Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (174)

Search Parameters:
Keywords = Wenchuan Earthquake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4098 KiB  
Article
Prediction of Earthquake Death Toll Based on Principal Component Analysis, Improved Whale Optimization Algorithm, and Extreme Gradient Boosting
by Chenhui Wang, Xiaotao Zhang, Xiaoshan Wang and Guoping Chang
Appl. Sci. 2025, 15(15), 8660; https://doi.org/10.3390/app15158660 (registering DOI) - 5 Aug 2025
Abstract
Earthquakes, as one of the most destructive natural disasters, often cause significant casualties and severe economic losses. Accurate prediction of earthquake fatalities is of great importance for pre-disaster prevention and mitigation planning, as well as post-disaster emergency response deployment. To address the challenges [...] Read more.
Earthquakes, as one of the most destructive natural disasters, often cause significant casualties and severe economic losses. Accurate prediction of earthquake fatalities is of great importance for pre-disaster prevention and mitigation planning, as well as post-disaster emergency response deployment. To address the challenges of small sample sizes, high dimensionality, and strong nonlinearity in earthquake fatality prediction, this paper proposes an integrated modeling approach (PCA-IWOA-XGBoost) combining Principal Component Analysis (PCA), the Improved Whale Optimization Algorithm (IWOA), and Extreme Gradient Boosting (XGBoost). The method first employs PCA to reduce the dimensionality of the influencing factor data, eliminating redundant information and improving modeling efficiency. Subsequently, the IWOA is used to intelligently optimize key hyperparameters of the XGBoost model, enhancing the prediction accuracy and stability. Using 42 major earthquake events in China from 1970 to 2025 as a case study, covering regions including the west (e.g., Tonghai in Yunnan, Wenchuan, Jiuzhaigou), central (e.g., Lushan in Sichuan, Ya’an), east (e.g., Tangshan, Yingkou), north (e.g., Baotou in Inner Mongolia, Helinger), northwest (e.g., Jiashi in Xinjiang, Wushi, Yongdeng in Gansu), and southwest (e.g., Lancang in Yunnan, Lijiang, Ludian), the empirical results showed that the PCA-IWOA-XGBoost model achieved an average test set accuracy of 97.0%, a coefficient of determination (R2) of 0.996, a root mean square error (RMSE) and mean absolute error (MAE) reduced to 4.410 and 3.430, respectively, and a residual prediction deviation (RPD) of 21.090. These results significantly outperformed the baseline XGBoost, PCA-XGBoost, and IWOA-XGBoost models, providing improved technical support for earthquake disaster risk assessment and emergency response. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 5827 KiB  
Article
Multi-Factor Earthquake Disaster Prediction for Urban Buried Water Supply Pipelines Amid Seismic Wave Propagation
by Lifang Qi, Baitao Sun and Nan Wang
Water 2025, 17(13), 1900; https://doi.org/10.3390/w17131900 - 26 Jun 2025
Viewed by 363
Abstract
Urban water supply pipelines play a critical role in ensuring the continuous delivery of water, and their failure during earthquakes can result in significant societal disruptions. This study proposes a seismic damage prediction method for urban buried water supply pipelines affected by seismic [...] Read more.
Urban water supply pipelines play a critical role in ensuring the continuous delivery of water, and their failure during earthquakes can result in significant societal disruptions. This study proposes a seismic damage prediction method for urban buried water supply pipelines affected by seismic wave propagation, grounded in empirical data from past earthquake events. The method integrates key influencing factors, including pipeline material, diameter, joint type, age, and soil corrosivity. To enhance its practical applicability and address the challenge of quantifying soil corrosivity, a simplified classification approach is introduced. The proposed model is validated using observed pipeline damage data from the 2008 Wenchuan earthquake, with predicted results showing relatively good agreement with actual failure patterns, thereby demonstrating the model’s reliability for seismic risk assessment. Furthermore, the model is applied to assess potential earthquake-induced damage to buried pipelines in the city center of Ganzhou, and the corresponding results are presented. The findings support earthquake risk mitigation and the protection of urban infrastructure, while also providing valuable guidance for the replacement of aging pipelines and the enhancement of urban disaster resilience. Full article
(This article belongs to the Topic Disaster Risk Management and Resilience)
Show Figures

Figure 1

24 pages, 16546 KiB  
Article
Long-Term NDVI Trends and Vegetation Resilience in a Seismically Active Debris Flow Watershed: A Case Study from the Wenchuan Earthquake Zone
by Wen Zhang, Zelin Wang, Minghui Meng, Tiantao Li, Jian Guo, Dong Sun, Liang Qin, Xiaoya Xu and Xiaoyu Shen
Sustainability 2025, 17(11), 5081; https://doi.org/10.3390/su17115081 - 1 Jun 2025
Viewed by 509
Abstract
Vegetation restoration in seismically active regions involves complex interactions between geological hazards and ecological processes. Understanding the spatiotemporal patterns of vegetation recovery is critical for assessing disaster evolution, evaluating mitigation effectiveness, and guiding ecological resilience planning. This study investigates post-earthquake vegetation dynamics in [...] Read more.
Vegetation restoration in seismically active regions involves complex interactions between geological hazards and ecological processes. Understanding the spatiotemporal patterns of vegetation recovery is critical for assessing disaster evolution, evaluating mitigation effectiveness, and guiding ecological resilience planning. This study investigates post-earthquake vegetation dynamics in the Chutou Gully watershed, located in the 12 May 2008 Wenchuan earthquake zone, using NDVI data from 2000 to 2022. Results reveal a sharp decline in vegetation cover following the earthquake, followed by a steady recovery trend, with NDVI values projected to return to pre-earthquake levels by 2030. Degradation was concentrated in debris flow channels, while more stable adjacent slopes exhibited stronger recovery. Over time, the area of poorly restored vegetation significantly declined, indicating increased ecosystem resilience. The findings highlight the need for site-specific ecological restoration strategies tailored to localized recovery conditions. This study provides valuable insights for disaster mitigation agencies, ecological planners, and local governments working in mountainous hazard-prone regions, and contributes to the long-term sustainability of ecosystems in disaster-prone areas. Full article
Show Figures

Figure 1

12 pages, 8236 KiB  
Article
Unusual Iridescent Clouds Observed Prior to the 2008 Wenchuan Earthquake and Their Possible Relation to Preseismic Disturbance in the Ionosphere
by Yuji Enomoto, Kosuke Heki, Tsuneaki Yamabe and Hitoshi Kondo
Atmosphere 2025, 16(5), 549; https://doi.org/10.3390/atmos16050549 - 6 May 2025
Viewed by 1040
Abstract
The Wenchuan earthquake (Ms8.0), which struck Sichuan Province, China, on 12 May 2008, was one of the most devastating seismic events in recent Chinese history. It resulted in the deaths of nearly 90,000 people, left millions homeless, and caused widespread destruction of infrastructure [...] Read more.
The Wenchuan earthquake (Ms8.0), which struck Sichuan Province, China, on 12 May 2008, was one of the most devastating seismic events in recent Chinese history. It resulted in the deaths of nearly 90,000 people, left millions homeless, and caused widespread destruction of infrastructure across a vast area. In addition to the severe ground shaking and surface rupture, a variety of unusual atmospheric/ionospheric and geophysical phenomena were reported in the days and hours leading up to the earthquake. Notably, iridescent clouds were observed just before the earthquake at three distinct locations approximately 450–550 km northeast of the epicenter. These clouds appeared as fragmented rainbows located beneath the sun and were characterized by their short lifespan, lasting only 1–10 min. Moreover, they exhibited striped patterns within the iridescent regions, suggesting the influence of an external electric field. These features cannot be adequately explained by the well-known meteorological phenomenon of circumhorizontal arcs, raising the possibility of a different origin. The formation mechanism of these clouds remains unclear. In this study, we explore the hypothesis that the iridescent clouds were precursory phenomena associated with the impending earthquake. Specifically, we examine a potential causal relationship between the appearance of these clouds and the geological environment of the earthquake source. We propose a novel model in which electrical disturbances generated along the fault system immediately before the mainshock propagated upward and interacted with the ionosphere, resulting in the creation of a localized electric field. This electric field, in turn, induced electro-optic effects that altered the scattering of sunlight and projected iridescent patterns onto cirrus clouds, leading to the observed phenomena. Full article
Show Figures

Figure 1

21 pages, 8334 KiB  
Article
A Study Based on b-Value and Information Entropy in the 2008 Wenchuan 8.0 Earthquake
by Shasha Liang, Ziqi Wang and Xinyue Wang
Entropy 2025, 27(4), 431; https://doi.org/10.3390/e27040431 - 16 Apr 2025
Viewed by 367
Abstract
Earthquakes, as serious natural disasters, have greatly harmed human beings. In recent years, the combination of acoustic emission technology and information entropy has shown good prospects in earthquake prediction. In this paper, we study the application of acoustic emission b-values and information entropy [...] Read more.
Earthquakes, as serious natural disasters, have greatly harmed human beings. In recent years, the combination of acoustic emission technology and information entropy has shown good prospects in earthquake prediction. In this paper, we study the application of acoustic emission b-values and information entropy in earthquake prediction in China and analyze their changing characteristics and roles. The acoustic emission b-value is based on the Gutenberg–Richter law, which quantifies the relationship between magnitude and occurrence frequency. Lower b-values are usually associated with higher earthquake risks. Meanwhile, information entropy is used to quantify the uncertainty of the system, which can reflect the distribution characteristics of seismic events and their dynamic changes. In this study, acoustic emission data from several stations around the 2008 Wenchuan 8.0 earthquake are selected for analysis. By calculating the acoustic emission b-value and information entropy, the following is found: (1) Both the b-value and information entropy show obvious changes before the main earthquake: during the seismic phase, the acoustic emission b-value decreases significantly, and the information entropy also shows obvious decreasing entropy changes. The b-values of stations AXI and DFU continue to decrease in the 40 days before the earthquake, while the b-values of stations JYA and JMG begin to decrease significantly in the 17 days or so before the earthquake. The information entropy changes in the JJS and YZP stations are relatively obvious, especially for the YZP station, which shows stronger aggregation characteristics of seismic activity. This phenomenon indicates that the regional underground structure is in an extremely unstable state. (2) The stress evolution process of the rock mass is divided into three stages: in the first stage, the rock mass enters a sub-stabilized state about 40 days before the main earthquake; in the second stage, the rupture of the cracks changes from a disordered state to an ordered state, which occurs about 10 days before the earthquake; and in the third stage, the impending destabilization of the entire subsurface structure is predicted, which occurs in a short period before the earthquake. In summary, the combined analysis of the acoustic emission b-value and information entropy provides a novel dual-parameter synergy framework for earthquake monitoring and early warning, enhancing precursor recognition through the coupling of stress evolution and system disorder dynamics. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

23 pages, 8350 KiB  
Article
Interactions and Driving Force of Land Cover and Ecosystem Service Before and After the Earthquake in Wenchuan County
by Jintai Pang, Li He, Zhengwei He, Wanting Zeng, Yan Yuan, Wenqian Bai and Jiahua Zhao
Sustainability 2025, 17(7), 3094; https://doi.org/10.3390/su17073094 - 31 Mar 2025
Cited by 1 | Viewed by 391
Abstract
The Wenchuan earthquake, an unexpected magnitude 8.0 mega-earthquake that struck on 12 May 2008, significantly changed land cover (LC), particularly affecting vegetation and rock cover. However, the long-term effects of LC changes on ecosystem services (ESs) remain unclear in earthquake-affected regions, especially across [...] Read more.
The Wenchuan earthquake, an unexpected magnitude 8.0 mega-earthquake that struck on 12 May 2008, significantly changed land cover (LC), particularly affecting vegetation and rock cover. However, the long-term effects of LC changes on ecosystem services (ESs) remain unclear in earthquake-affected regions, especially across different spatial scales. This study, focusing on Wenchuan County, employs a multi-model framework that integrates fractional vegetation coverage (FVC), rock exposure rate (FR), and ecosystem services (ESs), combining correlation analysis, geographically weighted regression (GWR), Self-organizing map (SOM) clustering, and XGBoost-SHAP model, to analyze the spatiotemporal dynamics, interrelationships, and driving mechanisms of land cover (LC) and ESs before and after the earthquake. Results show that: (1) From 2000 to 2020, FVC and FR fluctuated markedly under earthquake influence, with slight declines in habitat quality (HQ) and carbon storage (CS) and notable improvements in soil conservation (SC) and water yield (WY). (2) With increasing elevation, the FVC–CS–SC group exhibited a downward trend and synergy, while the FR–HQ–WY group increased and also showed synergy; trade-offs and synergies became more pronounced at larger scales, displaying strong spatiotemporal heterogeneity. (3) Elevation (explaining 10–60% of variance) was the main driver for LC and ESs, with land use, slope, human activities, climate, and geological conditions significantly impacting individual indicators. At the same time, the existing geological hazard points are mainly concentrated along both sides of the river valleys, which may be associated with intensified human–land conflicts. These findings offer valuable insights into ecological restoration and sustainable development in earthquake-affected regions. Full article
Show Figures

Figure 1

25 pages, 12536 KiB  
Article
Landslide Identification from Post-Earthquake High-Resolution Remote Sensing Images Based on ResUNet–BFA
by Zhenyu Zhao, Shucheng Tan, Yiquan Yang and Qinghua Zhang
Remote Sens. 2025, 17(6), 995; https://doi.org/10.3390/rs17060995 - 12 Mar 2025
Viewed by 1286
Abstract
The integration of deep learning and remote sensing for the rapid detection of landslides from high-resolution remote sensing imagery plays a crucial role in post-disaster emergency response. However, the availability of publicly accessible deep learning datasets specifically for landslide detection remains limited, posing [...] Read more.
The integration of deep learning and remote sensing for the rapid detection of landslides from high-resolution remote sensing imagery plays a crucial role in post-disaster emergency response. However, the availability of publicly accessible deep learning datasets specifically for landslide detection remains limited, posing challenges for researchers in meeting task requirements. To address this issue, this study develops and releases a deep learning landslide dataset using Google Earth imagery, focusing on the impact zones of the 2008 Wenchuan Ms8.0 earthquake, the 2014 Ludian Ms6.5 earthquake, and the 2017 Jiuzhaigou Ms7.0 earthquake as the research areas. The dataset contains 2727 samples with a spatial resolution of 1.06 m. To enhance landslide recognition, a lightweight boundary-focused attention (BFA) mechanism designed using the Canny operator is adopted. This mechanism improves the model’s ability to emphasize landslide edge features and is integrated with the ResUNet model, forming the ResUNet–BFA architecture for landslide identification. The experimental results indicate that the ResUNet–BFA model outperforms widely used algorithms in extracting landslide boundaries and details, resulting in fewer misclassifications and omissions. Additionally, compared with conventional attention mechanisms, the BFA achieves superior performance, producing recognition results that more closely align with actual labels. Full article
Show Figures

Figure 1

22 pages, 7647 KiB  
Article
Post-Disaster Recovery Effectiveness: Assessment and Prediction of Coordinated Development in the Wenchuan Earthquake-Stricken Areas
by Liang Zhao, Chunmiao Zhang and Xia Zhou
Land 2025, 14(3), 487; https://doi.org/10.3390/land14030487 - 26 Feb 2025
Viewed by 840
Abstract
Post-disaster rapid recovery and reconstruction, along with the evaluation of these efforts, are crucial for affected areas. They not only facilitate the swift repair of vulnerable systems but also reflect whether the recovery work has enhanced regional coordinated development. This is vital for [...] Read more.
Post-disaster rapid recovery and reconstruction, along with the evaluation of these efforts, are crucial for affected areas. They not only facilitate the swift repair of vulnerable systems but also reflect whether the recovery work has enhanced regional coordinated development. This is vital for achieving sustainable development post-reconstruction. This study addresses two main questions: (1) How effective were the recovery and reconstruction efforts in Mianyang, Deyang, and Guangyuan post-Wenchuan earthquake from a socio-economic–ecological system perspective? (2) What are the temporal and spatial changes in the Coordinated Development Index (CDI) of key affected counties? By constructing a framework to assess post-disaster coordinated development, this study utilized the entropy weight method and mean-variance method for the comprehensive weighting of evaluation indicators. The gray system prediction model G(1,1) was used to forecast the coordinated development levels of the three cities from 2019 to 2025. The findings reveal the following: (1) From 2005 to 2018, the CDI of Deyang, Guangyuan, and Mianyang showed a significant upward trend. Post-earthquake reconstruction measures like land planning and ecological restoration notably enhanced regional resilience and promoted coordinated development among social, economic, and ecological systems. (2) Despite overall success in reconstruction, disparities in development levels persist among Mianyang, Deyang, and Guangyuan. Predictions suggest that Deyang, Mianyang, and Guangyuan will achieve high-quality coordinated development in the next 5, 2, and 1 years, respectively. (3) Although significant achievements have been made through industrial restructuring, land reuse planning, and ecological restoration, more precise disaster prevention and mitigation strategies are needed to foster coordinated development among social, economic, and ecological systems. In summary, this study evaluates the post-disaster recovery effects in the hardest-hit areas of the Wenchuan earthquake and forecasts future development, providing a reference for similar post-disaster reconstruction areas in assessing and predicting coordinated development. Full article
(This article belongs to the Special Issue Ecological Restoration and Reusing Brownfield Sites)
Show Figures

Figure 1

20 pages, 34237 KiB  
Article
Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study
by Qijun Jiao, Qinqin Liu, Changgui Lin, Feng Jing, Jiajun Li, Yuxiang Tian, Zhenxia Zhang and Xuhui Shen
Remote Sens. 2025, 17(2), 311; https://doi.org/10.3390/rs17020311 - 16 Jan 2025
Viewed by 874
Abstract
Focusing on major earthquakes (EQs; MS ≥ 7) in Western China, this study primarily analyzes the fluctuation in Atmospheric Chemical Potential (ACP) before and after the Wenchuan, Yushu, Lushan, Jiuzhaigou, and Maduo EQs via Climatological Analysis of Seismic Precursors Identification (CAPRI). The distribution [...] Read more.
Focusing on major earthquakes (EQs; MS ≥ 7) in Western China, this study primarily analyzes the fluctuation in Atmospheric Chemical Potential (ACP) before and after the Wenchuan, Yushu, Lushan, Jiuzhaigou, and Maduo EQs via Climatological Analysis of Seismic Precursors Identification (CAPRI). The distribution of vertical ACP revealed distinct altitude-dependent characteristics. The ACP at lower atmospheric layers (100–2000 m) exhibited a high correlation, and this correlation decreased with increasing altitude. Anomalies were detected within one month prior to each of the five EQs studied, with the majority occurring 14 to 30 days before the events, followed by a few additional anomalies. The spatial distribution of anomalies is consistent with the distribution of fault zones, with noticeable fluctuation in surrounding areas. The ACP at an altitude of 200 m gave a balance between sensitivity to seismic signals and minimal surface interference and proved to be optimal for EQ monitoring in Western China. The results offer a significant reference for remote sensing studies related to EQ monitoring and the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model, thereby advancing our understanding of pre-seismic atmospheric variations in Western China. Full article
Show Figures

Figure 1

20 pages, 15815 KiB  
Article
Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR
by Xiaomeng Wang, Wenjun Zhang, Jialun Cai, Xiaowen Wang, Zhouhang Wu, Jing Fan, Yitong Yao and Binlin Deng
Sensors 2025, 25(1), 66; https://doi.org/10.3390/s25010066 - 26 Dec 2024
Cited by 2 | Viewed by 883
Abstract
The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local [...] Read more.
The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from −60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations. Full article
Show Figures

Figure 1

15 pages, 4307 KiB  
Article
Exploring Similarities and Differences in Water Level Response to Earthquakes in Two Neighboring Wells Using Numerical Simulation
by Shuangshuang Lan, Zhengtan Mao, Daian Chen and Hongbiao Gu
Water 2024, 16(23), 3484; https://doi.org/10.3390/w16233484 - 3 Dec 2024
Viewed by 937
Abstract
The seismic effect of well water level is complex and variable, and even if both wells are located in an area with similar tectonic and hydrogeological conditions, they exhibit slightly varying response characteristics to the same earthquake. Wells BB and RC, located about [...] Read more.
The seismic effect of well water level is complex and variable, and even if both wells are located in an area with similar tectonic and hydrogeological conditions, they exhibit slightly varying response characteristics to the same earthquake. Wells BB and RC, located about 100 km apart in the southwest of the Huayingshan fault zone in the Sichuan and Chongqing regions, exhibited obvious similarities and differences in their co-seismically response and sustained recovery characteristics during the Wenchuan Ms8.0 earthquake. Based on the dislocation theory and fluid–solid coupling theory, this study developed the seismic stress–strain model and the response model of pore pressure to seismic stress using Coulomb 3.3 and COMSOL 6.3, respectively. Simulation findings indicate that both BB and RC are located in the expansion zone, where their water levels show a co-seismic step-down. The amplitudes of BB and RC water levels are 83 cm and 81 cm, which are approximately 10 cm smaller than the actual values. The recovery times are 60 d for BB and 3 h for RC, closely resembling the actual values. Furthermore, the numerical results from different scenarios show that the recovery time of pore pressure is reduced by several times when the permeability of the confining layer overlying the observed aquifer increases by one order of magnitude or the thickness decreases, and this change is more sensitive to the permeability. It is clear that the confining condition has an important impact in the response time of sustained changes in well water levels, which may also help to explain the variations in the characteristics of sustained changes in wells BB and RC. Full article
Show Figures

Figure 1

18 pages, 12063 KiB  
Article
Deformation Monitoring and Analysis of Beichuan National Earthquake Ruins Museum Based on Time Series InSAR Processing
by Jing Fan, Weihong Wang, Jialun Cai, Zhouhang Wu, Xiaomeng Wang, Hui Feng, Yitong Yao, Hongyao Xiang and Xinlong Luo
Remote Sens. 2024, 16(22), 4249; https://doi.org/10.3390/rs16224249 - 14 Nov 2024
Viewed by 1089
Abstract
Since the Wenchuan earthquake in 2008, Old Beichuan County-town has experienced significant subsidence due to the disruption of the geological environment and the concurrent increase in precipitation. The ongoing land surface deformation poses a threat to the preservation and utilization of the Beichuan [...] Read more.
Since the Wenchuan earthquake in 2008, Old Beichuan County-town has experienced significant subsidence due to the disruption of the geological environment and the concurrent increase in precipitation. The ongoing land surface deformation poses a threat to the preservation and utilization of the Beichuan National Earthquake Ruins Museum (BNERM), as well as to the safety of urban residents’ lives. However, the evolutionary characteristics of surface deformation in these areas remain largely unexplored. Here, we focused on the BNERM control zone and employed the small-baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technique to accurately measure land surface deformation and its spatiotemporal changes. Subsequently, we integrated this data with land cover types and precipitation to investigate the driving factors of deformation. The results indicate a slight overall elevation increase in the study area from June 2015 to May 2023, with deformation rates varying between −35.2 mm/year and 22.9 mm/year. Additionally, four unstable slopes were identified within the BNERM control zone. Our analysis indicates that surface deformation in the study area is closely linked to changes in land cover types and precipitation, exhibiting a seasonal cumulative pattern, and active geological activity may also be a cause of deformation. This study provides invaluable insights into the surface deformation characteristics of the BNERM and can serve as a scientific foundation for the protection of earthquake ruins, risk assessment, early warning, and disaster prevention measures. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

15 pages, 7250 KiB  
Article
Machine Learning Prediction of Co-Seismic Landslide with Distance and Azimuth Instead of Peak Ground Acceleration
by Yang Shi, Zhenguo Zhang, Changhu Xue and Yu Feng
Sustainability 2024, 16(19), 8332; https://doi.org/10.3390/su16198332 - 25 Sep 2024
Cited by 1 | Viewed by 1579
Abstract
Most machine learning (ML) studies on predicting co-seismic landslides have relied on Peak Ground Acceleration (PGA). The PGA of the ground strongly correlates with the relative position and azimuth of the seismogenic faults. Using the co-seismic landslide records of the 2008 Wenchuan earthquake, [...] Read more.
Most machine learning (ML) studies on predicting co-seismic landslides have relied on Peak Ground Acceleration (PGA). The PGA of the ground strongly correlates with the relative position and azimuth of the seismogenic faults. Using the co-seismic landslide records of the 2008 Wenchuan earthquake, we show that the ML model using the distances and azimuths from the epicenter to sites performs better than the PGA model regarding accuracy and actual prediction results. The distances and azimuths are more accessible than the PGA because obtaining accurate and realistic large-scale PGAs is difficult. Considering their computational efficiency and cost-effectiveness, the ML models utilizing distances and azimuths from the epicenter to the sites as inputs could be an alternative to PGA-based models for evaluating the impact of co-seismic landslides. Notably, these models prove advantageous in near-real-time scenarios and settings requiring high spatial resolution, and provide favorable assistance in achieving the goal of sustainable development of society. Full article
(This article belongs to the Special Issue Sustainable Disaster Risk Management and Urban Resilience)
Show Figures

Figure 1

19 pages, 19608 KiB  
Article
Identifying the Characteristics and Implications of Post-Earthquake Debris Flow Events Based on Multi-Source Remote Sensing Images
by Wen Jin, Guotao Zhang, Yi Ding, Nanjiang Liu and Xiaowei Huo
Remote Sens. 2024, 16(17), 3336; https://doi.org/10.3390/rs16173336 - 8 Sep 2024
Viewed by 1752
Abstract
Strong earthquakes often bring amounts of loose material, disrupting the balance of material transportation within a watershed and severely impacting the restoration of the ecological environment and human safety downstream. Therefore, it is crucial to identify the frequency and scale of these debris [...] Read more.
Strong earthquakes often bring amounts of loose material, disrupting the balance of material transportation within a watershed and severely impacting the restoration of the ecological environment and human safety downstream. Therefore, it is crucial to identify the frequency and scale of these debris flow events, as well as to explore their long-term development and impact on internal and external channels. Using multi-source remote sensing images from four perspectives, hillslope, channel, accumulation fan, and their relationship with the mainstream, we reconstructed a debris flow event dataset from 2008 to 2020, explored a method for identifying these events, and analyzed their impacts on channels and accumulation fans in Mozi Gully affected by the Wenchuan earthquake. Loose matter was predominantly found in areas proximate to the channel and at lower elevations during debris flow events. Alterations in channel width, accumulation fans downstream, and their potential to obstruct rivers proved to be vital for identifying the large scale of debris flow event. Finally, we encapsulated the evolution patterns and constraints of post-earthquake debris flows. Determination in frequency and scale could offer valuable supplementary data for scenario hypothesis parameters in post-earthquake disaster engineering prevention and control. Full article
(This article belongs to the Special Issue Study on Hydrological Hazards Based on Multi-Source Remote Sensing)
Show Figures

Figure 1

24 pages, 10977 KiB  
Article
Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis
by Guangshun Bai, Xuemei Yang, Guangxin Bai, Zhigang Kong, Jieyong Zhu and Shitao Zhang
Sustainability 2024, 16(16), 6974; https://doi.org/10.3390/su16166974 - 14 Aug 2024
Viewed by 1335
Abstract
Landslide risk management contributes to the sustainable development of the region. Understanding the spatial controls on the distribution of landslides triggered by earthquakes (EqTLs) is difficult in terms of the prediction and risk assessment of EqTLs. In this study, landslides are regarded as [...] Read more.
Landslide risk management contributes to the sustainable development of the region. Understanding the spatial controls on the distribution of landslides triggered by earthquakes (EqTLs) is difficult in terms of the prediction and risk assessment of EqTLs. In this study, landslides are regarded as a spatial point pattern to test the controls on the spatial distribution of landslides and model the landslide density prediction. Taking more than 190,000 landslides triggered by the 2008 Wenchuan Ms 8.0 earthquake (WcEqTLs) as the research object, the relative density estimation, Kolmogorov–Smirnov testing based on cumulative distribution, receiver operating characteristic curve (ROC) analysis, and Poisson density modeling are comprehensively applied to quantitatively determine and discuss the different control effects of seven factors representing earthquakes, geology, and topography. The distance to the surface ruptures (dSR) and the distance to the epicenter (dEp) show significant and strong control effects, which are far stronger than the other five factors. Using only the dSR, dEp, engineering geological rock group (Eg), and the range, a particularly effective Poisson model of landslide density is constructed, whose area under the ROC (AUC) reaches 0.9244 and whose very high-density (VHD) zones can contain 50% of landslides and only comprise 3.9% of the study areas. This research not only deepens our understanding of the spatial distribution of WcEqTLs but also provides new technical methods for such investigation and analysis. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

Back to TopTop