P450 2E1 (CYP2E1)-expressing Huh 7.5 (also known as RLW) cells to an acetaldehyde-generating system (AGS) for 24 h. We then infected (or not) the cells with HIV-1ADA then exposed them again to AGS for another 48 h. Lysosome damage was assessed by galectin 3/LAMP1 co-localization and cathepsin leakage. Expression of lysosome biogenesis–transcription factor, TFEB, was measured by its protein levels and by in situ immunofluorescence. Exposure of cells to both AGS + HIV caused the greatest amount of lysosome leakage and its impaired lysosomal biogenesis, leading to intrinsic apoptosis. Furthermore, the movement of TFEB from cytosol to the nucleus via microtubules was impaired by AGS exposure. The latter impairment appeared to occur by acetylation of α-tubulin. Moreover, ZKSCAN3, a repressor of lysosome gene activation by TFEB, was amplified by AGS. Both these changes contributed to AGS-elicited disruption of lysosome biogenesis. Our findings indicate that metabolically generated acetaldehyde damages lysosomes and likely prevents their repair and restoration, thereby exacerbating HIV-induced hepatotoxicity. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

13 pages, 4375 KiB  
Article
Role of the Transcriptional Repressor Zinc Finger with KRAB and SCAN Domains 3 (ZKSCAN3) in Retinal Pigment Epithelial Cells
by Hsuan-Yeh Pan and Mallika Valapala
Cells 2021, 10(10), 2504; https://doi.org/10.3390/cells10102504 - 22 Sep 2021
Cited by 7 | Viewed by 2725
Abstract
Lysosomes are important for proper functioning of the retinal pigment epithelial (RPE) cells. RPE cells have a daily burden of phagocytosis of photoreceptor outer segments (POS) and also degrade cellular waste by autophagy. Here, we identified the role of Zinc-finger protein with KRAB [...] Read more.
Lysosomes are important for proper functioning of the retinal pigment epithelial (RPE) cells. RPE cells have a daily burden of phagocytosis of photoreceptor outer segments (POS) and also degrade cellular waste by autophagy. Here, we identified the role of Zinc-finger protein with KRAB and SCAN domains 3 (ZKSCAN3) in co-ordinate regulation of lysosomal function and autophagy in the RPE. Our studies show that in the RPE, ZKSCAN3 is predominantly nuclear in healthy cells and its nuclear expression is reduced upon nutrient deprivation. siRNA-mediated knockdown of ZKSCAN3 results in de-repression of some of the ZKSCAN3 target genes. Knockdown of ZKSCAN3 also resulted in an induction in autophagy flux, increase in the number of functional lysosomes and accompanied activation of lysosomal cathepsin B activity in ARPE-19 cells. We also demonstrated that inhibition of P38 mitogen-activated protein kinase (MAPK) retains ZKSCAN3 in the nucleus in nutrient-deprived cells. In summary, our studies elucidated the role of ZKSCAN3 as a transcriptional repressor of autophagy and lysosomal function in the RPE. Full article
Show Figures

Figure 1

13 pages, 2530 KiB  
Article
NOP53 Suppresses Autophagy through ZKSCAN3-Dependent and -Independent Pathways
by Young-Eun Cho, Yong-Jun Kim, Sun Lee and Jae-Hoon Park
Int. J. Mol. Sci. 2021, 22(17), 9318; https://doi.org/10.3390/ijms22179318 - 27 Aug 2021
Cited by 6 | Viewed by 2923
Abstract
Autophagy is an evolutionally conserved process that recycles aged or damaged intracellular components through a lysosome-dependent pathway. Although this multistep process is propagated in the cytoplasm by the orchestrated activity of the mTOR complex, phosphatidylinositol 3-kinase, and a set of autophagy-related proteins (ATGs), [...] Read more.
Autophagy is an evolutionally conserved process that recycles aged or damaged intracellular components through a lysosome-dependent pathway. Although this multistep process is propagated in the cytoplasm by the orchestrated activity of the mTOR complex, phosphatidylinositol 3-kinase, and a set of autophagy-related proteins (ATGs), recent investigations have suggested that autophagy is tightly regulated by nuclear events. Thus, it is conceivable that the nucleolus, as a stress-sensing and -responding intranuclear organelle, plays a role in autophagy regulation, but much is unknown concerning the nucleolar controls in autophagy. In this report, we show a novel nucleolar–cytoplasmic axis that regulates the cytoplasmic autophagy process: nucleolar protein NOP53 regulates the autophagic flux through two divergent pathways, the ZKSCAN3-dependent and -independent pathways. In the ZKSCAN3-dependent pathway, NOP53 transcriptionally activates a master autophagy suppressor ZKSCAN3, thereby inhibiting MAP1LC3B/LC3B induction and autophagy propagation. In the ZKSCAN3-independent pathway, NOP53 physically interacts with histone H3 to dephosphorylate S10 of H3, which, in turn, transcriptionally downregulates the ATG7 and ATG12 expressions. Our results identify nucleolar protein NOP53 as an upstream regulator of the autophagy process. Full article
(This article belongs to the Special Issue Autophagy: New Frontier and Perspective)
Show Figures

Figure 1

26 pages, 2988 KiB  
Review
KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview
by Joanna Sobocińska, Sara Molenda, Marta Machnik and Urszula Oleksiewicz
Int. J. Mol. Sci. 2021, 22(4), 2212; https://doi.org/10.3390/ijms22042212 - 23 Feb 2021
Cited by 57 | Viewed by 6879
Abstract
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through [...] Read more.
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting. Full article
(This article belongs to the Special Issue Transcription Factors in Cancer)
Show Figures

Figure 1

15 pages, 3037 KiB  
Article
Impact of Vasectomy on the Development and Progression of Prostate Cancer: Preclinical Evidence
by Takashi Kawahara, Yuki Teramoto, Yi Li, Hitoshi Ishiguro, Jennifer Gordetsky, Zhiming Yang and Hiroshi Miyamoto
Cancers 2020, 12(8), 2295; https://doi.org/10.3390/cancers12082295 - 15 Aug 2020
Cited by 9 | Viewed by 3883
Abstract
Some observational studies have implied a link between vasectomy and an elevated risk of prostate cancer. We investigated the impact of vasectomy on prostate cancer outgrowth, mainly using preclinical models. Neoplastic changes in the prostate were compared in transgenic TRAMP mice that underwent [...] Read more.
Some observational studies have implied a link between vasectomy and an elevated risk of prostate cancer. We investigated the impact of vasectomy on prostate cancer outgrowth, mainly using preclinical models. Neoplastic changes in the prostate were compared in transgenic TRAMP mice that underwent vasectomy vs. sham surgery performed at 4 weeks of age. One of the molecules identified by DNA microarray (i.e., ZKSCAN3) was then assessed in radical prostatectomy specimens and human prostate cancer lines. At 24 weeks, gross tumor (p = 0.089) and poorly differentiated adenocarcinoma (p = 0.036) occurred more often in vasectomized mice. Vasectomy significantly induced ZKSCAN3 expression in prostate tissues from C57BL/6 mice and prostate cancers from TRAMP mice. Immunohistochemistry showed increased ZKSCAN3 expression in adenocarcinoma vs. prostatic intraepithelial neoplasia (PIN), PIN vs. non-neoplastic prostate, Grade Group ≥3 vs. ≤2 tumors, pT3 vs. pT2 tumors, pN1 vs. pN0 tumors, and prostate cancer from patients with a history of vasectomy. Additionally, strong (2+/3+) ZKSCAN3 expression (p = 0.002), as an independent prognosticator, or vasectomy (p = 0.072) was associated with the risk of tumor recurrence. In prostate cancer lines, ZKSCAN3 silencing resulted in significant decreases in cell proliferation/migration/invasion. These findings suggest that there might be an association between vasectomy and the development and progression of prostate cancer, with up-regulation of ZKSCAN3 expression as a potential underlying mechanism. Full article
(This article belongs to the Collection Prostate Cancer—from Molecular Mechanisms to Clinical Care)
Show Figures

Figure 1

12 pages, 1321 KiB  
Article
Cardiac miRNA Expression and their mRNA Targets in a Rat Model of Prediabetes
by Éva Sághy, Imre Vörös, Bence Ágg, Bernadett Kiss, Gábor Koncsos, Zoltán V. Varga, Anikó Görbe, Zoltán Giricz, Rainer Schulz and Péter Ferdinandy
Int. J. Mol. Sci. 2020, 21(6), 2128; https://doi.org/10.3390/ijms21062128 - 20 Mar 2020
Cited by 14 | Viewed by 4210
Abstract
Little is known about the mechanism of prediabetes-induced cardiac dysfunction. Therefore, we aimed to explore key molecular changes with transcriptomic and bioinformatics approaches in a prediabetes model showing heart failure with preserved ejection fraction phenotype. To induce prediabetes, Long-Evans rats were fed a [...] Read more.
Little is known about the mechanism of prediabetes-induced cardiac dysfunction. Therefore, we aimed to explore key molecular changes with transcriptomic and bioinformatics approaches in a prediabetes model showing heart failure with preserved ejection fraction phenotype. To induce prediabetes, Long-Evans rats were fed a high-fat diet for 21 weeks and treated with a single low-dose streptozotocin at week 4. Small RNA-sequencing, in silico microRNA (miRNA)-mRNA target prediction, Gene Ontology analysis, and target validation with qRT-PCR were performed in left ventricle samples. From the miRBase-annotated 752 mature miRNA sequences expression of 356 miRNAs was detectable. We identified two upregulated and three downregulated miRNAs in the prediabetic group. We predicted 445 mRNA targets of the five differentially expressed miRNAs and selected 11 mRNAs targeted by three differentially expressed miRNAs, out of which five mRNAs were selected for validation. Out of these five targets, downregulation of three mRNAs i.e., Juxtaposed with another zinc finger protein 1 (Jazf1); RAP2C, member of RAS oncogene family (Rap2c); and Zinc finger with KRAB and SCAN domains 1 (Zkscan1) were validated. This is the first demonstration that prediabetes alters cardiac miRNA expression profile. Predicted targets of differentially expressed miRNAs include Jazf1, Zkscan1, and Rap2c mRNAs. These transcriptomic changes may contribute to the diastolic dysfunction and may serve as drug targets. Full article
(This article belongs to the Special Issue RNAs in Cardiovascular Diseases-CardioRNA EU COST Action)
Show Figures

Figure 1

17 pages, 1872 KiB  
Article
Cold Atmospheric Plasma and Silymarin Nanoemulsion Activate Autophagy in Human Melanoma Cells
by Manish Adhikari, Bhawana Adhikari, Bhagirath Ghimire, Sanjula Baboota and Eun Ha Choi
Int. J. Mol. Sci. 2020, 21(6), 1939; https://doi.org/10.3390/ijms21061939 - 12 Mar 2020
Cited by 49 | Viewed by 4890
Abstract
Background: Autophagy is reported as a survival or death-promoting pathway that is highly debatable in different kinds of cancer. Here, we examined the co-effect of cold atmospheric plasma (CAP) and silymarin nanoemulsion (SN) treatment on G-361 human melanoma cells via autophagy induction. Methods: [...] Read more.
Background: Autophagy is reported as a survival or death-promoting pathway that is highly debatable in different kinds of cancer. Here, we examined the co-effect of cold atmospheric plasma (CAP) and silymarin nanoemulsion (SN) treatment on G-361 human melanoma cells via autophagy induction. Methods: The temperature and pH of the media, along with the cell number, were evaluated. The intracellular glucose level and PI3K/mTOR and EGFR downstream pathways were assessed. Autophagy-related genes, related transcriptional factors, and autophagy induction were estimated using confocal microscopy, flow cytometry, and ELISA. Results: CAP treatment increased the temperature and pH of the media, while its combination with SN resulted in a decrease in intracellular ATP with the downregulation of PI3K/AKT/mTOR survival and RAS/MEK transcriptional pathways. Co-treatment blocked downstream paths of survival pathways and reduced PI3K (2 times), mTOR (10 times), EGFR (5 times), HRAS (5 times), and MEK (10 times). CAP and SN co-treated treatment modulates transcriptional factor expressions (ZKSCAN3, TFEB, FOXO1, CRTC2, and CREBBP) and specific genes (BECN-1, AMBRA-1, MAP1LC3A, and SQSTM) related to autophagy induction. Conclusion: CAP and SN together activate autophagy in G-361 cells by activating PI3K/mTOR and EGFR pathways, expressing autophagy-related transcription factors and genes. Full article
(This article belongs to the Special Issue Plasma Biology)
Show Figures

Graphical abstract

10 pages, 2298 KiB  
Article
ZKSCAN3 Upregulation and Its Poor Clinical Outcome in Uterine Cervical Cancer
by Sun Lee, Young-Eun Cho, Joo-Young Kim and Jae-Hoon Park
Int. J. Mol. Sci. 2018, 19(10), 2859; https://doi.org/10.3390/ijms19102859 - 20 Sep 2018
Cited by 15 | Viewed by 3666
Abstract
Zinc finger with KRAB and SCAN domain 3 (ZKSCAN3) upregulates genes encoding proteins involved in cell differentiation, proliferation and apoptosis. ZKSCAN3 has been reported to be overexpressed in several human cancers such as colorectal cancer and prostate cancer and is proposed as a [...] Read more.
Zinc finger with KRAB and SCAN domain 3 (ZKSCAN3) upregulates genes encoding proteins involved in cell differentiation, proliferation and apoptosis. ZKSCAN3 has been reported to be overexpressed in several human cancers such as colorectal cancer and prostate cancer and is proposed as a candidate oncoprotein. However, the molecular mechanism by which ZKSCAN3 participates in carcinogenesis is largely unknown. Here, we evaluated ZKSCAN3 expression in uterine cervical cancers (CC) by immunohistochemistry using formalin-fixed, paraffin-embedded tissues from 126 biopsy samples from 126 patients. The clinicopathological findings were analyzed and compared with ZKSCAN3 expression levels. ZKSCAN3 was strongly overexpressed in CCs compared to adjacent non-neoplastic cervical mucosa tissues. Moreover, a gene copy number assay showed amplified ZKSCAN3 in CC samples. ZKSCAN3 overexpression was also significantly associated with poor overall survival of the patients. Overall, our findings indicate that ZKSCAN3 overexpression is a frequent event in uterine CC and is correlated with a poor clinical outcome. ZKSCAN3 could be developed as a molecular marker for prognostic prediction and early detection. Full article
(This article belongs to the Special Issue Molecular Research on Cervical Cancer)
Show Figures

Figure 1

Back to TopTop