Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Yidun arc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4916 KB  
Article
The Genesis and Geological Significance of the Chaluo Granite in Yidun Magmatic Arc, Western Sichuan, China: Constraints from the Zircon U-Pb Chronology, Elemental Geochemistry and S-Pb-Hf Isotope
by Wenjing Yang, Tianshe Cheng, Xuebin Zhang, Lijun Guo, Xujiang Cheng, Xingfang Duo, Hangyu Fan, Hongsheng Gao, Lipeng Tu, Meng Zhao and Weihong Dong
Minerals 2025, 15(9), 916; https://doi.org/10.3390/min15090916 - 28 Aug 2025
Viewed by 604
Abstract
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, [...] Read more.
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, quartz, and biotite, with a small amount of apatite. LA-ICP-MS zircon U-Pb dating yielded crystallization ages of (87 ± 3) Ma for the Chaluo granite, indicating its formation in the Late Cretaceous. Elemental geochemical testing results showed that the Chaluo granite exhibits I-type granite characteristics. It has undergone significant fractional crystallization processes, with high SiO2 contents (72.83–76.63 wt%), K (K2O/Na2O = 1.33–1.53), Al2O3 (Al2O3 = 12.24–13.56 wt%, A/CNK = 0.91–1.08), and a high differentiation index (DI = 88.91–92.49). Notably, the MgO contents were low (0.10–0.26 wt%), and there were significant depletions of Nb, Sr, Ti, and Eu, while Rb, Pb, Th, U, Zr, and Hf were significantly enriched. The total rare earth element (REE) contents were relatively low (211–383 ppm), showing significant light REE (LREE) enrichment (LREE/HREE = 4.46–5.57) and a pronounced negative Eu anomaly (δEu = 0.09–0.17). In situ zircon Hf analyses, combined with 206Pb/238U ages, gave εHf(t) values ranging from −3.8 to 1.72 and two-stage Hf ages (tDM2) of 875–1160 Ma. Together with the S and Pb isotope compositions of the Chaluo granite, its magma likely originated from the partial melting of Middle–Neoproterozoic sedimentary rocks enriched in biogenic S. The tectonic-setting analysis indicates that the Chaluo granite formed in a post-orogenic intracontinental extensional environment. This environment was triggered by the northward subduction-collision of the Lhasa block, followed by slab break-off and the upwelling of the asthenosphere in the Neo-Tethys orogenic belt. We propose that the Paleo-Tethys tectonic belt was influenced by the Neo-Tethys tectonic activity, at least in the Yidun magmatic arc region during the Late Cretaceous. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

21 pages, 8306 KB  
Article
Magmatic–Hydrothermal Processes of the Pulang Giant Porphyry Cu (–Mo–Au) Deposit, Western Yunnan: A Perspective from Different Generations of Titanite
by Mengmeng Li, Xue Gao, Guohui Gu and Sheng Guan
Minerals 2025, 15(3), 263; https://doi.org/10.3390/min15030263 - 3 Mar 2025
Viewed by 1010
Abstract
The Yidun island arc was formed in response to the Late Triassic westward subduction of the Ganzi–Litang oceanic plate, a branch of the Paleo-Tethys Ocean. The Zhongdian arc, located in the south of the Yidun island arc, has relatively large number of porphyry [...] Read more.
The Yidun island arc was formed in response to the Late Triassic westward subduction of the Ganzi–Litang oceanic plate, a branch of the Paleo-Tethys Ocean. The Zhongdian arc, located in the south of the Yidun island arc, has relatively large number of porphyry (skarn) type Cu–Mo ± Au polymetallic deposits, the largest of which is the Pulang Cu (–Mo–Au) deposit with proven Cu reserves of 5.11 Mt, Au reserves of 113 t, and 0.17 Mt of molybdenum. However, the relationship between mineralization and the potassic alteration zone, phyllic zone, and propylitic zone of the Pulang porphyry deposit is still controversial and needs further study. Titanite (CaTiSiO5) is a common accessory mineral in acidic, intermediate, and alkaline igneous rocks. It is widely developed in various types of metamorphic rocks, hydrothermally altered rocks, and a few sedimentary rocks. It is a dominant Mo-bearing phase in igneous rocks and contains abundant rare earth elements and high-field-strength elements. As an effective geochronometer, thermobarometer, oxybarometer, and metallogenic potential indicator mineral, titanite is ideal to reveal the magmatic–hydrothermal evolution and the mechanism of metal enrichment and precipitation. In this paper, major and trace element contents of the titanite grains from different alteration zones were obtained using electron probe microanalysis (EPMA) and laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to define the changes in physicochemical conditions and the behavior of these elements during the process of hydrothermal alteration at Pulang. Titanite in the potassic alteration zone is usually shaped like an envelope. It occurs discretely or is enclosed by feldspar, with lower contents of CaO, Al, Sr, Zr and Hf; a low Nb/Ta ratio; high ∑REE + Y, U, Th, Ta, Nb, and Ga content; and high FeO/Al2O3 and LREE/HREE ratios. This is consistent with the characteristics of magmatic titanite from fresh quartz monzonite porphyry in Pulang and other porphyry Cu deposits. Titanite in the potassium silicate alteration zone has more negative Eu anomaly and a higher U content and Th/U ratio, indicating that the oxygen fugacity decreased during the transformation to phyllic alteration and propylitic alteration in Pulang. High oxygen fugacity is favorable for the enrichment of copper, gold, and other metallogenic elements. Therefore, the enrichment of copper is more closely related to the potassium silicate alteration. The molybdenum content of titanite in the potassium silicate alteration zone is 102–104 times that of the phyllic alteration zone and propylitic alteration zone, while the copper content is indistinctive, indicating that molybdenum was dissolved into the fluid or deposited in the form of sulfide before the medium- to low-temperature hydrothermal alteration, which may lead to the further separation and deposition of copper and molybdenum. Full article
Show Figures

Figure 1

20 pages, 5227 KB  
Article
In Situ LA-ICP-MS U-Pb Geochronology, Sr-Nd-Hf Isotope and Trace Element Analysis of Volcanic Rocks from the Gacun Volcanic-Hosted Massive Sulfide Deposit in Sichuan, China
by Kun Wang, Dan Yang, Ke-Jun Hou and Qian Wang
Minerals 2023, 13(7), 881; https://doi.org/10.3390/min13070881 - 29 Jun 2023
Cited by 1 | Viewed by 1878
Abstract
The Gacun deposit is a typical Volcanic Hosted Massive Sulfide (VHMS) associated with Late Triassic seafloor calc-alkaline felsic volcanics. Studies of zircon ages, petrology, major and trace element geochemistry, and Sr-Nd-Hf isotope geochemistry of volcanic rocks from the Northern Yidun arc were undertaken [...] Read more.
The Gacun deposit is a typical Volcanic Hosted Massive Sulfide (VHMS) associated with Late Triassic seafloor calc-alkaline felsic volcanics. Studies of zircon ages, petrology, major and trace element geochemistry, and Sr-Nd-Hf isotope geochemistry of volcanic rocks from the Northern Yidun arc were undertaken in this paper. We reshaped the Gacun magmatic system activity time, defined the origin of magma evolution, and proposed a metallogenic model of the deposit. Whole-rock major element compositions of the magmatic rocks in the Northern Yidun island arc indicate that they are a complete basalt–andesite–dacite–rhyolite assemblage, showing three obvious stages of composition evolution. They are enriched in large-ion lithophile and light rare earth elements, but depleted in high field-strength and heavy rare earth elements, with weak-to-negligible Eu anomalies (obvious in rhyolite). These geochemical features indicate that the Northern Yidun island arc is a magmatic arc based on ancient continental crust. The Ganzi–Litang oceanic subduction induced mantle melting and produced calc-alkaline basaltic magma, while the MASH processes at the bottom of the crust produced andesitic magma. Part of the andesite magma erupted to form andesite lava. The remaining part was mixed with magma produced via anatexis of ancient crust (approximately 20%–40% of the ancient crustal component), forming the ore-bearing rhyolite. Zircon U-Pb age data defines Gacun magmatic–hydrothermal mineralization sequence of events: At 238 Ma, arc magmatism led to the formation of andesite in the eastern part of the deposit. At 233 Ma, in the arc zone (the western part of Gacun deposit), a large-scale bimodal magmatism formed the main ore-bearing rock series of Gacun deposit, rhyolitic volcanic rocks. At 221 Ma, volcanic eruptions tended to end and sub-volcanic intrusion occurred, forming a lava dome, which was located under the ore-bearing rhyolitic volcanic rocks. The lava dome acted as a thermal engine and promoted hydrothermal circulation. The hydrothermal activity reached a peak at 217 ± 1 Ma, and the Gacun VHMS deposit was formed. Full article
(This article belongs to the Special Issue Isotope Geochemical Analysis Technology and Its Applications)
Show Figures

Figure 1

22 pages, 5784 KB  
Communication
Recognition of Late Triassic Cu-Mo Mineralization in the Northern Yidun Arc (S.E. Tibetan Plateau): Implications for Regional Exploration
by Zhen-Dong Tian, Cheng-Biao Leng, Xing-Chun Zhang, Li-Min Zhou and Yan-Wen Tang
Minerals 2019, 9(12), 765; https://doi.org/10.3390/min9120765 - 10 Dec 2019
Cited by 7 | Viewed by 3318
Abstract
The Yidun arc, located in the southeastern Tibetan Plateau, was formed by the westward subduction of the Ganze-Litang Paleo-Tethys ocean in Late Triassic. It is well-known for the formation of numerous Mesozoic porphyry-skarn Cu-Mo-(Au) deposits in the arc. To date, more than 20 [...] Read more.
The Yidun arc, located in the southeastern Tibetan Plateau, was formed by the westward subduction of the Ganze-Litang Paleo-Tethys ocean in Late Triassic. It is well-known for the formation of numerous Mesozoic porphyry-skarn Cu-Mo-(Au) deposits in the arc. To date, more than 20 Cu-Mo-(Au) deposits (>10 million tonnes Cu resources) have been discovered in the southern Eastern Yidun arc. However, few Cu-Mo deposits have been discovered in the northern Eastern Yidun arc. In recent years, some Cu-Mo deposits or occurrence are successively discovered in the northern Eastern Yidun arc, but their ore-forming ages are not well constrained. It remains unclear whether such Cu-Mo mineralization formed by similar metallogenic event and geodynamic setting as the Cu-Mo-(Au) mineralization in the south. In order to determine the metallogenic age and shed light on potential links between Cu-Mo mineralization and regional magmatic events, we present molybdenite Re-Os and zircon U-Pb ages to constrain the timing of two types of Cu-Mo mineralization in the northern Eastern Yidun arc (type I and type II). Molybdenite ICP-MS Re-Os dating results show that type I mineralization was formed at 217.7 ± 3.6 Ma, which is highly consistent with the formation ages of the host granite (218.1 ± 1.5 Ma, 2σ, n = 15, MSWD = 0.92) and aplite dyke (217.3 ± 1.3 Ma, 2σ, n = 16, MSWD = 0.50) within error. While the type II mineralization has a relatively younger formation age of 211.8 ± 4.7 Ma than the host granite (217.1 ± 1.5 Ma, 2σ, n = 14, MSWD = 0.96) and type I Cu-Mo mineralization. These data indicate that the Cu-Mo mineralization in the northern Eastern Yidun arc was temporally and spatially related to the Late Triassic magmatism in the region. Rhenium (Re) concentrations in the molybdenite from type I mineralization, ranging from 12.77 to 111.1 ppm (typically > 100 ppm), indicate that the ore-forming metals were derived mainly from a mantle source. However, Re contents in molybdenite from the type II mineralization, ranging from 7.983 to 10.40 ppm, indicate that the ore-forming metals were derived from a mixed mantle and crustal source with a predominantly crustal component. This study confirms that the northern Eastern Yidun arc exists Late Triassic Cu-Mo metallogenesis, and thus much attention should be paid on this region to find more Late Triassic Cu-Mo resources. Full article
(This article belongs to the Special Issue Integrated Chronology Studies of Ore Deposits)
Show Figures

Graphical abstract

23 pages, 8264 KB  
Article
Geochronology, Oxidization State and Source of the Daocheng Batholith, Yidun Arc: Implications for Regional Metallogenesis
by Rui-Gang Zhang, Wen-Yan He and Xue Gao
Minerals 2019, 9(10), 608; https://doi.org/10.3390/min9100608 - 3 Oct 2019
Cited by 5 | Viewed by 3349
Abstract
The Daocheng batholith consists of granite, granodiorite and K-feldspar megacrystic granite, which is located in the north Yidun Arc. It is a barren batholith in contrast to plutons of the same age that contain major copper deposits, such as Pulang to the south. [...] Read more.
The Daocheng batholith consists of granite, granodiorite and K-feldspar megacrystic granite, which is located in the north Yidun Arc. It is a barren batholith in contrast to plutons of the same age that contain major copper deposits, such as Pulang to the south. In the Daocheng, abundant mafic microgranular enclaves (MMEs) mainly developed within granodiorite and K-feldspar megacrystic granite, which are characterized by quenched apatite, quartz eyes and plagioclase phenocrysts. LA-ICP-MS zircon U–Pb dating of host granodiorite yielded ages ranging from 223 Ma to 210 Ma, with a weighted mean of 215.3 ± 1.8 Ma. Zircons from MMEs yielded ages ranging from 218 Ma to 209 Ma, with a weighted mean of 214.2 ± 1.4 Ma. Geochemical analyses show that granodiorite is high-K, calc-alkaline and I-type, with SiO2 contents ranging from 67.90% to 70.54%. These rocks are metaluminous to marginally peraluminous (A/CNK = 0.98–1.00) and moderately rich in alkalis with K2O ranging from 3.28% to 4.59% and Na2O ranging from 3.18% to 3.20%, with low MgO (1.08%–1.29%), Cr (12.7 ppm–16.8 ppm), Ni (5.19 ppm–6.16 ppm) and Mg# (35–49). The MMEs have relatively low SiO2 contents (56.34%–60.91%), higher Al2O3 contents (16.06%–17.98%), higher MgO and FeO abundances and are metaluminous (A/CNK = 0.82–0.83). The MMEs and host granodiorite are enriched in light rare-earth elements (LREEs) relative to heavy rare-earth elements (HREEs), with slightly negative Eu anomalies, and enriched in Th, U and large ion lithophile elements (LILEs; e.g., K, Rb and Pb), and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, P and Ti), showing affinities typical of arc magmas. The zircon εHf(t) values (−6.28 to −2.33) and ancient two-stage Hf model ages of 1.92 to 1.25 Ga, indicating that the magmas are generally melts that incorporated significant portions of Precambrian crust. The relatively low silica contents and high Mg# values of the MMEs, and the linear patterns of MgO, Al2O3 and Fe2O3 with SiO2 between the MMEs and host granodiorite, showing the formation of MMEs are genetically related to magma mixing. The Daocheng granodiorite is characterized by much lower zircon Ce4+/Ce3+ (average of 3.53) and low fO2 value (average of ∆FMQ = –10.84), whereas the ore-bearing quartz monzonite porphyries in the Pulang copper deposit are characterized by much higher zircon Ce4+/Ce3+ (average of 52.10) and high fO2 value (average of ∆FMQ = 2.8), indicating the ore-bearing porphyry intrusions had much higher fO2 of magma than the ore-barren intrusions considering that the high oxygen fugacity of the magma is conducive to mineralization. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

22 pages, 6965 KB  
Article
Copper Mineralization Potential of Late Triassic Granitoids in Northern Yidun Arc, SW China
by Xing-Yuan Li, Jing-Ru Zhang, Hao Song and Chun-Kit Lai
Minerals 2019, 9(6), 337; https://doi.org/10.3390/min9060337 - 1 Jun 2019
Cited by 5 | Viewed by 3119
Abstract
Yidun arc is an important constituent of the Sanjiang Tethyan Domain in SW China. The Changdagou pluton, located in the northern part of the Yidun Arc, mainly consists of granodiorite. In this study, we conducted in-situ LA-ICP-MS zircon U-Pb dating, and trace element [...] Read more.
Yidun arc is an important constituent of the Sanjiang Tethyan Domain in SW China. The Changdagou pluton, located in the northern part of the Yidun Arc, mainly consists of granodiorite. In this study, we conducted in-situ LA-ICP-MS zircon U-Pb dating, and trace element and Hf isotope analyses on the Changdagou granites. Age dating results yielded a weighted mean U-Pb age of 214.97 ± 0.98 Ma (MSWD = 1.2, 2σ), broadly coeval with extensive late Triassic magmatism across the Yidun Arc. All zircon grains analyzed showed high concentrations of Th, U, and HREE, with positive Ce and negative Eu anomalies. Logfo2 and CeN/CeN* values vary from FMQ −3.14 to FMQ +7.44 (average FMQ +3.98), and 14 to 172 (avg. 98), respectively. The zircon EuN/EuN* (avg. 0.22) ratios have no clear correlation with the CeN/CeN* ratios, suggesting that the former were mainly affected by the magma water content. In addition, zircon εHf(t) values vary in a narrow range (–2.9 to −4.9, avg. −3.4) that clusters around zero, indicating a greater component of mantle-derived magma. Hence, we propose that the Changdagou granodiorite was derived from a highly oxidized, “wet”, Cu-rich source, of the type likely to generate porphyry Cu mineralization. However, these parameters (logfO2, EuN/EuN*, (Ce/Nd)/Y, and εHf(t)) are all lower than those of intrusions associated with Cu ores at Pulang and Lannitang, which may explain why the Cu deposit discovered at Changdagou is small by comparison. Furthermore, on the basis of the decreasing trends of εHf, logfO2, and H2O content from south to north along the Yiduan arc, we infer that the northern segment of the Yidun arc (including Changdagou) was located further away from the subduction front. Full article
Show Figures

Figure 1

25 pages, 5561 KB  
Article
Geological, Geochronological, and Geochemical Insights into the Formation of the Giant Pulang Porphyry Cu (–Mo–Au) Deposit in Northwestern Yunnan Province, SW China
by Qun Yang, Yun-Sheng Ren, Sheng-Bo Chen, Guo-Liang Zhang, Qing-Hong Zeng, Yu-Jie Hao, Jing-Mou Li, Zhong-Jie Yang, Xin-Hao Sun and Zhen-Ming Sun
Minerals 2019, 9(3), 191; https://doi.org/10.3390/min9030191 - 21 Mar 2019
Cited by 11 | Viewed by 5232
Abstract
The giant Pulang porphyry Cu (–Mo–Au) deposit in Northwestern Yunnan Province, China, is located in the southern part of the Triassic Yidun Arc. The Cu orebodies are mainly hosted in quartz monzonite porphyry (QMP) intruding quartz diorite porphyry (QDP) and cut by granodiorite [...] Read more.
The giant Pulang porphyry Cu (–Mo–Au) deposit in Northwestern Yunnan Province, China, is located in the southern part of the Triassic Yidun Arc. The Cu orebodies are mainly hosted in quartz monzonite porphyry (QMP) intruding quartz diorite porphyry (QDP) and cut by granodiorite porphyry (GP). New LA-ICP-MS zircon U–Pb ages indicate that QDP (227 ± 2 Ma), QMP (218 ± 1 Ma, 219 ± 1 Ma), and GP (209 ± 1 Ma) are significantly different in age; however, the molybdenite Re–Os isochron age (218 ± 2 Ma) indicates a close temporal and genetic relationship between Cu mineralization and QMP. Pulang porphyry intrusions are enriched in light rare-earth elements (LREEs) and large ion lithophile elements (LILEs), and depleted in heavy rare-earth elements (HREEs) and high field-strength elements (HFSEs), with moderately negative Eu anomalies. They are high in SiO2, Al2O3, Sr, Na2O/K2O, Mg#, and Sr/Y, but low in Y, and Yb, suggesting a geochemical affinity to high-silica (HSA) adakitic rocks. These features are used to infer that the Pulang HSA porphyry intrusions were derived from the partial melting of a basaltic oceanic-slab. These magmas reacted with peridotite during their ascent through the mantle wedge. This is interpreted to indicate that the Pulang Cu deposit and associated magmatism can be linked to the synchronous westward subduction of the Ganzi–Litang oceanic lithosphere, which has been established as Late Triassic. Full article
(This article belongs to the Special Issue Polymetallic Metallogenic System)
Show Figures

Figure 1

Back to TopTop