Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Y-doped zinc oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4166 KiB  
Article
Effect of Co-Doping of Al3+, In3+, and Y3+ on the Electrical Properties of Zinc Oxide Varistors under Pre-Synthesizing BiSbO4
by Bo Xu, Lei Wang, Mengfan Yang, Yu Xiang and Lingyun Liu
Materials 2024, 17(6), 1401; https://doi.org/10.3390/ma17061401 - 19 Mar 2024
Viewed by 1228
Abstract
Under the premise of using the solid-phase method to pre-sinter Bi2O3 and Sb2O3 into BiSbO4 as a substitute for equal amounts of Bi2O3 and Sb2O3 in the formula, the effects [...] Read more.
Under the premise of using the solid-phase method to pre-sinter Bi2O3 and Sb2O3 into BiSbO4 as a substitute for equal amounts of Bi2O3 and Sb2O3 in the formula, the effects of co-doping with In(NO3)3, Al(NO3)3, and Y(NO3)3 on the microstructure and electrical properties of ZnO varistors were studied. The experimental results show that with an increase in In3+-doped molar concentration, the leakage current of the ZnO varistor shows a rapid decrease and then a slow increase trend. However, the nonlinear coefficient is the opposite of it. With the combined effect of the rare earth element Y3+, the average grain size is significantly reduced, which leads to an increase in the voltage gradient. At the same time, a certain amount of doped In3+ and Al3+ is dissolved into the grains, resulting in a decrease in grain resistance and thus a low level of residual voltage. The varistor with 0.6 mol% In3+, 0.1 mol% Al3+, and 0.9 mol% Y3+ doping ratios exhibits excellent overall performance. The nonlinear coefficient is 62.2, with the leakage current being 1.46 µA/cm2 and the voltage gradient being 558 V/mm, and the residual voltage ratio is 1.73. The prepared co-doped ZnO varistors will provide better protection for metal oxide surge arresters. Full article
Show Figures

Figure 1

20 pages, 3997 KiB  
Article
Selective Hydrogenation of 2-Methyl-3-butyn-2-ol in Microcapillary Reactor on Supported Intermetallic PdZn Catalyst, Effect of Support Doping on Stability and Kinetic Parameters
by Lyudmila Okhlopkova, Igor Prosvirin, Mikhail Kerzhentsev and Zinfer Ismagilov
Catalysts 2022, 12(12), 1660; https://doi.org/10.3390/catal12121660 - 17 Dec 2022
Cited by 1 | Viewed by 2124
Abstract
The development of active, selective, and stable multicrystalline catalytic coatings on the inner surface of microcapillary reactors addresses environmental problems of fine organic synthesis, in particular by reducing the large quantities of reagents and byproducts. Thin-film nanosized bimetallic catalysts based on mesoporous pure [...] Read more.
The development of active, selective, and stable multicrystalline catalytic coatings on the inner surface of microcapillary reactors addresses environmental problems of fine organic synthesis, in particular by reducing the large quantities of reagents and byproducts. Thin-film nanosized bimetallic catalysts based on mesoporous pure titania and doped with zirconia, ceria, and zinc oxide, for use in microreactors, were developed, and the regularities of their formation were studied. The efficiency of PdZn/TixM1−xO2±y (M = Ce, Zr, Zn) in the hydrogenation of 2-methyl-3-butyn 2-ol was studied with an emphasis on the stability of the catalyst during the reaction. The catalytic parameters depend on the adsorption properties and activity of PdZn and Pd(0) active centers. Under reaction conditions, resistance to the decomposition of PdZn is a factor that affects the stability of the catalyst. The zinc-doped coating proved to be the most selective and stable in the reaction of selective hydrogenation of acetylenic alcohols in a microcapillary reactor. This coating retained a high selectivity of 98.2% during long-term testing up to 168 h. Modification of the morphology and electronic structure of the active component, by doping titania with Ce and Zr, is accompanied by a decrease in stability. Full article
Show Figures

Graphical abstract

13 pages, 22831 KiB  
Article
Synthesis and Characterization of Zinc and Vanadium Co-Substituted CoFe2O4 Nanoparticles Synthesized by Using the Sol-Gel Auto-Combustion Method
by Parvin Imanipour, Saeed Hasani, Amir Seifoddini and Marcin Nabiałek
Nanomaterials 2022, 12(5), 752; https://doi.org/10.3390/nano12050752 - 23 Feb 2022
Cited by 33 | Viewed by 3303
Abstract
In recent years, cobalt ferrite has attracted considerable attention due to its unique physical properties. The present study aimed to produce cobalt ferrite magnetic nanoparticles doped with zinc and vanadium using the sol-gel auto-combustion method. For this purpose, Co1−xZnxFe [...] Read more.
In recent years, cobalt ferrite has attracted considerable attention due to its unique physical properties. The present study aimed to produce cobalt ferrite magnetic nanoparticles doped with zinc and vanadium using the sol-gel auto-combustion method. For this purpose, Co1−xZnxFe2−yVyO4 (where x = 0.0, 0.1, 0.2, 0.5 and y = 0.00, 0.05, 0.15, 0.25) precursors were calcined at 800 °C for 3 h. The prepared samples were characterized with the X-ray diffraction (XRD) method in combination with Rietveld structure refinement, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometery (VSM). The XRD patterns confirmed the formation of crystalline spinel structure for all samples. However, the diffraction peaks of hematite and iron vanadium oxide phases were observed in the patterns of some doped samples. The average crystallite size for all the synthesized samples was found to be in the range of ~45–24 nm, implying that it decreased by simultaneously doping cobalt ferrite with Zn and V. The FT-IR spectrum confirmed the formation of the spinal structure of ferrite through the observed vibrational bands assigned to the tetrahedral (υ2) and octahedral (υ1) interstitial complexes in the spinel structure. The FE-SEM images showed that morphology, average grain size, and agglomeration of the synthesized powders were affected by doping, which was due to the interactions of the magnetic surface of nanoparticles. The VSM curves demonstrated that saturation magnetization and coercivity values changed in the range of 30–83 emu/g and from 27–913 Oe, respectively. These changes occurred due to the alteration in cation distribution in the spinel structure. This can be attributed to the change in superexchange interactions between magnetic ions by co-substitution of Zn and V ions in Cobalt ferrite and the changes in magnetocrystalline anisotropy. Full article
(This article belongs to the Special Issue Modern Nanomaterials: Structure, Properties and Applications)
Show Figures

Figure 1

13 pages, 4445 KiB  
Article
Highly Sensitive UV Photodiode Composed of β-Polyfluorene/YZnO Nanorod Organic-Inorganic Hybrid Heterostructure
by Youngmin Lee, Soo Youn Kim, Deuk Young Kim and Sejoon Lee
Nanomaterials 2020, 10(8), 1486; https://doi.org/10.3390/nano10081486 - 29 Jul 2020
Cited by 9 | Viewed by 3210
Abstract
The highly sensitive ultra-violet (UV) photodiode was demonstrated on the organic-inorganic hybrid heterostructure of β-phase p-type polyfluorene (PFO)/n-type yttrium-doped zinc oxide nanorods (YZO-NRs). The device was fabricated through a simple fabrication technique of β-phase PFO coating onto YZO-NRs that had been directly grown [...] Read more.
The highly sensitive ultra-violet (UV) photodiode was demonstrated on the organic-inorganic hybrid heterostructure of β-phase p-type polyfluorene (PFO)/n-type yttrium-doped zinc oxide nanorods (YZO-NRs). The device was fabricated through a simple fabrication technique of β-phase PFO coating onto YZO-NRs that had been directly grown on graphene by the hydrothermal synthesis method. Under UV illumination (λ = 365 nm), the device clearly showed excellent photoresponse characteristics (e.g., high quantum efficiency ~690%, high photodetectivity ~3.34 × 1012 cm·Hz1/2·W−1, and fast response time ~0.17 s). Furthermore, the ratio of the photo current-to-dark current exceeds 103 even under UV illumination with a small optical power density of 0.6 mW/cm2. We attribute such superb photoresponse characteristics to both Y incorporation into YZO-NRs and conformation of β-phase PFO. Namely, Y dopants could effectively reduce surface states at YZO-NRs, and β-phase PFO might increase the photocarrier conductivity in PFO. The results suggest that the β-phase p-PFO/n-YZO-NR hybrid heterostructure holds promise for high-performance UV photodetectors. Full article
Show Figures

Graphical abstract

28 pages, 8103 KiB  
Article
Structural and Magnetic Properties of Co‒Mn Codoped ZnO Nanoparticles Obtained by Microwave Solvothermal Synthesis
by Jacek Wojnarowicz, Myroslava Omelchenko, Jacek Szczytko, Tadeusz Chudoba, Stanisław Gierlotka, Andrzej Majhofer, Andrzej Twardowski and Witold Lojkowski
Crystals 2018, 8(11), 410; https://doi.org/10.3390/cryst8110410 - 31 Oct 2018
Cited by 26 | Viewed by 6404
Abstract
Zinc oxide nanoparticles codoped with Co2+ and Mn2+ ions (Zn(1−x−y)MnxCoyO NPs) were obtained for the first time by microwave solvothermal synthesis. The nominal content of Co2+ and Mn2+ in Zn(1−x−y)Mnx [...] Read more.
Zinc oxide nanoparticles codoped with Co2+ and Mn2+ ions (Zn(1−x−y)MnxCoyO NPs) were obtained for the first time by microwave solvothermal synthesis. The nominal content of Co2+ and Mn2+ in Zn(1−x−y)MnxCoyO NPs was x = y = 0, 1, 5, 10 and 15 mol % (the amount of both ions was equal). The precursors were obtained by dissolving zinc acetate dihydrate, manganese (II) acetate tetrahydrate and cobalt (II) acetate tetrahydrate in ethylene glycol. The morphology, phase purity, lattice parameters, dopants content, skeleton density, specific surface area, average particle size, average crystallite size, crystallite size distribution and magnetic properties of NPs were determined. The real content of dopants was up to 25.0% for Mn2+ and 80.5% for Co2+ of the nominal content. The colour of the samples changed from white to dark olive green in line with the increasing doping level. Uniform spherical NPs with wurtzite structure were obtained. The average size of NPs decreased from 29 nm to 21 nm in line with the increase in the dopant content. Brillouin type paramagnetism and an antiferromagnetic interaction between the magnetic ions was found for all samples, except for that with 15 mol % doping level, where a small ferromagnetic contribution was found. A review of the preparation methods of Co2+ and Mn2+ codoped ZnO is presented. Full article
(This article belongs to the Special Issue Microwave-Assisted Synthesis of Nanocrystals and Nanostructures)
Show Figures

Graphical abstract

Back to TopTop