Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = West Nile virus lineage 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16235 KiB  
Article
Virological Passive Surveillance of Avian Influenza and Arboviruses in Wild Birds: A Two-Year Study (2023–2024) in Lombardy, Italy
by Maria Cristina Rapi, Ana Maria Moreno Martin, Davide Lelli, Antonio Lavazza, Stefano Raimondi, Marco Farioli, Mario Chiari and Guido Grilli
Microorganisms 2025, 13(5), 958; https://doi.org/10.3390/microorganisms13050958 - 22 Apr 2025
Viewed by 867
Abstract
Avian influenza (AI), caused by Alphainfluenzavirus (family Orthomyxoviridae), poses significant threats to poultry, biodiversity, and public health. AI outbreaks in poultry lead to severe economic losses, while highly pathogenic strains (HPAIVs) severely impact wild bird populations, with implications for biodiversity and potential [...] Read more.
Avian influenza (AI), caused by Alphainfluenzavirus (family Orthomyxoviridae), poses significant threats to poultry, biodiversity, and public health. AI outbreaks in poultry lead to severe economic losses, while highly pathogenic strains (HPAIVs) severely impact wild bird populations, with implications for biodiversity and potential zoonotic risks. Similarly, arboviruses such as West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonoses. WNV can cause severe neurological diseases in birds, humans, and other animals, while USUV significantly affects blackbird populations and has zoonotic potential, though human cases remain rare. This study investigated avian viruses in 1654 wild birds from 75 species that died at the Wildlife Rescue Center in Vanzago, Lombardy, during 2023–2024. Necropsies were conducted, and virological analyses were performed to detect avian influenza viruses, WNV, and USUV. Among the tested birds, 15 were positive for H5N1 HPAIV clade 2.3.4.4b, all in 2023, including 13 Chroicocephalus ridibundus, one Coturnix coturnix, and one Columba palumbus. Additionally, 16 tested positive for WNV (15 for lineage 2 and one for lineage 1), one for USUV, and 11 co-infections WNV/USUV were recorded in 2023–2024. These findings underscore the importance of avian viral passive surveillance in identifying epidemiological trends and preventing transmission to other species, including mammals and humans. Full article
(This article belongs to the Special Issue Emerging Viral Zoonoses, Second Edition)
Show Figures

Figure 1

20 pages, 3172 KiB  
Article
Integrated One Health Surveillance of West Nile Virus and Usutu Virus in the Veneto Region, Northeastern Italy, from 2022 to 2023
by Federica Gobbo, Giulia Chiarello, Sofia Sgubin, Federica Toniolo, Francesco Gradoni, Lidia Iustina Danca, Sara Carlin, Katia Capello, Giacomo De Conti, Alessio Bortolami, Maria Varotto, Laura Favero, Michele Brichese, Francesca Russo, Franco Mutinelli, Stefania Vogiatzis, Monia Pacenti, Luisa Barzon and Fabrizio Montarsi
Pathogens 2025, 14(3), 227; https://doi.org/10.3390/pathogens14030227 - 25 Feb 2025
Viewed by 1902
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are neurotropic mosquito-borne orthoflaviviruses maintained in an enzootic cycle, in which birds are amplifying/reservoir hosts, while humans and equids are dead-end hosts. As northern Italy, especially the Veneto Region, is considered an endemic area for [...] Read more.
West Nile virus (WNV) and Usutu virus (USUV) are neurotropic mosquito-borne orthoflaviviruses maintained in an enzootic cycle, in which birds are amplifying/reservoir hosts, while humans and equids are dead-end hosts. As northern Italy, especially the Veneto Region, is considered an endemic area for WNV and USUV circulation, a surveillance plan based on a One Health approach has been implemented since 2008. This work reports the results of entomological, veterinary and human surveillances for WNV and USUV in the Veneto Region in 2022 and 2023, through virological and/or serological examinations. In 2022, 531 human WNV infections were recorded, and 93,213 mosquitoes and 2193 birds were virologically tested, showing infection rates (IRs) of 4.85% and 8.30%, respectively. The surveillance effort in 2023 provided these results: 56 human WNV infections were confirmed, and 133,648 mosquitoes and 1812 birds were virologically tested, showing IRs of 1.78% and 4.69%, respectively. This work highlights the exceptional circulation of WNV in the Veneto Region, due to the new re-introduction of WNV lineage 1 and co-circulation with WNV lineage 2. This paper confirms the efficacy of integrated surveillance for early warning of viral circulation and gives new insights about avian hosts involved in the enzootic cycle of orthoflavivirus in the endemic region of Italy. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

13 pages, 3979 KiB  
Article
Transcriptome Analysis of Culex pipiens quinquefasciatus Larvae Exposed to a Semi-Lethal Dose of Vermistatin
by Junhui Chen, Zhiyong Xu, Feiying Yang, Jian Yang, Wendong Kuang, Jianghuai Li, Yaqi Wang and Liang Jin
Trop. Med. Infect. Dis. 2025, 10(2), 31; https://doi.org/10.3390/tropicalmed10020031 - 22 Jan 2025
Cited by 2 | Viewed by 1120 | Correction
Abstract
Culex pipiens quinquefasciatus is a notorious vector transmitting severe diseases such as Zika virus and West Nile virus to humans worldwide. Vermistatin is a type of funicon-like compound and was first isolated from Penicillin vermiculatum in the 1970s. Vermistatin has shown promising activity [...] Read more.
Culex pipiens quinquefasciatus is a notorious vector transmitting severe diseases such as Zika virus and West Nile virus to humans worldwide. Vermistatin is a type of funicon-like compound and was first isolated from Penicillin vermiculatum in the 1970s. Vermistatin has shown promising activity against Cx. p. quinquefasciatus larvae in our previous research. Here, we conducted a transcriptomic analysis of Cx. p. quinquefasciatus larvae treated with a median lethal concentration of 28.13 mg/L vermistatin. Differential expression analysis identified 1055 vermistatin-responsive genes, with 477 downregulated and 578 upregulated. Gene Ontology annotation and enrichment analysis revealed the metabolic process to be the most significantly affected biological process, the membrane to be the most significantly affected cellular component, and catalytic activity to be the most significantly affected molecular function. Kyoto Encyclopedia of Genes and Genomes pathway analysis classified the differential expression genes into six major categories, with metabolism and organismal systems being the most enriched. Fifty-five pathways were significantly enriched, with the hematopoietic cell lineage, renin–angiotensin system, cholesterol metabolism, and peroxisome proliferator-activated receptor signaling pathways among the top altered pathways. Furthermore, 32 potential detoxification-related genes were differentially expressed, with 3 cytochrome P450s, 2 ABC transporters, and 1 UGT induced by vermistatin. This study provides insights into the molecular mechanisms of vermistatin’s action against Cx. p. quinquefasciatus larvae, highlighting potential targets for novel mosquito control strategies. Full article
(This article belongs to the Special Issue Insecticide Resistance and Vector Control)
Show Figures

Figure 1

13 pages, 3807 KiB  
Article
First Detection of West Nile Virus Lineage 2 in Culex pipiens Vectors in Croatia
by Goran Vignjević, Nataša Bušić, Nataša Turić, Zsaklin Varga, Brigitta Zana, Ágota Ábrahám, Kornélia Kurucz, Ivana Vrućina and Enrih Merdić
Pathogens 2024, 13(12), 1131; https://doi.org/10.3390/pathogens13121131 - 21 Dec 2024
Cited by 1 | Viewed by 1839
Abstract
The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and [...] Read more.
The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection. This study aimed to quantify the prevalence of WNV infection in mosquitoes and to identify the circulating viral lineage in eastern Croatia. Mosquito traps were set up in rural and urban areas during the 2021–2023 seasons, and the collected specimens were identified morphologically. Mosquito species Culex pipiens and Aedes albopictus were tested for Flaviviruses using conventional PCR in a heminested system. The positive samples were then subjected to a specific real-time PCR designed to detect WNV. A total of 385 mosquito pools were tested, and positive pools were found in samples from Osijek-Baranja and Vukovar-Srijem, both of which contained Cx. pipiens mosquitoes. Sequencing of amplicons revealed WNV lineage 2 partial NS5 gene sequences. Phylogenetic analysis suggests the Hungarian origin of strain, which complements birds’ migratory routes. These findings indicate the first detection of WNV in mosquitoes in Croatia. This suggests that human cases in this region are likely due to infections with lineage 2 transmitted by local Culex mosquitoes. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

15 pages, 8383 KiB  
Article
Continuous and Dynamic Circulation of West Nile Virus in Mosquito Populations in Bucharest Area, Romania, 2017–2023
by Sorin Dinu, Ioana Georgeta Stancu, Ani Ioana Cotar, Cornelia Svetlana Ceianu, Georgiana Victorița Pintilie, Ioannis Karpathakis, Elena Fălcuță, Ortansa Csutak and Florian Liviu Prioteasa
Microorganisms 2024, 12(10), 2080; https://doi.org/10.3390/microorganisms12102080 - 17 Oct 2024
Cited by 1 | Viewed by 1679
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen with a worldwide distribution. Climate change and human activities have driven the expansion of WNV into new territories in Europe during the last two decades. Romania is endemic for WNV circulation since at least 1996 [...] Read more.
West Nile virus (WNV) is a mosquito-borne pathogen with a worldwide distribution. Climate change and human activities have driven the expansion of WNV into new territories in Europe during the last two decades. Romania is endemic for WNV circulation since at least 1996 when the presence of lineage 1 was documented during an unprecedented outbreak. Lineage 2 was first identified in this country during a second significant human outbreak in 2010. Its continuous circulation is marked by clade replacement, and even co-circulation of different strains of the same clade was observed until 2016. The present study aims to fill the information gap regarding the WNV strains that were circulating in Romania between 2017 and 2023, providing chiefly viral sequences obtained from mosquito samples collected in the Bucharest metropolitan area, complemented by human and bird viral sequences. WNV was detected mainly in Culex pipiens mosquitoes, the vectors of this virus in the region, but also in the invasive Aedes albopictus mosquito species. Lineage 2 WNV was identified in mosquito samples collected between 2017 and 2023, as well as in human sera from patients in southern and central Romania during the outbreaks of 2017 and 2018. Both 2a and 2b sub-lineages were identified, with evidence of multiple clusters and sub-clusters within sub-lineage 2a, highlighting the complex and dynamic circulation of WNV in Romania, as a consequence of distinct introduction events from neighboring countries followed by in situ evolution. Full article
(This article belongs to the Special Issue Climate Change and Emerging Arboviruses)
Show Figures

Figure 1

8 pages, 999 KiB  
Communication
Re-Emergence of a West Nile Virus (WNV) Variant in South Spain with Rapid Spread Capacity
by María José Ruiz-López, Pilar Aguilera-Sepúlveda, Sonia Cebrián-Camisón, Jordi Figuerola, Sergio Magallanes, Sarai Varona, Isabel Cuesta, Cristina Cano-Gómez, Patricia Sánchez-Mora, Juan Camacho, Carolina Sánchez-Peña, Francisco José Marchena, Ulises Ameyugo, Santiago Ruíz, María Paz Sánchez-Seco, Montserrat Agüero, Miguel Ángel Jiménez-Clavero, Jovita Fernández-Pinero and Ana Vázquez
Viruses 2023, 15(12), 2372; https://doi.org/10.3390/v15122372 - 1 Dec 2023
Cited by 6 | Viewed by 3049
Abstract
West Nile Virus (WNV) is a mosquito vector-borne zoonosis with an increasing incidence in Europe that has become a public health concern. In Spain, although local circulation has been known for decades, until 2020, when a large outbreak occurred, West Nile Virus cases [...] Read more.
West Nile Virus (WNV) is a mosquito vector-borne zoonosis with an increasing incidence in Europe that has become a public health concern. In Spain, although local circulation has been known for decades, until 2020, when a large outbreak occurred, West Nile Virus cases were scarce and mostly occurred in southern Spain. Since then, there have been new cases every year and the pathogen has spread to new regions. Thus, monitoring of circulating variants and lineages plays a fundamental role in understanding WNV evolution, spread and dynamics. In this study, we sequenced WNV consensus genomes from mosquito pools captured in 2022 as part of a newly implemented surveillance program in southern Spain and compared it to other European, African and Spanish sequences. Characterization of WNV genomes in mosquitoes captured in 2022 reveals the co-circulation of two WNV lineage 1 variants, the one that caused the outbreak in 2020 and another variant that is closely related to variants reported in Spain in 2012, France in 2015, Italy in 2021–2022 and Senegal in 2012–2018. The geographic distribution of these variants indicates that WNV L1 dynamics in southern Europe include an alternating dominance of variants in some territories. Full article
(This article belongs to the Special Issue Usutu Virus, West Nile Virus and Neglected Flaviviruses)
Show Figures

Figure 1

15 pages, 294 KiB  
Article
Novel Amplicon-Based Sequencing Approach to West Nile Virus
by Moussa Moïse Diagne, Marie Henriette Dior Ndione, Giulia Mencattelli, Amadou Diallo, El hadji Ndiaye, Marco Di Domenico, Diawo Diallo, Mouhamed Kane, Valentina Curini, Ndeye Marieme Top, Maurilia Marcacci, Maïmouna Mbanne, Massimo Ancora, Barbara Secondini, Valeria Di Lollo, Liana Teodori, Alessandra Leone, Ilaria Puglia, Alioune Gaye, Amadou Alpha Sall, Cheikh Loucoubar, Roberto Rosà, Mawlouth Diallo, Federica Monaco, Ousmane Faye, Cesare Cammà, Annapaola Rizzoli, Giovanni Savini and Oumar Fayeadd Show full author list remove Hide full author list
Viruses 2023, 15(6), 1261; https://doi.org/10.3390/v15061261 - 27 May 2023
Cited by 5 | Viewed by 2881
Abstract
West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements [...] Read more.
West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements allow the diffusion of various lineages in the world. It is therefore crucial to properly control the dispersion of these lineages, especially because some have a greater health impact on public health than others. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to West Nile virus. This study was carried out on different strains from lineage 1 and 2 from Senegal and Italy. The presented protocol/approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for West Nile genomic surveillance. Full article
(This article belongs to the Special Issue Arbovirus Diagnostics)
9 pages, 1011 KiB  
Communication
Genomic Analysis of West Nile Virus Lineage 1 Detected in Mosquitoes during the 2020–2021 Outbreaks in Andalusia, Spain
by María José Ruiz-López, Milagros Muñoz-Chimeno, Jordi Figuerola, Ana M. Gavilán, Sarai Varona, Isabel Cuesta, Josué Martínez-de la Puente, Ángel Zaballos, Francisca Molero, Ramón C. Soriguer, Maria Paz Sánchez-Seco, Santiago Ruiz and Ana Vázquez
Viruses 2023, 15(2), 266; https://doi.org/10.3390/v15020266 - 17 Jan 2023
Cited by 16 | Viewed by 3335
Abstract
Emerging infectious diseases are one of the most important global health challenges because of their impact on human and animal health. The vector-borne West Nile virus (WNV) is transmitted between birds by mosquitos, but it can also infect humans and horses causing disease. [...] Read more.
Emerging infectious diseases are one of the most important global health challenges because of their impact on human and animal health. The vector-borne West Nile virus (WNV) is transmitted between birds by mosquitos, but it can also infect humans and horses causing disease. The local circulation of WNV in Spain has been known for decades, and since 2010, there have been regular outbreaks in horses, although only six cases were reported in humans until 2019. In 2020, Spain experienced a major outbreak with 77 human cases, which was followed by 6 additional cases in 2021, most of them in the Andalusian region (southern Spain). This study aimed to characterize the genomes of the WNV circulating in wild-trapped mosquitoes during 2020 and 2021 in Andalusia. We sequenced the WNV consensus genome from two mosquito pools and carried out the phylogenetic analyses. We also compared the obtained genomes with those sequenced from human samples obtained during the outbreak and the genomes obtained previously in Spain from birds (2007 and 2017), mosquitoes (2008) and horses (2010) to better understand the eco-epidemiology of WNV in Spain. As expected, the WNV genomes recovered from mosquito pools in 2020 were closely related to those recovered from humans of the same outbreak. In addition, the strain of WNV circulating in 2021 was highly related to the WNV strain that caused the 2020 outbreak, suggesting that WNV is overwintering in the area. Consequently, future outbreaks of the same strain may occur in in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Arbovirus Research in Europe 2022)
Show Figures

Figure 1

14 pages, 2253 KiB  
Article
Detection of West Nile Virus Lineage 2 in Eastern Romania and First Identification of Sindbis Virus RNA in Mosquitoes Analyzed using High-Throughput Microfluidic Real-Time PCR
by Luciana Alexandra CRIVEI, Sara MOUTAILLER, Gaëlle GONZALEZ, Steeve LOWENSKI, Ioana Cristina CRIVEI, Daniela POREA, Dragoș Constantin ANITA, Ioana Alexandra RATOI, Stéphan ZIENTARA, Luanda Elena OSLOBANU, Alexandru TOMAZATOS, Gheorghe SAVUTA and Sylvie LECOLLINET
Viruses 2023, 15(1), 186; https://doi.org/10.3390/v15010186 - 9 Jan 2023
Cited by 9 | Viewed by 3360
Abstract
The impact of mosquito-borne diseases on human and veterinary health is being exacerbated by rapid environmental changes caused mainly by changing climatic patterns and globalization. To gain insight into mosquito-borne virus circulation from two counties in eastern and southeastern Romania, we have used [...] Read more.
The impact of mosquito-borne diseases on human and veterinary health is being exacerbated by rapid environmental changes caused mainly by changing climatic patterns and globalization. To gain insight into mosquito-borne virus circulation from two counties in eastern and southeastern Romania, we have used a combination of sampling methods in natural, urban and peri-urban sites. The presence of 37 mosquito-borne viruses in 16,827 pooled mosquitoes was analyzed using a high-throughput microfluidic real-time PCR assay. West Nile virus (WNV) was detected in 10/365 pools of Culex pipiens (n = 8), Culex modestus (n = 1) and Aedes vexans (n = 1) from both studied counties. We also report the first molecular detection of Sindbis virus (SINV) RNA in the country in one pool of Culex modestus. WNV infection was confirmed by real-time RT-PCR (10/10) and virus isolation on Vero or C6/36 cells (four samples). For the SINV-positive pool, no cytopathic effectwas observed after infection of Vero or C6/36 cells, but no amplification was obtained in conventional SINV RT-PCR. Phylogenetic analysis of WNV partial NS5 sequences revealed that WNV lineage 2 of theCentral-Southeast European clade, has a wider circulation in Romania than previously known. Full article
(This article belongs to the Special Issue State-of-the-Art Arbovirus Research in Europe 2022)
Show Figures

Figure 1

12 pages, 854 KiB  
Article
Vector Competence of German Aedes punctor (Kirby, 1837) for West Nile Virus Lineages 1 and 2
by Christin Körsten, Amira A. AL-Hosary, Mandy Schäfer, Birke A. Tews, Doreen Werner, Helge Kampen, Ana Vasic and Cornelia Silaghi
Viruses 2022, 14(12), 2787; https://doi.org/10.3390/v14122787 - 14 Dec 2022
Cited by 4 | Viewed by 2669
Abstract
West Nile virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes as a biological vector. Because of its biting behavior, the widespread snow-melt mosquito Aedes punctor could be a potential bridge vector for WNV to humans and nonhuman mammals. However, little is known [...] Read more.
West Nile virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes as a biological vector. Because of its biting behavior, the widespread snow-melt mosquito Aedes punctor could be a potential bridge vector for WNV to humans and nonhuman mammals. However, little is known on its role in transmission of WNV. The aim of this study was to determine the vector competence of German Ae. punctor for WNV lineages 1 and 2. Field-collected larvae and pupae were reared to adults and offered infectious blood containing either an Italian WNV lineage 1 or a German WNV lineage 2 strain via cotton stick feeding. Engorged females were incubated for 14/15 or 21 days at 18 °C. After incubation; surviving mosquitoes were dissected and forced to salivate. Mosquito bodies with abdomens, thoraces and heads, legs plus wings and saliva samples were investigated for WNV RNA by RT-qPCR. Altogether, 2/70 (2.86%) and 5/85 (5.88%) mosquito bodies were found infected with WNV lineage 1 or 2, respectively. In two mosquitoes, viral RNA was also detected in legs and wings. No saliva sample contained viral RNA. Based on these results, we conclude that Ae. punctor does not play an important role in WNV transmission in Germany. Full article
(This article belongs to the Special Issue State-of-the-Art Arbovirus Research in Europe 2022)
Show Figures

Figure 1

20 pages, 2861 KiB  
Article
Re-Introduction of West Nile Virus Lineage 1 in Senegal from Europe and Subsequent Circulation in Human and Mosquito Populations between 2012 and 2021
by Marie Henriette Dior Ndione, El Hadji Ndiaye, Martin Faye, Moussa Moïse Diagne, Diawo Diallo, Amadou Diallo, Amadou Alpha Sall, Cheikh Loucoubar, Oumar Faye, Mawlouth Diallo, Ousmane Faye, Mamadou Aliou Barry and Gamou Fall
Viruses 2022, 14(12), 2720; https://doi.org/10.3390/v14122720 - 6 Dec 2022
Cited by 17 | Viewed by 2758
Abstract
West Nile virus (WNV) is a virus of the Japanese encephalitis antigenic complex and belongs to the family Flaviviridae of the genus flavivirus. The virus can cause infection in humans which in most cases is asymptomatic, however symptomatic cases exist and the disease [...] Read more.
West Nile virus (WNV) is a virus of the Japanese encephalitis antigenic complex and belongs to the family Flaviviridae of the genus flavivirus. The virus can cause infection in humans which in most cases is asymptomatic, however symptomatic cases exist and the disease can be severe causing encephalitis and meningoencephalitis. The virus is maintained in an enzootic cycle involving mosquitoes and birds, humans and other mammals such as horses can be accidental hosts. A mosquito-based arbovirus surveillance system and the sentinel syndromic surveillance network (4S) have been in place since 1988 and 2015 respectively, to better understand the transmission dynamics of arboviruses including WNV in Senegal. Arthropod and human samples have been collected from the field and analysed at Institut Pasteur de Dakar using different methods including RT-PCR, ELISA, plaque reduction neutralization test and viral isolation. RT-PCR positive samples have been analysed by Next Generation Sequencing. From 2012 to 2021, 7912 samples have been analysed and WNV positive cases have been detected, 20 human cases (19 IgM and 1 RT-PCR positive cases) and 41 mosquito pools. Phylogenetic analyzes of the sequences of complete genomes obtained showed the circulation of lineage 1a, with all these recent strains from Senegal identical to each other and very close to strains isolated from horse in France in 2015, Italy and Spain. Our data showed lineage 1a endemicity in Senegal as previously described, with circulation of WNV in humans and mosquitoes. Phylogenetic analyzes carried out with the genome sequences obtained also revealed exchanges of WNV strains between Europe and Senegal which could be possible via migratory birds. The surveillance systems that have enabled the detection of WNV in humans and arthropods should be extended to animals in a one-health approach to better prepare for global health threats. Full article
(This article belongs to the Special Issue Molecular Epidemiology, Evolution, and Dispersion of Flaviviruses)
Show Figures

Figure 1

20 pages, 4540 KiB  
Article
Pathogenesis of West Nile Virus Lineage 2 in Domestic Geese after Experimental Infection
by Hannah Reemtsma, Cora M. Holicki, Christine Fast, Felicitas Bergmann, Martin Eiden, Martin H. Groschup and Ute Ziegler
Viruses 2022, 14(6), 1319; https://doi.org/10.3390/v14061319 - 16 Jun 2022
Cited by 7 | Viewed by 3219
Abstract
West Nile virus (WNV) is an emerging infectious pathogen circulating between mosquitoes and birds but also infecting mammals. WNV has become autochthonous in Germany, causing striking mortality rates in avifauna and occasional diseases in humans and horses. We therefore wanted to assess the [...] Read more.
West Nile virus (WNV) is an emerging infectious pathogen circulating between mosquitoes and birds but also infecting mammals. WNV has become autochthonous in Germany, causing striking mortality rates in avifauna and occasional diseases in humans and horses. We therefore wanted to assess the possible role of free-ranging poultry in the WNV transmission cycle and infected 15 goslings with WNV lineage 2 (German isolate). The geese were monitored daily and sampled regularly to determine viremia, viral shedding, and antibody development by molecular and serological methods. Geese were euthanized at various time points post-infection (pi). All infected geese developed variable degrees of viremia from day 1 to day 10 (maximum) and actively shed virus from days 2 to 7 post-infection. Depending on the time of death, the WN viral genome was detected in all examined tissue samples in at least one individual by RT-qPCR and viable virus was even re-isolated, except for in the liver. Pathomorphological lesions as well as immunohistochemically detectable viral antigens were found mainly in the brain. Furthermore, all of the geese seroconverted 6 days pi at the latest. In conclusion, geese are presumably not functioning as important amplifying hosts but are suitable sentinel animals for WNV surveillance. Full article
(This article belongs to the Special Issue Flaviviruses and Flavivirus Vaccines)
Show Figures

Figure 1

14 pages, 596 KiB  
Article
West Nile and Usutu Virus Introduction via Migratory Birds: A Retrospective Analysis in Italy
by Elisa Mancuso, Jacopo Giuseppe Cecere, Federica Iapaolo, Annapia Di Gennaro, Massimo Sacchi, Giovanni Savini, Fernando Spina and Federica Monaco
Viruses 2022, 14(2), 416; https://doi.org/10.3390/v14020416 - 17 Feb 2022
Cited by 31 | Viewed by 3688
Abstract
The actual contribution of migratory birds in spreading West Nile (WNV) and Usutu virus (USUV) across Europe and from Africa to old countries is still controversial. In this study, we reported the results of molecular and serological surveys on migrating birds sampled during [...] Read more.
The actual contribution of migratory birds in spreading West Nile (WNV) and Usutu virus (USUV) across Europe and from Africa to old countries is still controversial. In this study, we reported the results of molecular and serological surveys on migrating birds sampled during peaks of spring and autumn migration at 11 Italian sites located along important flyways, from 2012 to 2014. A total of 1335 specimens made of individual or pooled sera, and organs from 275 dead birds were tested for WNV and USUV RNA by real time PCR (RT-PCR). Furthermore, sera were tested by serum neutralization assay for detecting WNV and USUV neutralizing antibodies. Molecular tests detected WNV lineage 2 RNA in a pool made of three Song Thrush (Turdus philomelos) sera sampled in autumn, and lineage 1 in kidneys of six trans-Saharan birds sampled in spring. Neutralizing antibodies against WNV and USUV were found in 5.80% (n = 72; 17 bird species) and 0.32% (n = 4; 4 bird species) of the tested sera, respectively. Our results do not exclude the role of migratory birds as potential spreaders of WNV and USUV from Africa and Central Europe to Mediterranean areas and highlight the importance of a more extensive active surveillance of zoonotic viruses. Full article
(This article belongs to the Special Issue Emerging Zoonotic Viral Diseases)
Show Figures

Figure 1

8 pages, 300 KiB  
Article
West Nile Virus in Common Wild Avian Species in Israel
by Gili Schvartz, Sharon Tirosh-Levy, Shahar Bider, Avishai Lublin, Yigal Farnoushi, Oran Erster and Amir Steinman
Pathogens 2022, 11(1), 107; https://doi.org/10.3390/pathogens11010107 - 17 Jan 2022
Cited by 3 | Viewed by 2554
Abstract
In order to evaluate the contribution of different wild bird species to West Nile virus (WNV) circulation in Israel, during the months preceding the 2018 outbreak that occurred in Israel, we randomly sampled 136 frozen carcasses of a variety of avian species. Visceral [...] Read more.
In order to evaluate the contribution of different wild bird species to West Nile virus (WNV) circulation in Israel, during the months preceding the 2018 outbreak that occurred in Israel, we randomly sampled 136 frozen carcasses of a variety of avian species. Visceral and central nervous system (CNS) tissue pools were tested using WNV NS2A RT qPCR assay; of those, 15 (11.03%, 95% CI: 6.31–17.54%) tissue pools were positive. A total of 13 out of 15 WNV RT qPCR positive samples were successfully sequenced. Phylogenetic analysis indicated that all WNV isolates were identified as lineage 1 and all categorized as cluster 2 eastern European. Our results indicated that WNV isolates that circulated within the surveyed wild birds in spring 2018 were closely related to several of the isolates of the previously reported 2018 outbreak in birds in Israel and that the majority of infected birds were of local species. Full article
(This article belongs to the Collection Feature Papers in Viral Pathogens)
Show Figures

Figure 1

20 pages, 1513 KiB  
Article
West Nile Virus Lineage 1 in Italy: Newly Introduced or a Re-Occurrence of a Previously Circulating Strain?
by Giulia Mencattelli, Federica Iapaolo, Federica Monaco, Giovanna Fusco, Claudio de Martinis, Ottavio Portanti, Annapia Di Gennaro, Valentina Curini, Andrea Polci, Shadia Berjaoui, Elisabetta Di Felice, Roberto Rosà, Annapaola Rizzoli and Giovanni Savini
Viruses 2022, 14(1), 64; https://doi.org/10.3390/v14010064 - 30 Dec 2021
Cited by 24 | Viewed by 4054
Abstract
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by [...] Read more.
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008–2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active. Full article
(This article belongs to the Special Issue Emerging Zoonotic Viral Diseases)
Show Figures

Figure 1

Back to TopTop