Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (503)

Search Parameters:
Keywords = Weevils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 754 KiB  
Article
Effect of Volatile Organic Compounds from Branches of Healthy and Unhealthy Araucaria araucana (Molina) K. Koch Trees on Host Selection by Bark Beetle Sinophloeus porteri (Coleoptera: Curculionidae)
by Washington Aniñir, Leonardo Bardehle, Cristian Montalva, Andrés Quiroz and Javier Espinoza
Insects 2025, 16(7), 712; https://doi.org/10.3390/insects16070712 - 10 Jul 2025
Viewed by 538
Abstract
Araucaria araucana is one of the longest-living Chilean trees. Recently, Araucaria Leaf Damage disease, which causes damage to branches and crowns, was detected. Sinophloeus porteri, a bark beetle affecting A. araucana, could be associated with foliar damage. However, little is known [...] Read more.
Araucaria araucana is one of the longest-living Chilean trees. Recently, Araucaria Leaf Damage disease, which causes damage to branches and crowns, was detected. Sinophloeus porteri, a bark beetle affecting A. araucana, could be associated with foliar damage. However, little is known about their ecological and chemical interactions. This study examined the olfactory response of S. porteri to volatiles emitted from A. araucana. Branches and weevils were collected from a national park, and volatiles were trapped from both healthy and unhealthy branches. Thirty terpenes were identified, some of which were reported for the first time in A. araucana. Healthy branches emitted large amounts of myrcene (>360 ng g−1 day−1), and unhealthy branches showed high hibaene emanations (>140 ng g−1 day−1). Olfactory assays verified that S. porteri was attracted to the volatile blends of branches, regardless of the health condition of the branches, but preferred the blend of unhealthy branches. Moreover, myrcene was repellent to these weevils, and hibaene acted as an attractant, suggesting that A. araucana might use myrcene for defense against S. porteri, and hibaene could stimulate host selection by beetles. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 2590 KiB  
Article
Summer Cafe: In Vitro Case Study of Biological Repellents Against the Large Pine Weevil
by Ilze Matisone, Kristaps Ozoliņš, Roberts Matisons, Mārtiņš Spāde, Uldis Grīnfelds and Rinalds Trukšs
Forests 2025, 16(7), 1139; https://doi.org/10.3390/f16071139 - 10 Jul 2025
Viewed by 198
Abstract
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of [...] Read more.
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of a novel biological repellent, consisting of plant-based oils, beeswax, calcium carbonate, vanillin, pine bark extractives, terpentine, abrasive particles, solvent, and a viscosity agent, in comparison with commercially available repellent Norfort LDW 115. The application complexity of the repellents, their persistence on seedlings, and the extent of H. abietis damage were evaluated. The five alternative repellents had higher protection compared to the control repellent, highlighting the potential for new alternative repellents. The base (without additives) repellent provided the highest protection, indicating a redundancy of admixtures. A mixed cumulative link model, employed to estimate differences between the repellents, estimated 85% undamaged and none significantly damaged saplings in the case of the base repellent. However, the consistency and hence persistence of certain repellents on plantlets would benefit from improvements; further field studies are needed to upscale the test of the stability and efficiency of high levels in real environments under different H. abietis population pressures. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

16 pages, 1124 KiB  
Article
Development and Population Growth Rates of Sitophilus zeamais (Coleoptera: Curculionidae) Exposed to a Sublethal Concentration of Essential Oil of Piper hispidinervum
by Lucas Martins Lopes, Lêda Rita D’Antonino Faroni, Gutierres Nelson Silva, Douglas Rafael e Silva Barbosa, Marcela Silva Carvalho, Herus Pablo Firmino Martins, Thaís Rodrigues dos Santos, Igor da Silva Dias and Adalberto Hipólito de Sousa
Insects 2025, 16(7), 697; https://doi.org/10.3390/insects16070697 - 6 Jul 2025
Viewed by 636
Abstract
Essential oils have emerged as promising alternatives for pest insect control. However, sublethal effects on insect reproduction and development are rarely explored, despite their relevance to integrated pest management (IPM). This study evaluated the sublethal effects of Piper hispidivervum C. DC. essential oil [...] Read more.
Essential oils have emerged as promising alternatives for pest insect control. However, sublethal effects on insect reproduction and development are rarely explored, despite their relevance to integrated pest management (IPM). This study evaluated the sublethal effects of Piper hispidivervum C. DC. essential oil (EOPH) on the development and population growth of four populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), as well as the persistence of safrole residue in treated corn grains. Population development rates were determined using emergence curves and total emerged adults, while population growth was assessed by counting live insects in the feeding substrate at different storage intervals. Safrole residue persistence was analyzed using solid-phase microextraction in headspace mode (SPME-HS). Sublethal exposure to EOPH significantly reduced the development rate, total emergence, and growth in three of the four populations. The population from Crixás, GO, showed no significant reduction, with a population curve overlapping the control. The lethal dose was reduced by 98.20%, indicating low persistence and potential food safety. The EOPH exhibited sublethal effects on S. zeamais populations, reducing both development rates and population growth. This reduction varied among the populations studied. Further research is encouraged to explore its effects on different insect populations and under broader environmental conditions. Full article
(This article belongs to the Special Issue Integrated Pest Management in Stored Products)
Show Figures

Figure 1

24 pages, 10899 KiB  
Article
Evolution of Sweet Potato (Ipomoea batatas [L.] Lam.) Breeding in Cuba
by Alfredo Morales, Peiyong Ma, Zhaodong Jia, Dania Rodríguez, Iván Javier Pastrana Vargas, Vaniert Ventura, José Efraín González, Orelvis Portal, Federico Diaz, Oscar Parrado Alvarez, Carina Cordero and Xiaofeng Bian
Plants 2025, 14(13), 1911; https://doi.org/10.3390/plants14131911 - 21 Jun 2025
Viewed by 573
Abstract
This study analyzed the genetic progress of sweet potato (Ipomoea batatas) breeding in Cuba over the past 50 years by field trials comparing traditional and improved varieties. Improved varieties significantly outperformed traditional ones in tuberous root yield, with an accumulated genetic [...] Read more.
This study analyzed the genetic progress of sweet potato (Ipomoea batatas) breeding in Cuba over the past 50 years by field trials comparing traditional and improved varieties. Improved varieties significantly outperformed traditional ones in tuberous root yield, with an accumulated genetic gain of 0.20–0.37 t ha−1 per year, translating to a 256% yield increase. Improved genotypes also exhibited enhanced pest tolerance: lower weevil (Cylas formicarius) infestation and reduced nematode (Meloidogyne incognita) reproduction rates. For viral diseases, 60% of improved varieties showed incidence rates below 10%, compared with 90% of traditional varieties exceeding this threshold. Under drought conditions, improved varieties showed tolerance, with Stress Susceptibility Indices (SSIs) of less than 0.8, while the traditional varieties were more susceptible (SSI > 1). Phenotypic stability analysis via GGE biplot confirmed the superior yield and adaptability of improved varieties across environments. These advances underscore the critical role of sweet potatoes breeding in Cuba, with improvements in yield, quality and resistance to biotic and abiotic stress, contributing to strengthening climate resilience and food security. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

12 pages, 2315 KiB  
Article
Seed Traits and Curculio Weevil Infestation: A Study in Quercus mongolica
by Shuang Li, Li-Min Hou, Yan-Lin Guo, Meng-En Xing, Hao-Yue Li, Qing-Fan Meng and Li-Chao Feng
Diversity 2025, 17(6), 421; https://doi.org/10.3390/d17060421 - 15 Jun 2025
Viewed by 378
Abstract
Exploring host preference and resource partitioning among seed predator species is essential for understanding the coexistence mechanisms and guiding effective forest pest management. This study aimed to elucidate how seed traits influence infestation dynamics and species interactions, focusing on acorn weevils infesting Quercus [...] Read more.
Exploring host preference and resource partitioning among seed predator species is essential for understanding the coexistence mechanisms and guiding effective forest pest management. This study aimed to elucidate how seed traits influence infestation dynamics and species interactions, focusing on acorn weevils infesting Quercus mongolica. Species identification and clarification of their evolutionary relationships within the Curculio genus were performed through phylogenetic analyses of the mitochondrial cytochrome c oxidase subunit I gene sequences. The seed infestation patterns were assessed by comparing the infestation rates across various seed size classes. Furthermore, the correlations between the seed morphological traits (length, width, aspect ratio, and weight) and weevil abundance were analyzed. The phylogenetic results revealed well-supported monophyletic clades corresponding to Curculio arakawai and Curculio sikkimensis. This confirmed the clear genetic separation between these two distinct weevil species, thereby substantiating the divergence observed in weevil populations correlated with different seed hosts. The infestation patterns revealed the association of weevil species-specific preferences with seed size: C. arakawai predominantly infested larger acorn seeds, whereas C. sikkimensis predominantly infested smaller acorn seeds. C. sikkimensis favored smaller ones. Both species exhibited positive correlations between abundance and seed length and width in larger seeds; however, the seed weight displayed no significant effect. These results indicate niche differentiation mediated by seed size and morphology, which likely reduced interspecific competition and facilitated coexistence. This study elucidates species-specific host selection patterns in acorn weevils and highlights acorn traits as crucial factors shaping seed predator assemblages. The findings provide valuable insights for developing targeted pest management strategies and supporting sustainable oak forest regeneration. Full article
(This article belongs to the Special Issue Diversity, Distribution and Zoogeography of Coleoptera)
Show Figures

Figure 1

16 pages, 1804 KiB  
Article
GABA and Octopamine Receptors as Potential Targets for Fumigant Actions of Bursera graveolens Essential Oil Against Callosobruchus maculatus and Callosobruchus chinensis
by Luis O. Viteri, Maria José González, Pedro B. Silva, Jonatas M. Gomes, Thiago Svacina, Lara T. M. Costa, Eduardo Valarezo, Javier G. Mantilla-Afanador, Osmany M. Herrera, Raimundo W. S. Aguiar, Gil R. Santos and Eugênio E. Oliveira
J. Xenobiot. 2025, 15(3), 91; https://doi.org/10.3390/jox15030091 - 12 Jun 2025
Viewed by 1259
Abstract
Cowpea, Vigna sp., is an important, low-cost protein source in subtropical and semi-arid regions, where seasonal rainfall makes storage necessary. However, the weevils Callosobruchus maculatus and C. chinensis cause significant grain losses during storage. While synthetic fumigants are commonly used to control these [...] Read more.
Cowpea, Vigna sp., is an important, low-cost protein source in subtropical and semi-arid regions, where seasonal rainfall makes storage necessary. However, the weevils Callosobruchus maculatus and C. chinensis cause significant grain losses during storage. While synthetic fumigants are commonly used to control these pests, their risks to mammals have prompted the search for safer alternatives. In this context, we tested palo santo, Bursera graveolens, essential oil with limonene, α-phellandrene, o-cymene and β-phellandrene, menthofuran, and germacrene-D as a sustainable approach. This plant is readily accessible, produces high fruit yields, and is used in households for various purposes. We evaluated the fumigant toxicity, repellency, and ovicidal effects of B. graveolens essential oil on both Callosobruchus species. Our results showed that B. graveolens oil was toxic to C. maculatus (LC50 = 80.90 [76.91–85.10] µL) and C. chinensis (LC50 = 63.9 [60.95–66.99] µL), with C. chinensis being more susceptible (SR = 1.27). Molecular docking analyses revealed that all the oil’s compounds bind to both the GABA and octopamine receptors, exhibiting high energy affinities; however, germacrene shows the strongest affinity in these receptors. C. chinensis was strongly repelled at all concentrations, while C. maculatus was repelled only at lethal concentrations. No ovicidal effect was observed in either species. In conclusion, our findings suggest that B. graveolens essential oil is a promising and sustainable protectant for stored cowpeas in small-scale storage units. Full article
Show Figures

Figure 1

20 pages, 5993 KiB  
Article
High-Precision Stored-Grain Insect Pest Detection Method Based on PDA-YOLO
by Fuyan Sun, Zhizhong Guan, Zongwang Lyu and Shanshan Liu
Insects 2025, 16(6), 610; https://doi.org/10.3390/insects16060610 - 10 Jun 2025
Viewed by 880
Abstract
Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. [...] Read more.
Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. To address these limitations, we proposed PDA-YOLO, an improved stored-grain insect pest detection algorithm based on YOLO11n which integrates three key modules: PoolFormer_C3k2 (PF_C3k2) for efficient local feature extraction, Attention-based Intra-Scale Feature Interaction (AIFI) for enhanced global context awareness, and Dynamic Multi-scale Aware Edge (DMAE) for precise boundary detection of small targets. Trained and tested on 6200 images covering five common stored-grain insect pests (Lesser Grain Borer, Red Flour Beetle, Indian Meal Moth, Maize Weevil, and Angoumois Grain Moth), PDA-YOLO achieved an mAP@0.5 of 96.6%, mAP@0.5:0.95 of 60.4%, and F1 score of 93.5%, with a computational cost of only 6.9 G and mean detection time of 9.9 ms per image. These results demonstrate the advantages over mainstream detection algorithms, balancing accuracy, computational efficiency, and real-time performance. PDA-YOLO provides a reference for pest detection in intelligent grain storage management. Full article
Show Figures

Figure 1

17 pages, 3234 KiB  
Article
Evaluation of Red Palm Weevils (Rhynchophorus ferrugineus: Curculionidae) for Putative Oxidation of Ingested Polystyrene and Polyurethane and Their Gut Microbiota Response
by Khanchai Danmek, Pichet Praphawilai, Sampat Ghosh, Chuleui Jung, Saeed Mohamadzade Namin, Phattharawadee Aedtem and Bajaree Chuttong
Insects 2025, 16(6), 587; https://doi.org/10.3390/insects16060587 - 2 Jun 2025
Viewed by 723
Abstract
This study assessed the growth performance of red palm weevil (RPW) (Rhynchophorus ferrugineus: Curculionidae) larvae on a liquid diet of yeast-enriched potato dextrose broth (control) and on diets with added polystyrene and polyurethane. For 15 days of diet exposure, the growth [...] Read more.
This study assessed the growth performance of red palm weevil (RPW) (Rhynchophorus ferrugineus: Curculionidae) larvae on a liquid diet of yeast-enriched potato dextrose broth (control) and on diets with added polystyrene and polyurethane. For 15 days of diet exposure, the growth and survival, plastic degradation, and gut microbiota of larvae were examined. RPWs showed higher survival rates under polystyrene and polyurethane treatments than in the control group. Head diameter showed a higher trend under polyurethane treatment than under the other treatments. Treated plastics were partly degraded after a 15-day exposure. Further analysis of plastic residues from frass revealed significant differences in Fourier Transform Infrared Spectroscopy (FTIR), with decreased intensity of characteristic peaks compared to frass from larvae fed in the control. Gut bacterial communities in the gut of RPW larvae showed that plastic feeding did not significantly alter the presence of key microbial taxa, but members of Firmicutes and Proteobacteria were higher in the plastic treatment, showing preliminary signs of plastic oxidation and degradation. Overall, these findings provide evidence that ingestion of PS and PU by RPW larvae supports their survival and alters their gut microbiota, possibly due to plastic degradation, paving the way for further research into the interactions between RPWs, their microbiome, and key functional activities, with implications for plastic waste management and recycling. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Graphical abstract

18 pages, 4038 KiB  
Article
Acorn Weevil Species Diversity and Host Affinity in the Semi-Humid Evergreen Broad-Leaved Forests of Southwest China
by Shengquan Fang, Shaoji Hu, Biao Zhao, Dengpeng Chen, Chunyan Lan, Xinrong Li, Yongping Li, Mingchun Peng, Zihao Wang, Mingyu Ge and Chongyun Wang
Insects 2025, 16(6), 579; https://doi.org/10.3390/insects16060579 - 30 May 2025
Viewed by 558
Abstract
Acorn weevils critically impact forest regeneration in semi-humid evergreen broad-leaved forests (SEBFs) by parasitizing and consuming acorns before dispersal. Despite their ecological significance, research on the species diversity of acorn weevils within SEBFs remains limited. To address this gap, we assessed the species [...] Read more.
Acorn weevils critically impact forest regeneration in semi-humid evergreen broad-leaved forests (SEBFs) by parasitizing and consuming acorns before dispersal. Despite their ecological significance, research on the species diversity of acorn weevils within SEBFs remains limited. To address this gap, we assessed the species diversity and host affinity of acorn weevils across six dominant oak species at 18 locations. We performed DNA extraction and mitochondrial COI gene sequencing on weevil larvae and analyzed acorn functional traits (AFTs) from host acorns. Six acorn weevil species across four genera and two families were identified within the dominant acorns of SEBFs. Curculio dentipes showed the lowest host specificity, while Niphades castanea and Cyllorhynchites ursulus were specialist species. Notably, the species diversity of acorn weevils was significantly lower in Quercus franchetii than in others. Acorn volume and three secondary metabolite contents, including total phenols, total flavonoids, and tannins, were the primary AFTs influencing weevil species diversity. This study not only advances our comprehension of acorn weevil species diversity and their ecological interactions with oak hosts, but also provides valuable insights for the ecological management of SEBFs in southwest China. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

14 pages, 1397 KiB  
Article
Insecticidal Effects of Native Raw and Commercial Diatomaceous Earth Against Lesser Grain Borer and Granary Weevil Under Different Environmental Conditions
by Ayhan Ogreten, Sedat Eren, Cetin Mutlu, Tarkan Ayaz, Amna Saeed, Georgina V. Bingham and William R. Morrison
Insects 2025, 16(6), 549; https://doi.org/10.3390/insects16060549 - 22 May 2025
Cited by 1 | Viewed by 599
Abstract
Stored grain pests cause significant economic losses during cereal grain storage. Insecticides have long been central to pest control; however, growing concerns over resistance, environmental harm, and human health demand alternative strategies. Diatomaceous earth (DE) treatments are a safe, eco-friendly alternative to insecticides, [...] Read more.
Stored grain pests cause significant economic losses during cereal grain storage. Insecticides have long been central to pest control; however, growing concerns over resistance, environmental harm, and human health demand alternative strategies. Diatomaceous earth (DE) treatments are a safe, eco-friendly alternative to insecticides, although their efficacy depends on the temperature, humidity, dose, and insect species. This study assessed the insecticidal effects of two natively-sourced raw (Ankara and Aydin) and one commercial (Silico-Sec) DE treatments against the key pest species Rhyzopertha dominica (F.) and Sitophilus granarius (L.) on stored wheat. Five doses (0, 250, 500, 750, and 1000 ppm) of each DE treatment were tested under two temperatures (25 °C and 30 °C) and two humidity levels (40% and 60%). Mortality was assessed at 7, 14, and 21 days after treatment (DAT). All DE treatments caused higher mortality in S. granarius than R. dominica. The highest mortality occurred in S. granarius at 30 °C and 40% RH with the highest dose. Aydin DE was most effective, but did not reach 100% mortality in S. granarius by 21 DAT. In contrast, it caused 100% mortality in R. dominica under the same conditions. There was no F1 progeny produced by surviving individuals of both species. Given the similarity of the environmental conditions to the optimal conditions for DE efficacy present in Turkish storage facilities, natively sourced Aydin DE is a promising control option. Full article
Show Figures

Figure 1

10 pages, 215 KiB  
Article
Dual Role of Sitophilus zeamais: A Maize Storage Pest and a Potential Edible Protein Source
by Soledad Mora Vásquez and Silverio García-Lara
Insects 2025, 16(5), 531; https://doi.org/10.3390/insects16050531 - 16 May 2025
Viewed by 1049
Abstract
Maize (Zea mays) is a critical staple crop whose post-harvest losses, predominantly due to infestations by the maize weevil, Sitophilus zeamais, threaten food security. This study explores the possibility of utilizing S. zeamais, traditionally known as a pest, as [...] Read more.
Maize (Zea mays) is a critical staple crop whose post-harvest losses, predominantly due to infestations by the maize weevil, Sitophilus zeamais, threaten food security. This study explores the possibility of utilizing S. zeamais, traditionally known as a pest, as an alternative protein source by assessing its nutritional profile and food safety attributes. Cultured under controlled conditions, S. zeamais specimens were processed into flour, which was subsequently analyzed for microbiological safety, protein content, and amino acid composition. Microbiological assays confirmed that the flour met established food safety standards, with aerobic mesophilic bacteria, fungi, and yeast present at negligible levels and no detection of coliforms, Salmonella spp., or Escherichia coli. Protein quantification revealed a high total protein content (48.1 ± 0.3%), although the salt-soluble fraction constituted only 13.7% of the total. The amino acid profile exhibited elevated levels of isoleucine, valine, and threonine, while deficiencies in leucine, lysine, sulfur amino acids, and tryptophan were noted. These findings suggest that, despite certain limitations, S. zeamais flour represents a viable protein source. Integrating targeted insect harvesting for protein into pest management strategies could help reduce post-harvest losses and contribute to improved food security and nutritional availability. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Graphical abstract

23 pages, 4901 KiB  
Article
Multi-Omics Analysis of Curculio dieckmanni (Coleoptera: Curculionidae) Larvae Reveals Host Responses to Steinernema carpocapsae Infection
by Bin Wang, Fanyu Meng, Shiqi Song, Bin Xie, Shuxia Jia, Dongying Xiu and Xingpeng Li
Insects 2025, 16(5), 503; https://doi.org/10.3390/insects16050503 - 7 May 2025
Viewed by 631
Abstract
The hazelnut weevil larvae (Curculio dieckmanni) is a major pest of nut weevils, spending part of its life cycle in the soil and causing significant damage to hazelnut crops. Moreover, its concealed feeding behavior complicates effective control with chemical insecticides. The [...] Read more.
The hazelnut weevil larvae (Curculio dieckmanni) is a major pest of nut weevils, spending part of its life cycle in the soil and causing significant damage to hazelnut crops. Moreover, its concealed feeding behavior complicates effective control with chemical insecticides. The entomopathogenic nematode Steinernema carpocapsae, which efficiently kills weevil larvae, offers a promising biological control agent. To investigate the molecular responses of hazelnut weevil larvae to nematode infection, we employed integrated transcriptomic and proteomic analyses following infection by S. carpocapsae. Our results revealed substantial alterations in gene expression, particularly the upregulation of immune-related transcripts such as antimicrobial peptides (AMPs) and stress-responsive proteins like heat shock protein 70 (HSP70). Furthermore, significant metabolic reprogramming occurred, marked by the downregulation of carbohydrate metabolic pathways and activation of energy conservation mechanisms. Although we observed an overall correlation between mRNA and protein expression levels, notable discrepancies highlighted the critical roles of post-transcriptional and post-translational regulatory processes. Collectively, these findings advance our understanding of the molecular interaction between insect hosts and pathogenic nematodes and contribute valuable knowledge for enhancing the effectiveness of EPN-based pest management strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

11 pages, 932 KiB  
Article
Piper aduncum Essential Oil: Toxicity to Sitophilus zeamais and Effects on the Quality of Corn Grains
by Weverton Peroni Santos, Lucas Martins Lopes, Gutierres Nelson Silva, Marcela Silva Carvalho and Adalberto Hipólito de Sousa
Processes 2025, 13(5), 1363; https://doi.org/10.3390/pr13051363 - 29 Apr 2025
Viewed by 406
Abstract
Stored product pests are controlled primarily through applying pyrethroid and organophosphate insecticides or through fumigation with phosphine (PH3). However, several populations of weevils are resistant to these insecticides. Essential oils appear to be safe alternatives for both humans and the environment. [...] Read more.
Stored product pests are controlled primarily through applying pyrethroid and organophosphate insecticides or through fumigation with phosphine (PH3). However, several populations of weevils are resistant to these insecticides. Essential oils appear to be safe alternatives for both humans and the environment. The objective was to investigate the toxicity of Piper aduncum essential oil (PAEO) to Sitophilus zeamais and evaluate its effects on corn grain quality during the four-month storage period. This study was conducted in two stages. In the first stage, the toxicity of PAEO at concentrations lethal to 50 and 95% of insects (LC50 and LC95) was estimated. The second step evaluated the degree of infestation, water content, apparent specific mass, loss of mass, electrical conductivity, and percentage of germination of grains at 0, 30, 60, 90, and 120 days after exposure to PAEO, deltamethrin (pyrethroid), and the control treatment. PAEO presents toxicity to S. zeamais. The LC50 and LC95 values are 298.50 µL kg−1 and 585.20 µL kg−1, respectively. The increases in infestation degree, water content, electric conductivity, and mass loss, as well as reductions in apparent specific mass and germination, show the loss of corn quality during the 120-day storage period, being more significant when no product is applied. PAEO delays the loss of quality of the grains, presenting a greater capacity to preserve the grains for a longer period. Full article
Show Figures

Figure 1

22 pages, 94322 KiB  
Article
The Weevil Genus Rhamphus (Curculionidae, Curculioninae) in Southern Africa—Description of Thirteen New Species
by Roberto Caldara and Michele Tedeschi
Insects 2025, 16(5), 454; https://doi.org/10.3390/insects16050454 - 25 Apr 2025
Viewed by 645
Abstract
The southern African species of the genus Rhamphus Clairville, 1798, is herein revised for the first time. Fourteen species are recognized, 13 of which are new to science. The single known species was Rhamphus namibicus Korotyaev, 1994 (Namibia), whereas the new species are [...] Read more.
The southern African species of the genus Rhamphus Clairville, 1798, is herein revised for the first time. Fourteen species are recognized, 13 of which are new to science. The single known species was Rhamphus namibicus Korotyaev, 1994 (Namibia), whereas the new species are R. carinatus sp. nov. (South Africa: Limpopo; Zimbabwe), R. densepunctatus sp. nov. (South Africa: Western Cape), R. gigas sp. nov. (Zambia), R. glaber sp. nov. (South Africa: Mpumalanga), R. globipennis sp. nov. (South Africa: Mpumalanga, Limpopo, KwaZulu-Natal, Eastern Cape, Western Cape), R. hispidulus sp. nov. (South Africa: Eastern Cape), R. indifferens sp. nov. (South Africa: Gauteng, KwaZulu-Natal, Eastern Cape), R. levipennis sp. nov. (South Africa: Mpumalanga; Zimbabwe), R. longitarsis sp. nov. (Southern Namibia; South Africa: Northern Cape), R. obesulus sp. nov. (South Africa: Eastern Cape), R. pilosulus sp. nov. (South Africa: Mpumalanga, KwaZulu-Natal; Zimbabwe), R. scaber sp. nov. (South Africa: KwaZulu-Natal, Eastern Cape), R. squamidorsum sp. nov. (South Africa: Eastern Cape, Western Cape). Based on morphological characters, the species are separated into four informal groups. In considering possible relationships between these species and those from other regions, host-plant associations are also discussed. Full article
Show Figures

Figure 1

15 pages, 3162 KiB  
Article
Pathogenicity of Steinernema carpocapsae ALL Entomopathogenic Nematodes and Their Symbiotic Bacteria as a Biological Control Agent on Red Palm Weevil
by Chaojun Lv, Taigao Meng, Baozhu Zhong, Zhongqiu Shang, Chaoxu Li, Abdullah A. Zahra and Talat M. Abdelrahman
Microorganisms 2025, 13(5), 971; https://doi.org/10.3390/microorganisms13050971 - 24 Apr 2025
Viewed by 608
Abstract
Insect-specific pathogens present a sustainable alternative to pesticides for managing the red palm weevil (RPW). This study assessed the efficacy of Steinernema carpocapsae ALL nematodes and their symbiotic bacteria against the third-instar larvae and adults of RPW under laboratory conditions. The symbiotic bacteria [...] Read more.
Insect-specific pathogens present a sustainable alternative to pesticides for managing the red palm weevil (RPW). This study assessed the efficacy of Steinernema carpocapsae ALL nematodes and their symbiotic bacteria against the third-instar larvae and adults of RPW under laboratory conditions. The symbiotic bacteria were isolated, morphologically characterized, and genetically identified. The results indicated that the mortality rates of RPW larvae treated with S. carpocapsae exceeded 50% in all treatments at 120 h, reaching 93.33% at a concentration of 250 IJs/mL. The morphology of isolated symbiotic bacterium from S. carpocapsae on NBTA medium exhibited a light green color with a glossy surface, a raised center, and a mucilaginous texture. A novel strain of symbiotic bacterium was identified and named as LZ-G7. The bacteria toxicity on RPW adults showed a notable mortality rate of 66.67% at 48 h after feeding with concentration of 10 × 107 CFU/mL. The mortality rate of the third-instar larvae of RPW reached 83.33% after feeding with 0.30 × 108 CFU/g at 96 h and 93.33% after injection into blood cavity with 8 × 106 CFU at 48 h. These results suggest that S. carpocapsae and a novel symbiotic bacterium strain exhibit strong virulence against RPW and have the potential to serve as effective biological control agents in integrated pest management strategies. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Graphical abstract

Back to TopTop