Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = ZIF-8 membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 359
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

18 pages, 5149 KiB  
Article
Construction of Transport Channels by HNTs@ZIF-67 Composites in a Mixed-Matrix Membrane for He/CH4 Separation
by Jiale Zhang, Huixin Dong, Fei Guo, Huijun Yi, Xiaobin Jiang, Gaohong He and Wu Xiao
Membranes 2025, 15(7), 197; https://doi.org/10.3390/membranes15070197 - 30 Jun 2025
Viewed by 447
Abstract
In this work, HNTs@ZIF-67 composites were synthesized using the in situ growth method and incorporated into 6FDA-TFMB to prepare mixed-matrix membranes (MMMs). Scanning electron microscope (SEM) and transmission electron microscope (TEM) proved that the HNTs@ZIF-67 composite not only retained the hollow structure of [...] Read more.
In this work, HNTs@ZIF-67 composites were synthesized using the in situ growth method and incorporated into 6FDA-TFMB to prepare mixed-matrix membranes (MMMs). Scanning electron microscope (SEM) and transmission electron microscope (TEM) proved that the HNTs@ZIF-67 composite not only retained the hollow structure of HNTs, but also formed a continuous ZIF-67 transport layer on the surface of HNTs. The results of gas permeability experiments showed that with the increase in HNTs@ZIF-67 incorporation, the He permeability and He/CH4 selectivity of MMMs showed a trend of increasing first and then decreasing. When the loading is 5 wt%, the He permeability and He/CH4 selectivity of MMMs reach 116 Barrer and 305, which are 22.11% and 79.41% higher than the pure 6FDA-TFMB membrane. The results of density functional theory (DFT) and Monte Carlo (MC) calculations reveal that He diffuses more easily inside ZIF-67, HNTs and 6FDA-TFMB than CH4, and ZIF-67 shows larger adsorption energy with He than HNTs and 6FDA-TFMB, indicating that He is easily adsorbed by ZIF-67 in MMMs. Based on experimental and molecular simulation results, the mechanism of HNTs@ZIF-67 improving the He/CH4 separation performance of MMMs was summarized. With the advantage of a smaller molecular kinetic diameter, He can diffuse through ZIF-67 on the tube orifice of HNTs@ZIF-67 and enter the HNTs’ hollow tube for rapid transmission. At the same time, He can also be rapidly transferred in the continuous ZIF-67 transport channel layer, which improves the He permeability and the He/CH4 selectivity of MMMs. Full article
(This article belongs to the Special Issue High-Performance Composite Membrane for Gas Separation and Capture)
Show Figures

Figure 1

13 pages, 7635 KiB  
Article
Vacuum-Assembled ZIF-67/SiO2–PEI Thin-Film Nanocomposite Membrane with Ultrahigh Permeance for Textile Wastewater Treatment
by Li Xiao, Jinyu Liu, Fan Zhang, Feng Qin, Yikai Wang, Zikang Qin, Yahui Yang, Zhongde Dai, Junfeng Zheng and Bo Tang
Polymers 2025, 17(13), 1741; https://doi.org/10.3390/polym17131741 - 22 Jun 2025
Viewed by 550
Abstract
High permeance combined with high salt/dye separation efficiency is a prerequisite for achieving zero-liquid-discharge treatment of saline textile wastewater by membrane technology. Thin-film nanocomposite (TFN) membranes incorporating porous nanoparticles offer a promising route to overcome the permeability–selectivity trade-off of conventional polymer membranes. In [...] Read more.
High permeance combined with high salt/dye separation efficiency is a prerequisite for achieving zero-liquid-discharge treatment of saline textile wastewater by membrane technology. Thin-film nanocomposite (TFN) membranes incorporating porous nanoparticles offer a promising route to overcome the permeability–selectivity trade-off of conventional polymer membranes. In this study, a vacuum-assisted method was used to co-blend ZIF-67 and SiO2 nanoparticles, while branched polyethyleneimine (PEI) served as a cross-linking bridge, resulting in a high-performance TFN membrane for salt/dye separation. Acting as a molecular connector, PEI coordinated with ZIF-67 through metal–amine complexation and simultaneously formed hydrogen bonds with surface hydroxyl groups on SiO2, thereby linking ZIF-67 and SiO2. The resulting membrane exhibited good hydrophilicity and excellent dye separation performance (water flux = 359.8 L m−2 h−1 bar−1; Congo Red rejection = 99.2%) as well as outstanding selectivity in dye/salt mixtures (Congo Red/MgCl2 selectivity of 1094). The optimal ZIF@SiO2-PEI membrane maintained stable dye rejection over a wide range of trans-membrane pressures, initial concentrations, and pH values. These results reveal the huge potential of applying the ZIF@SiO2-PEI TFN membranes for resource recovery in sustainable textile wastewater systems. Full article
Show Figures

Graphical abstract

28 pages, 2556 KiB  
Article
Evaluation of the Potential of Metal–Organic Compounds ZIF-8 and F300 in a Membrane Filtration–Adsorption Process for the Removal of Antibiotics from Water
by Daniel Polak, Szymon Kamocki and Maciej Szwast
Antibiotics 2025, 14(6), 619; https://doi.org/10.3390/antibiotics14060619 - 18 Jun 2025
Viewed by 455
Abstract
Background/Objectives: Antibiotic contamination in water sources is a growing global concern, contributing to environmental degradation and the proliferation of antimicrobial resistance. Traditional treatment methods, such as advanced oxidation or high-pressure membrane processes, are often energy-intensive and economically unsustainable for large-scale or decentralized applications. [...] Read more.
Background/Objectives: Antibiotic contamination in water sources is a growing global concern, contributing to environmental degradation and the proliferation of antimicrobial resistance. Traditional treatment methods, such as advanced oxidation or high-pressure membrane processes, are often energy-intensive and economically unsustainable for large-scale or decentralized applications. This study explores the potential of two cost-effective, commercially available metal–organic frameworks (MOFs), ZIF-8 and F300, to improve the performance of membrane-based filtration–adsorption systems for removing tetracycline and sulfadiazine from water. Methods: Batch adsorption experiments were performed to evaluate the uptake capacities, kinetics, and isotherms of both MOFs toward the selected antibiotics. The membranes were modified using a low-cost silane-assisted deposition of MOF particles and tested in a microfiltration system. Removal efficiencies and water permeability were assessed and kinetic and isotherm models were applied to understand the adsorption mechanisms. Results: ZIF-8 showed superior adsorption performance, with maximum capacities of 442.2 mg/g for tetracycline and 219.3 mg/g for sulfadiazine. F300 was effective only for tetracycline. Membranes modified with ZIF-8 improved pharmaceutical removal by 187% (tetracycline) and 224% (sulfadiazine) compared to unmodified membranes. Although permeability decreased due to increased hydrophobicity, the materials and processes remained economically favorable. Conclusions: This study demonstrates that MOF-modified ceramic membranes, particularly those incorporating ZIF-8, offer a low-cost, scalable, and energy-efficient alternative for pharmaceutical removal from water. The approach combines strong environmental impact with economic viability, making it attractive for broader implementation in water treatment systems. Full article
Show Figures

Graphical abstract

12 pages, 2463 KiB  
Article
Metal–Organic Frameworks (MOF)-Derived Gel Electrolyte via UV Cross-Linking for High-Performance Lithium Metal Batteries
by Naiyao Mao, Lingxiao Lan, Qiankun Hun, Jianghua Wei, Xinghua Liang and Yifeng Guo
Gels 2025, 11(6), 409; https://doi.org/10.3390/gels11060409 - 29 May 2025
Viewed by 640
Abstract
Gel electrolytes (GEs) play a pivotal role in the advancement of lithium metal batteries by offering high energy density and enhanced rate capability. Nevertheless, their real-world application is hampered by relatively low ionic conductivity and significant interfacial resistance at room temperatures. In this [...] Read more.
Gel electrolytes (GEs) play a pivotal role in the advancement of lithium metal batteries by offering high energy density and enhanced rate capability. Nevertheless, their real-world application is hampered by relatively low ionic conductivity and significant interfacial resistance at room temperatures. In this work, we developed a gel electrolyte membrane (GEM) by embedding Zeolitic Imidazolate Framework-8 (ZIF-8) metal–organic frameworks (MOFs) material into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix through UV curing. The composite membrane, with 4 wt% ZIF-8, exhibited an ionic conductivity of 1.17 × 10−3 S/cm, an electrochemical stability window of 4.7 V, and a lithium-ion transference number of 0.7. The test results indicate that the electrochemical performance of LFP//GEM//Li battery has an initial specific capacity of 168 mAh g−1 at 0.1 C rate. At 1 C, the discharge capacity was 88 mAh g−1, and at 2 C, it was 68 mAh g−1. Enhanced ionic transport, improved electrochemical stability, and optimized lithium-ion migration collectively contributed to superior rate performance and prolonged cycle life. This study offers novel insights and methodological advances for next-generation lithium metal batteries technologies. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

29 pages, 32601 KiB  
Article
Sustainable Novel Membranes Based on Carboxymethyl Cellulose Modified with ZIF-8 for Isopropanol/Water Pervaporation Separation
by Anna Kuzminova, Mariia Dmitrenko, Roman Dubovenko, Anna Mikulan, Anastasia Stepanova, Margarita Puzikova, Nadezhda Rakovskaya, Anton Mazur, Anna Shurukhina, Aida Rudakova, Alexei Emeline, Rongxin Su and Anastasia Penkova
Sustainability 2025, 17(9), 3801; https://doi.org/10.3390/su17093801 - 23 Apr 2025
Viewed by 646
Abstract
The present study investigates the potential of novel mixed matrix membranes that are formed from the biopolymer carboxymethyl cellulose (CMC) and the metal–organic framework ZIF-8 to improve the pervaporation dehydration of isopropanol. The effect of ZIF-8 content variation and porous substrate selection (comprising [...] Read more.
The present study investigates the potential of novel mixed matrix membranes that are formed from the biopolymer carboxymethyl cellulose (CMC) and the metal–organic framework ZIF-8 to improve the pervaporation dehydration of isopropanol. The effect of ZIF-8 content variation and porous substrate selection (comprising cellulose acetate (CA) and polyacrylonitrile) on dense and supported membrane properties is systematically investigated using multiple analytical techniques. It is found that ZIF-8 incorporation alters the membrane structure (confirmed by FTIR and NMR), increases surface roughness (observed via SEM and AFM), enhances swelling degree (obtained by swelling measurements), improves surface hydrophobicity (determined by contact angle analysis), and elevates thermal stability (verified by TGA). Quantum chemical calculations are used to validate the interactions between the polymer matrix, modifier, and feed components. The transport properties of developed membranes are evaluated through the dehydration of isopropanol via pervaporation. The cross-linked supported CMC membrane with 10 wt% ZIF-8 prepared on the CA substrate has the optimal performance: permeation flux of 0.136–1.968 kg/(m2h) and ˃92 wt% water in the permeate via the dehydration of isopropanol (water content 12–100 wt%) at 22 °C. Full article
Show Figures

Graphical abstract

15 pages, 4882 KiB  
Article
Combination of Cu-BTC- and FeCo-MOF-Derived Carbon Enhanced Molecularly Imprinted Electrochemical Sensor for Highly Sensitive and Selective Detection of Benomyl in Fruits and Vegetables
by Lili Chen, Shuya Xue, Xin Li, Linbo Deng, Jiapeng Li, Jing Zhou, Yansha Gao, Xuemin Duan and Limin Lu
Molecules 2025, 30(9), 1869; https://doi.org/10.3390/molecules30091869 - 22 Apr 2025
Viewed by 541
Abstract
The development of sensitive and selective methods for detecting pesticide residues has become paramount for ensuring food safety. In this work, a high-performance molecularly imprinted electrochemical sensor based on the composite of Cu-BTC- and FeCo-ZIF-derived N-doped carbon (FeCo@NC), synthesized by pyrolysis and electrodeposition, [...] Read more.
The development of sensitive and selective methods for detecting pesticide residues has become paramount for ensuring food safety. In this work, a high-performance molecularly imprinted electrochemical sensor based on the composite of Cu-BTC- and FeCo-ZIF-derived N-doped carbon (FeCo@NC), synthesized by pyrolysis and electrodeposition, was developed for Benomyl (BN) detection. The materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In this sensing system, the Cu-BTC/FeCo@NC composite used as the electrode substrate displayed a large specific surface area, high electronic conductivity, and rich active catalytic sites, demonstrating excellent electrocatalytic ability toward BN oxidation. Meanwhile, Cu-BTC, with its abundant surface functional groups, facilitated strong hydrogen bonding interactions with the imprinted template molecule of 3,4-ethylenedioxythiophene (EDOT), promoting the formation of a uniform molecularly imprinted membrane on the substrate material surface. The introduced MIP-PEDOT could enhance the selective recognition and enrichment of the target BN, leading to an amplified detection signal. Thanks to the synergistic effects between Cu-BTC/FeCo@NC and MIP-PEDOT, the proposed sensor achieved a low detection limit of 1.67 nM. Furthermore, the fabricated sensor exhibited high selectivity, reproducibility, and interference resistance in detecting BN. The method has been successfully applied to the determination of BN in vegetable and fruit samples, indicating its potential for use in practical applications. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

21 pages, 2480 KiB  
Review
Recent Advances in ZIF Membrane: Fabrication, Separation Ability and Its Application
by Jingyuan Zhang, Jiatong Han, Xin Chen, Dan Xu, Xiaobin Wen, Yiming Zhao, Yanyan Huang, Xin Ding, Ge Chen, Donghui Xu, Xiaomin Xu and Guangyang Liu
Nanomaterials 2025, 15(3), 239; https://doi.org/10.3390/nano15030239 - 4 Feb 2025
Cited by 1 | Viewed by 1945
Abstract
With the growth of the population and the development of industry and agriculture, water resources are experiencing contamination by numerous pollutants, posing a threat to the aquatic environment and human health. Zeolitic imidazolate framework (ZIF) membranes, as a solution for water pollutant treatment, [...] Read more.
With the growth of the population and the development of industry and agriculture, water resources are experiencing contamination by numerous pollutants, posing a threat to the aquatic environment and human health. Zeolitic imidazolate framework (ZIF) membranes, as a solution for water pollutant treatment, not only have the advantages of high efficiency adsorption, good selectivity, stability, and easy recyclability, but they also can be modified or derivatized through surface functionalization, compositing, or structural tuning, which can further endow the membranes with other functions, such as catalysis and degradation. In order to improve the performance of ZIF membranes, it is crucial to select suitable preparation methods to optimize the microstructure of the membranes and to improve the separation performance and stability of the membranes. This review systematically summarizes the current major preparation methods of ZIF membranes and their respective advantages and disadvantages, providing an overview of the applications of ZIF membranes in the treatment of water pollutants, such as dyes, antibiotics, and heavy metal ions. Future development prospects are also discussed, with the expectation that future research will optimize the synthesis methods to enhance the mechanical strength of the membranes and improve their selectivity, permeability, and anti-fouling properties through modifications or functionalization. This article is expected to provide theoretical support for the application of ZIF membranes in water pollution treatment. Full article
Show Figures

Figure 1

15 pages, 5276 KiB  
Article
ZIF-8-Embedded Cation-Exchange Membranes with Improved Monovalent Ion Selectivity for Capacitive Deionization
by Eui-Gyu Han, Ji-Hyeon Lee and Moon-Sung Kang
Membranes 2025, 15(1), 19; https://doi.org/10.3390/membranes15010019 - 9 Jan 2025
Cited by 1 | Viewed by 1686
Abstract
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal–organic [...] Read more.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal–organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios. The resulting membranes were systematically characterized using diverse electrochemical methods. The ZIF-8-embedded CEMs demonstrated a sieving effect based on differences in ion size and hydration energy, achieving excellent permselectivity for monovalent ions. MCDI tests using the prepared CEMs showed a Na+ ion removal rate exceeding 99% in Na+/Mg2+ and Na+/Ca2+ mixed feed solutions, outperforming a commercial membrane (CSE, Astom Corp., Tokyo, Japan), which achieved a removal rate of 94.1%. These findings are expected to provide valuable insights for advancing not only MCDI but also other electro-membrane processes capable of selectively separating specific ions. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 4881 KiB  
Article
Highly Stable Flexible SERS-Imprinted Membrane Based on Plasmonic MOF Material for the Selective Detection of Chrysoidin in Environmental Water
by Xinyi Liu, Hongji Li, Dandan Wang, Jian Lu, Yilin Wu and Wei Sun
Polymers 2025, 17(1), 81; https://doi.org/10.3390/polym17010081 - 31 Dec 2024
Cited by 2 | Viewed by 762
Abstract
Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, [...] Read more.
Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip “hotspot”. To avoid the poor reproducibility of Raman signals caused by the random arrangement of the powder substrate, polyvinyl chloride (PVC) is used to provide support and protection for the powder substrate. PVC has excellent dirt immunity and chemical stability, enabling the substrate to maintain Raman performance under complex and extreme detection conditions. FAZP-MIM has outstanding sensitivity and selectivity and can quickly and accurately capture targets even in the presence of similar structural interferences. The method showed superior recoveries in spiked recovery tests of real water samples and is expected to be practically applied to the trace detection of organic dye molecules in the environment. Full article
(This article belongs to the Special Issue Advances in Molecularly Imprinted Polymer Materials)
Show Figures

Figure 1

17 pages, 11367 KiB  
Article
A PDA@ZIF-8-Incorporated PMIA TFN-FO Membrane for Seawater Desalination: Improving Water Flux and Anti-Fouling Performance
by Yu Ma, Rui Jia, Zhen-Liang Xu, Aida Aibulatova, Xiao-Gang Jin, Yin-Xin Fang, Ming-Xiao Zhang and Sun-Jie Xu
Membranes 2024, 14(12), 272; https://doi.org/10.3390/membranes14120272 - 16 Dec 2024
Cited by 2 | Viewed by 1443
Abstract
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of [...] Read more.
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux (Jw) of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications. Here, hydrophilic polydopamine (PDA)@ zeolitic imidazolate frameworks-8 (ZIF-8) nanomaterials and their integration into PMIA membranes using the interfacial polymerization (IP) method were investigated. The impact of PDA@ZIF-8 on membrane performance in both pressure-retarded osmosis (PRO) and forward osmosis (FO) modes was analyzed. The durability and fouling resistance of these membranes were evaluated over the long term. When the amount of ZIF-8@PDA incorporated in the membrane reached 0.05 wt% in the aqueous phase in the IP reaction, the Jw values for the PRO mode and FO mode were 12.09 LMH and 11.10 LMH, respectively. The reverse salt flux (Js)/Jw values for both modes decreased from 0.75 and 0.80 to 0.33 and 0.35, respectively. At the same time, the PRO and FO modes’ properties were stable in a 15 h test. The incorporation of PDA@ZIF-8 facilitated the formation of water channels within the nanoparticle pores. Furthermore, the Js/Jw ratio decreased significantly, and the FO membranes containing PDA@ZIF-8 exhibited high flux recovery rates and superior resistance to membrane fouling. Therefore, PDA@ZIF-8-modified FO membranes have the potential for use in industrial applications in seawater desalination. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

12 pages, 5223 KiB  
Article
Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O2 Batteries
by Mingrui Liu, Shaoqiu Ke, Chuangqing Sun, Chenzhuo Zhang and Shijun Liao
Nanomaterials 2024, 14(24), 2003; https://doi.org/10.3390/nano14242003 - 13 Dec 2024
Cited by 2 | Viewed by 884
Abstract
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O2) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts [...] Read more.
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O2) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O2 batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst. When applied in the cathode of PEMFCs, the current density can reach up 1.1 and 1.7 A cm−2 at 0.7 and 0.6 V, respectively, with a maximum power density of 1.15 W cm−2. The discharge capacity of the Li-O2 batteries is up to 15,081 mAh g−1 with Fe-Hf/N/C in the cathode, which also shows a lower charge overpotential, 200 mV lower than that of the Fe/N/C. Additionally, the Fe-Hf/N/C catalyst has demonstrated better stability in both PEMFCs and Li-O2 batteries. This reveals that Hf can not only optimize the electronic structure of iron sites and increase the active sites for the oxygen reduction reaction, but can also anchor the active sites, enhancing the durability of the catalyst. This study provides a new strategy for the development of high-performance and durable catalysts for PEMFCs and Li-O2 batteries. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 1748 KiB  
Article
Harnessing Halogenated Zeolitic Imidazolate Frameworks for Alcohol Vapor Adsorption
by Kevin Dedecker, Martin Drobek and Anne Julbe
Molecules 2024, 29(24), 5825; https://doi.org/10.3390/molecules29245825 - 10 Dec 2024
Cited by 1 | Viewed by 1054
Abstract
This study explores Zeolitic Imidazolate Frameworks (ZIFs) as promising materials for adsorbing alcohol vapors, one of the main contributors to air quality deterioration and adverse health effects. Indeed, this sub-class of Metal–Organic Frameworks (MOFs) offers a promising alternative to conventional adsorbents like zeolites [...] Read more.
This study explores Zeolitic Imidazolate Frameworks (ZIFs) as promising materials for adsorbing alcohol vapors, one of the main contributors to air quality deterioration and adverse health effects. Indeed, this sub-class of Metal–Organic Frameworks (MOFs) offers a promising alternative to conventional adsorbents like zeolites and activated carbons for air purification. Specifically, this investigation focuses on ZIF-8_Br, a brominated version of ZIF-8_CH3, to evaluate its ability to capture aliphatic alcohols at lower partial pressures. The adsorption properties have been investigated using both experimental and computational methods combining Density Functional Theory and Grand Canonical Monte Carlo simulations. The Ideal Adsorbed Solution Theory (IAST) has been used to assess the material selectivity in the presence of binary equimolar alcohol mixtures. Compared to ZIF-8_CH3, the brominated analog has been shown to feature a higher affinity for alcohols, a property that could be advantageously exploited in environmental remediation or in the development of membranes for alcohol vapor sensors. Full article
(This article belongs to the Special Issue Porous Organic Materials: Design and Applications: Volume II)
Show Figures

Graphical abstract

11 pages, 2947 KiB  
Article
Preparation of Hierarchical Porous ZIF-67 and Its Application in Zinc Battery Separator
by Tian Zhao, Jiangrong Yu, Pengcheng Xiao, Saiqun Nie, Shilin Peng, Jiayao Chen, Fuli Luo, Christoph Janiak and Yi Chen
Chemistry 2024, 6(6), 1363-1373; https://doi.org/10.3390/chemistry6060080 - 31 Oct 2024
Cited by 3 | Viewed by 1418
Abstract
This study successfully prepared a hierarchically porous ZIF-67 (H-ZIF-67) by incorporating the polyvinylpyrrolidone (PVP) at room temperature. Compared to standard control ZIF-67 (C-ZIF-67) with a yield of 81% and a BET specific surface area of 1228 m2·g−1, the H-ZIF-67 [...] Read more.
This study successfully prepared a hierarchically porous ZIF-67 (H-ZIF-67) by incorporating the polyvinylpyrrolidone (PVP) at room temperature. Compared to standard control ZIF-67 (C-ZIF-67) with a yield of 81% and a BET specific surface area of 1228 m2·g−1, the H-ZIF-67 not only exhibited improved crystallinity and pore structure but also achieved a yield of up to 93% and a BET specific surface area of 1457 m2·g−1. Due to its hierarchically porous structure, H-ZIF-67 demonstrated excellent adsorption capacity and efficiency for methylene orange (MO). Additionally, the composite separator created by combining H-ZIF-67 with nanocellulose (CNF) exhibited remarkable uniformity and dispersion in zinc batteries. In comparison to a conventional CNF separator, the porous structure and high specific surface area of H-ZIF-67 significantly enhanced its electrolyte wettability and Zn2+ transport rates. Its abundant Lewis acid sites effectively promoted the uniform deposition of Zn2+, thereby suppressing the formation of zinc dendrites and improving the cycling and safety performance of zinc-ion batteries. Experimental results indicate that the ion conductivity of the membrane was 4.31 mS·cm−1, the electrolyte absorption rate was 316%, and it could cycle stable for over 4000 h at a current density of 1 mA·cm−2 with a discharge capacity of 1 mAh·cm−2. This achievement will open up new avenues for the preparation and application of ZIF-67 composite separators in aqueous zinc-ion batteries. Full article
(This article belongs to the Special Issue Nano/Micro MOF-Based Materials for Energy Conversion and Storage)
Show Figures

Figure 1

21 pages, 7161 KiB  
Article
Integrating Metal–Organic Frameworks and Polyamide 12 for Advanced Hydrogen Storage Through Powder Bed Fusion
by Chengming Shang, Yaan Liu, Oana Ghita, Noa Lachman, Dong Wang and Mi Tian
Energies 2024, 17(21), 5430; https://doi.org/10.3390/en17215430 - 30 Oct 2024
Cited by 2 | Viewed by 1274
Abstract
This paper introduces a pioneering approach that combines ex situ synthesis with advanced manufacturing to develop ZIF-67-PA12 Nylon composites with mixed-matrix membranes (MMMs), with the goal of enhancing hydrogen storage systems. One method involves producing MOF-PA12 composite powders through an in situ process, [...] Read more.
This paper introduces a pioneering approach that combines ex situ synthesis with advanced manufacturing to develop ZIF-67-PA12 Nylon composites with mixed-matrix membranes (MMMs), with the goal of enhancing hydrogen storage systems. One method involves producing MOF-PA12 composite powders through an in situ process, which is then commonly used as a base powder for powder bed fusion (PBF) to fabricate various structures. However, developing the in situ MOF-PA12 matrix presents challenges, including limited spreadability and processability at higher MOF contents, as well as reduced porosity due to pore blockage by polymers, ultimately diminishing hydrogen storage capacity. To overcome these issues, PBF is employed to form PA12 powder into films, followed by the ex situ direct synthesis of ZIF-67 onto these substrates at loadings exceeding those typically used in conventional MMM composites. In this study, ZIF-67 mass loadings ranging from 2 to 30 wt.% were synthesized on both PA12 powder and printed film substrates, with loadings on printed PA12 films extended up to 60 wt.%. ZIF-67-PA12-60(f) demonstrated a hydrogen capacity of 0.56 wt.% and achieved 1.53 wt.% for ZIF-67-PA12-30(p); in comparison, PA12 exhibited a capacity of 0.38 wt.%. This was undertaken to explore a range of ZIF-67 Metal–organic frameworks (MOFs) to assess their impact on the properties of the composite, particularly for hydrogen storage applications. Our results demonstrate that ex situ-synthesized ZIF-67-PA12 composite MMMs, which can be used as a final product for direct application and do not require the use of in situ pre-synthesized powder for the PBF process, not only retain significant hydrogen storage capacities, but also offer advantages in terms of repeatability, cost-efficiency, and ease of production. These findings highlight the potential of this innovative composite material as a practical and efficient solution for hydrogen storage, paving the way for advancements in energy storage technologies. Full article
(This article belongs to the Special Issue Hydrogen Energy Storage: Materials, Methods and Perspectives)
Show Figures

Figure 1

Back to TopTop