Multi-Omics Analysis of Curculio dieckmanni (Coleoptera: Curculionidae) Larvae Reveals Host Responses to Steinernema carpocapsae Infection
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Experimental Design
2.3. Transcriptomic Analysis
2.4. Proteomic Analysis
2.4.1. Protein Extraction and TMT Labeling
2.4.2. High-pH Reverse-Phase Fractionation (HPLC)
2.4.3. LC-MS/MS Analysis
2.4.4. Protein Identification and Quantification
2.4.5. Bioinformatics and Statistical Analysis
2.5. Integrated Transcriptomic and Proteomic Analysis
2.6. Real-Time Quantitative PCR
3. Results
3.1. Sources of Variation in mRNA and Protein Expression
3.2. Transcriptomic Analysis
3.3. Proteomic Analysis
3.4. Comparison of mRNA and Protein Expression
4. Discussion
4.1. Immune Response of C. dieckmanni Larvae to S. carpocapsae Infection
4.2. Metabolic and Cellular Changes During Infection
4.3. Proteomic Insights into Host Responses
4.4. Discrepancies Between mRNA and Protein Expression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chitra, P.; Sujatha, K.; Jeyasankar, A. Entomopathogenic Nematode as a Biocontrol Agent—Recent Trends—A Review. Int. J. Adv. Res. Biol. Sci. 2017, 4, 9–20. [Google Scholar] [CrossRef]
- Nurashikin-Khairuddin, W.; Abdul-Hamid, S.N.A.; Mansor, M.S.; Bharudin, I.; Othman, Z.; Jalinas, J. A Review of Entomopathogenic Nematodes as a Biological Control Agent for Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insects 2022, 13, 245. [Google Scholar] [CrossRef]
- Garriga, A.; Toubarro, D.; Morton, A.; Simões, N.; Garcia-Del-Pino, F. Analysis of the Immune Transcriptome of the Invasive Pest Spotted Wing Drosophila Infected by Steinernema carpocapsae. Bull. Entomol. Res. 2024, 114, 622–630. [Google Scholar] [CrossRef]
- Brivio, M.F.; Mastore, M. When Appearance Misleads: The Role of the Entomopathogen Surface in the Relationship with Its Host. Insects 2020, 11, 387. [Google Scholar] [CrossRef]
- Garriga, A.; Mastore, M.; Morton, A.; Garcia Del Pino, F.; Brivio, M.F. Immune Response of Drosophila suzukii Larvae to Infection with the Nematobacterial Complex Steinernema carpocapsae–Xenorhabdus nematophila. Insects 2020, 11, 210. [Google Scholar] [CrossRef]
- Lima, A.K.; Dhillon, H.; Dillman, A.R. ShK-Domain-Containing Protein from a Parasitic Nematode Modulates Drosophila Melanogaster Immunity. Pathogens 2022, 11, 1094. [Google Scholar] [CrossRef]
- Chandra Roy, M.; Lee, D.; Kim, Y. Host Immunosuppression Induced by Steinernema Feltiae, an Entomopathogenic Nematode, through Inhibition of Eicosanoid Biosynthesis. Insects 2020, 11, 33. [Google Scholar] [CrossRef]
- Binda-Rossetti, S.; Mastore, M.; Protasoni, M.; Brivio, M.F. Effects of an Entomopathogen Nematode on the Immune Response of the Insect Pest Red Palm Weevil: Focus on the Host Antimicrobial Response. J. Invertebr. Pathol. 2016, 133, 110–119. [Google Scholar] [CrossRef]
- Sicard, M.; Brugirard-Ricaud, K.; Pagès, S.; Lanois, A.; Boemare, N.E.; Brehélin, M.; Givaudan, A. Stages of Infection during the Tripartite Interaction between Xenorhabdus nematophila, Its Nematode Vector, and Insect Hosts. Appl. Environ. Microbiol. 2004, 70, 6473–6480. [Google Scholar] [CrossRef]
- Mastore, M.; Arizza, V.; Manachini, B.; Brivio, M.F. Modulation of Immune Responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) Induced by the Entomopathogenic Nematode Steinernema carpocapsae (Nematoda: Rhabditida. Insect Sci. 2015, 22, 748–760. [Google Scholar] [CrossRef]
- Eleftherianos, I.; Heryanto, C.; Bassal, T.; Zhang, W.; Tettamanti, G.; Mohamed, A. Haemocyte-Mediated Immunity in Insects: Cells, Processes and Associated Components in the Fight against Pathogens and Parasites. Immunology 2021, 164, 401–432. [Google Scholar] [CrossRef] [PubMed]
- Mastore, M.; Brivio, M.F. Cuticular Surface Lipids Are Responsible for Disguise Properties of an Entomoparasite against Host Cellular Responses. Dev. Comp. Immunol. 2008, 32, 1050–1062. [Google Scholar] [CrossRef]
- Garriga, A.; Toubarro, D.; Simões, N.; Morton, A.; García-Del-Pino, F. The Modulation Effect of the Steinernema carpocapsae–Xenorhabdus nematophila Complex on Immune-Related Genes in Drosophila suzukii Larvae. J. Invertebr. Pathol. 2023, 196, 107870. [Google Scholar] [CrossRef]
- Yadav, S.; Daugherty, S.; Shetty, A.C.; Eleftherianos, I. RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema. G3 Genes Genomes Genet. 2017, 7, 1955–1967. [Google Scholar] [CrossRef]
- Cooper, D.; Wuebbolt, C.; Heryanto, C.; Eleftherianos, I. The Prophenoloxidase System in Drosophila Participates in the Anti-Nematode Immune Response. Mol. Immunol. 2019, 109, 88–98. [Google Scholar] [CrossRef]
- Sanda, N.B.; Hou, B.; Hou, Y. The Entomopathogenic Nematodes H. bacteriophora and S. carpocapsae Inhibit the Activation of proPO System of the Nipa Palm Hispid Octodonta nipae (Coleoptera: Chrysomelidae). Life 2022, 12, 1019. [Google Scholar] [CrossRef]
- Peña, J.M.; Carrillo, M.A.; Hallem, E.A. Variation in the Susceptibility of Drosophila to Different Entomopathogenic Nematodes. Infect. Immun. 2015, 83, 1130–1138. [Google Scholar] [CrossRef]
- Castillo, J.C.; Creasy, T.; Kumari, P.; Shetty, A.; Shokal, U.; Tallon, L.J.; Eleftherianos, I. Drosophila Anti-Nematode and Antibacterial Immune Regulators Revealed by RNA-Seq. BMC Genom. 2015, 16, 519. [Google Scholar] [CrossRef]
- Huot, L.; George, S.; Girard, P.-A.; Severac, D.; Nègre, N.; Duvic, B. Spodoptera Frugiperda Transcriptional Response to Infestation by Steinernema carpocapsae. Sci. Rep. 2019, 9, 12879. [Google Scholar] [CrossRef]
- Wang, Q.; Su, S.; Yin, D.; Tang, Z.; Xu, D. An Initial Investigation on the Distribution, Living Conditions and Traits of the Hazel in Great Xing’an Ridge Region. Nat. Resour. 2011, 02, 234–239. [Google Scholar] [CrossRef]
- Batalla-Carrera, L.; Morton, A.; García-del-Pino, F. Field Efficacy against the Hazelnut Weevil, Curculio Nucum and Short-Term Persistence of Entomopathogenic Nematodes. Span. J. Agric. Res. 2013, 11, 1112–1119. [Google Scholar] [CrossRef]
- Aydin, S.; Ulvi, M. Residue Levels of Pesticides in Nuts and Risk Assessment for Consumers. Qual. Assur. Saf. Crop. Foods 2019, 11, 539–548. [Google Scholar] [CrossRef]
- Kaya, H.K.; Grieve, B.J. The Nematode Neoaplectana Carpocapsae and the Beet Armyworm Spodoptera Exigua: Infectivity of Prepupae and Pupae in Soil and of Adults during Emergence from Soil. J. Invertebr. Pathol. 1982, 39, 192–197. [Google Scholar] [CrossRef]
- Malan, A.P.; Knoetze, R.; Moore, S.D. Isolation and Identification of Entomopathogenic Nematodes from Citrus Orchards in South Africa and Their Biocontrol Potential against False Codling Moth. J. Invertebr. Pathol. 2011, 108, 115–125. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Batalha, I.L.; Lowe, C.R.; Roque, A.C.A. Platforms for Enrichment of Phosphorylated Proteins and Peptides in Proteomics. Trends Biotechnol. 2012, 30, 100–110. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, G.; Zhu, L.; Ma, L.; Chen, K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int. J. Mol. Sci. 2024, 25, 3835. [Google Scholar] [CrossRef]
- Sanda, N.B.; Muhammad, A.; Ali, H.; Hou, Y. Entomopathogenic Nematode Steinernema carpocapsae Surpasses the Cellular Immune Responses of the Hispid Beetle, Octodonta nipae (Coleoptera: Chrysomelidae. Microb. Pathog. 2018, 124, 337–345. [Google Scholar] [CrossRef]
- Yokoi, K.; Koyama, H.; Minakuchi, C.; Tanaka, T.; Miura, K. Antimicrobial Peptide Gene Induction, Involvement of Toll and IMD Pathways and Defense against Bacteria in the Red Flour Beetle, Tribolium Castaneum. Results Immunol. 2012, 2, 72–82. [Google Scholar] [CrossRef]
- Ozakman, Y.; Eleftherianos, I. Immune Interactions Between Drosophila and the Pathogen Xenorhabdus. Microbiol. Res. 2020, 240, 126568. [Google Scholar] [CrossRef]
- Jones, K.; Tafesh-Edwards, G.; Kenney, E.; Toubarro, D.; Simões, N.; Eleftherianos, I. Excreted Secreted Products from the Parasitic Nematode Steinernema carpocapsae Manipulate the Drosophila Melanogaster Immune Response. Sci. Rep. 2022, 12, 14237. [Google Scholar] [CrossRef]
- Kenney, E.; Yaparla, A.; Hawdon, J.M.; O’Halloran, D.M.; Grayfer, L.; Eleftherianos, I. A Putative UDP-Glycosyltransferase from Heterorhabditis Bacteriophora Suppresses Antimicrobial Peptide Gene Expression and Factors Related to Ecdysone Signaling. Sci. Rep. 2020, 10, 12312. [Google Scholar] [CrossRef]
- Dziedziech, A.; Shivankar, S.; Theopold, U. Drosophila Melanogaster Responses against Entomopathogenic Nematodes: Focus on Hemolymph Clots. Insects 2020, 11, 62. [Google Scholar] [CrossRef]
- Nishide, Y.; Kageyama, D.; Yokoi, K.; Jouraku, A.; Tanaka, H.; Futahashi, R.; Fukatsu, T. Functional Crosstalk across IMD and Toll Pathways: Insight into the Evolution of Incomplete Immune Cascades. Proc. Biol. Sci. 2019, 286, 20182207. [Google Scholar] [CrossRef]
- Momenbeitollahi, N.; Cloet, T.; Li, H. Pushing the Detection Limits: Strategies towards Highly Sensitive Optical-Based Protein Detection. Anal. Bioanal. Chem. 2021, 413, 5995–6011. [Google Scholar] [CrossRef]
- Martínez, B.A.; Hoyle, R.G.; Yeudall, S.; Granade, M.E.; Harris, T.E.; Castle, J.D.; Leitinger, N.; Bland, M.L. Innate Immune Signaling in Drosophila Shifts Anabolic Lipid Metabolism from Triglyceride Storage to Phospholipid Synthesis to Support Immune Function. PLoS Genet. 2020, 16, e1009192. [Google Scholar] [CrossRef]
- Eleftherianos, I.; Heryanto, C. Transcriptomic Insights into the Insect Immune Response to Nematode Infection. Genes 2021, 12, 202. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Z.; Luo, Q.; Zhou, L.; Du, X.; Ren, Y. Effects of Microbes on Insect Host Physiology and Behavior Mediated by the Host Immune System. Insects 2025, 16, 82. [Google Scholar] [CrossRef]
- Lalitha, K.; Karthi, S.; Vengateswari, G.; Karthikraja, R.; Perumal, P.; Shivakumar, M.S. Effect of Entomopathogenic Nematode of Heterorhabditis Indica Infection on Immune and Antioxidant System in Lepidopteran Pest Spodoptera Litura (Lepidoptera: Noctuidae. J. Parasit. Dis. 2018, 42, 204–211. [Google Scholar] [CrossRef]
- Fu, J.; Zong, X.; Jin, M.; Min, J.; Wang, F.; Wang, Y. Mechanisms and Regulation of Defensins in Host Defense. Signal Transduct. Target. Ther. 2023, 8, 300. [Google Scholar] [CrossRef]
- Agarwal, S.; Chauhan, A.; Singh, K.; Kumar, K.; Kaur, R.; Masih, M.; Gautam, P.K. Immunomodulatory Effects of β-Defensin 2 on Macrophages Induced Immuno-Upregulation and Their Antitumor Function in Breast Cancer. BMC Immunol. 2022, 23, 53. [Google Scholar] [CrossRef]
- Dolezal, T.; Krejcova, G.; Bajgar, A.; Nedbalova, P.; Strasser, P. Molecular Regulations of Metabolism during Immune Response in Insects. Insect Biochem. Mol. Biol. 2019, 109, 31–42. [Google Scholar] [CrossRef]
- Padmanabha, D.; Baker, K.D. Drosophila Gains Traction as a Repurposed Tool to Investigate Metabolism. Trends Endocrinol. Metab. 2014, 25, 518–527. [Google Scholar] [CrossRef]
- Wenger, R.H.; Stiehl, D.P.; Camenisch, G. Integration of Oxygen Signaling at the Consensus HRE. Sci. STKE 2005, 2005, re12. [Google Scholar] [CrossRef]
- Palsson-McDermott, E.M.; O’Neill, L.A.J. The Warburg Effect Then and Now: From Cancer to Inflammatory Diseases. BioEssays 2013, 35, 965–973. [Google Scholar] [CrossRef]
- Kochetov, G.A.; Solovjeva, O.N. Structure and Functioning Mechanism of Transketolase. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2014, 1844, 1608–1618. [Google Scholar] [CrossRef]
- Rashida, Z.; Laxman, S. The Pentose Phosphate Pathway and Organization of Metabolic Networks Enabling Growth Programs. Curr. Opin. Syst. Biol. 2021, 28, 100390. [Google Scholar] [CrossRef]
- Chen, G.-C.; Lee, J.Y.; Tang, H.-W.; Debnath, J.; Thomas, S.M.; Settleman, J. Genetic Interactions between Drosophila Melanogaster Atg1 and Paxillin Reveal a Role for Paxillin in Autophagosome Formation. Autophagy 2008, 4, 37–45. [Google Scholar] [CrossRef]
- Chen, G.-C.; Turano, B.; Ruest, P.J.; Hagel, M.; Settleman, J.; Thomas, S.M. Regulation of Rho and Rac Signaling to the Actin Cytoskeleton by Paxillin During Drosophila Development. Mol. Cell. Biol. 2005, 25, 979–987. [Google Scholar] [CrossRef]
- Davis, C.A.; Riddell, D.C.; Higgins, M.J.; Holden, J.J.A.; White, B.N. A Gene Family in Drosophila Melanogaster Coding for Trypsin-like Enzymes. Nucleic Acids Res. 1985, 13, 6605–6619. [Google Scholar] [CrossRef]
- Blanke, S.; Jäckle, H. Novel Guanine Nucleotide Exchange Factor GEFmeso of Drosophila Melanogaster Interacts with Ral and Rho GTPase Cdc42. FASEB J. 2006, 20, 683–691. [Google Scholar] [CrossRef]
- Lee, J.; Bandyopadhyay, J.; Lee, J.I.; Cho, I.; Park, D.; Cho, J.H. A Role for Peroxidasin PXN-1 in Aspects of C. Elegans Dev. Mol. Cells 2015, 38, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.; O’Halloran, D.; Hawdon, J.; Eleftherianos, I. The Nematode Parasite Steinernema hermaphroditum Is Pathogenic to Drosophila melanogaster Larvae without Activating Their Immune Response. microPublication Biol. 2023, 2023. [Google Scholar] [CrossRef]
- Mollah, M.M.I.; Yeasmin, F.; Kim, Y. Benzylideneacetone and Other Phenylethylamide Bacterial Metabolites Induce Apoptosis to Kill Insects. J. Asia-Pac. Entomol. 2020, 23, 449–457. [Google Scholar] [CrossRef]
- Shang, Y.; Smith, S.; Hu, X. Role of Notch Signaling in Regulating Innate Immunity and Inflammation in Health and Disease. Protein Cell 2016, 7, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.C.; Gonçales, R.A.; Zambuzi, F.A.; Frantz, F.G. Notch Signaling Pathway in Infectious Diseases: Role in the Regulation of Immune Response. Inflamm. Res. 2021, 70, 261–274. [Google Scholar] [CrossRef]
- Kuan, S.F.; Rust, K.; Crouch, E. Interactions of Surfactant Protein D with Bacterial Lipopolysaccharides. Surfactant Protein D Is an Escherichia Coli-Binding Protein in Bronchoalveolar Lavage. J. Clin. Investig. 1992, 90, 97–106. [Google Scholar] [CrossRef]
- Mason, R.J.; Greene, K.; Voelker, D.R. Surfactant Protein A and Surfactant Protein D in Health and Disease. Am. J. Physiol.—Lung Cell. Mol. Physiol. 1998, 275, L1–L13. [Google Scholar] [CrossRef]
- Wool, I.G.; Chan, Y.-L.; Glück, A. Structure and Evolution of Mammalian Ribosomal Proteins. Biochem. Cell Biol. 1995, 73, 933–947. [Google Scholar] [CrossRef]
- Ballinger, M.J.; Perlman, S.J. Generality of Toxins in Defensive Symbiosis: Ribosome-Inactivating Proteins and Defense against Parasitic Wasps in Drosophila. PLoS Pathog. 2017, 13, 1006431. [Google Scholar] [CrossRef]
- Tan, W.; Sun, L.; Zhang, D.; Sun, J.; Qian, J.; Hu, X.; Wang, W.; Sun, Y.; Ma, L.; Zhu, C. Cloning and Overexpression of Ribosomal Protein L39 Gene from Deltamethrin-Resistant Culex Pipiens Pallens. Exp. Parasitol. 2007, 115, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Ghulam, M.M.; Catala, M.; Abou Elela, S. Differential Expression of Duplicated Ribosomal Protein Genes Modifies Ribosome Composition in Response to Stress. Nucleic Acids Res. 2020, 48, 1954–1968. [Google Scholar] [CrossRef]
- Long, S.; Cao, W.; Qiu, Y.; Deng, R.; Liu, J.; Zhang, L.; Dong, R.; Liu, F.; Li, S.; Zhao, H.; et al. The Appearance of Cytoplasmic Cytochrome C Precedes Apoptosis during Drosophila Salivary Gland Degradation. Insect Sci. 2024, 31, 157–172. [Google Scholar] [CrossRef]
- Liu, K.; Shu, D.; Song, N.; Gai, Z.; Yuan, Y.; Li, J.; Li, M.; Guo, S.; Peng, J.; Hong, H. The Role of Cytochrome c on Apoptosis Induced by Anagrapha Falcifera Multiple Nuclear Polyhedrosis Virus in Insect Spodoptera Litura Cells. PLoS ONE 2012, 7, e40877. [Google Scholar] [CrossRef]
- Bergin, D.; Reeves, E.P.; Renwick, J.; Wientjes, F.B.; Kavanagh, K. Superoxide Production in Galleria Mellonella Hemocytes: Identification of Proteins Homologous to the NADPH Oxidase Complex of Human Neutrophils. Infect. Immun. 2005, 73, 4161–4170. [Google Scholar] [CrossRef]
- Cho, S.; Kim, Y. Hemocyte Apoptosis Induced by Entomopathogenic Bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia-Pac. Entomol. 2004, 7, 195–200. [Google Scholar] [CrossRef]
- Nagata, S. Apoptosis and Clearance of Apoptotic Cells. Annu. Rev. Immunol. 2018, 36, 489–517. [Google Scholar] [CrossRef]
- Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed Cell Death as a Defence against Infection. Nat. Rev. Immunol. 2017, 17, 151–164. [Google Scholar] [CrossRef]
- Peterson, L.W.; Brodsky, I.E. To Catch a Thief: Regulated RIPK1 Post-Translational Modifications as a Fail-Safe System to Detect and Overcome Pathogen Subversion of Immune Signaling. Curr. Opin. Microbiol. 2020, 54, 111–118. [Google Scholar] [CrossRef]
- González-Arzola, K.; Velázquez-Cruz, A.; Guerra-Castellano, A.; Casado-Combreras, M.Á.; Pérez-Mejías, G.; Díaz-Quintana, A.; Díaz-Moreno, I.; De La Rosa, M.Á. New Moonlighting Functions of Mitochondrial Cytochrome c in the Cytoplasm and Nucleus. FEBS Lett. 2019, 593, 3101–3119. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.; Marcotte, E.M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Bulet, P.; Stocklin, R. Insect Antimicrobial Peptides: Structures, Properties and Gene Regulation. Protein Pept. Lett. 2005, 12, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P. Post-Transcriptional Control of Cytokine Production. Nat. Immunol. 2008, 9, 353–359. [Google Scholar] [CrossRef]
- Mohr, I.; Sonenberg, N. Host Translation at the Nexus of Infection and Immunity. Cell Host Microbe 2012, 12, 470–483. [Google Scholar] [CrossRef]
- Urbanová, V.; Lu, S.; Kalinová, E.; Martins, L.; Kozelková, T.; Dyčka, F.; Ribeiro, J.M.; Hajdušek, O.; Perner, J.; Kopáček, P. From the Fat Body to the Hemolymph: Profiling Tick Immune and Storage Proteins through Transcriptomics and Proteomics. Insect Biochem. Mol. Biol. 2024, 165, 104072. [Google Scholar] [CrossRef]
- Liu, H.; Jian, Y.; Zeng, C.; Zhao, Y. RNA-Protein Interaction Prediction Using Network-Guided Deep Learning. Commun. Biol. 2025, 8, 247. [Google Scholar] [CrossRef]
- Liu, S.; Li, B.; Liang, Q.; Liu, A.; Qu, L.; Yang, J. Classification and Function of RNA-Protein Interactions. Wiley Interdiscip. Rev. RNA 2020, 11, e1601. [Google Scholar] [CrossRef]
- McFadden, M.J.; McIntyre, A.B.R.; Mourelatos, H.; Abell, N.S.; Gokhale, N.S.; Ipas, H.; Xhemalçe, B.; Mason, C.E.; Horner, S.M. Post-Transcriptional Regulation of Antiviral Gene Expression by N6-Methyladenosine. Cell Rep. 2021, 34, 108798. [Google Scholar] [CrossRef]
- Qin, F.; Cai, B.; Zhao, J.; Zhang, L.; Zheng, Y.; Liu, B.; Gao, C. Methyltransferase-Like Protein 14 Attenuates Mitochondrial Antiviral Signaling Protein Expression to Negatively Regulate Antiviral Immunity via N6-methyladenosine Modification. Adv. Sci. 2021, 8, 2100606. [Google Scholar] [CrossRef]
- Ramanathan, M.; Porter, D.F.; Khavari, P.A. Methods to Study RNA–Protein Interactions. Nat. Methods 2019, 16, 225–234. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Meng, F.; Song, S.; Xie, B.; Jia, S.; Xiu, D.; Li, X. Multi-Omics Analysis of Curculio dieckmanni (Coleoptera: Curculionidae) Larvae Reveals Host Responses to Steinernema carpocapsae Infection. Insects 2025, 16, 503. https://doi.org/10.3390/insects16050503
Wang B, Meng F, Song S, Xie B, Jia S, Xiu D, Li X. Multi-Omics Analysis of Curculio dieckmanni (Coleoptera: Curculionidae) Larvae Reveals Host Responses to Steinernema carpocapsae Infection. Insects. 2025; 16(5):503. https://doi.org/10.3390/insects16050503
Chicago/Turabian StyleWang, Bin, Fanyu Meng, Shiqi Song, Bin Xie, Shuxia Jia, Dongying Xiu, and Xingpeng Li. 2025. "Multi-Omics Analysis of Curculio dieckmanni (Coleoptera: Curculionidae) Larvae Reveals Host Responses to Steinernema carpocapsae Infection" Insects 16, no. 5: 503. https://doi.org/10.3390/insects16050503
APA StyleWang, B., Meng, F., Song, S., Xie, B., Jia, S., Xiu, D., & Li, X. (2025). Multi-Omics Analysis of Curculio dieckmanni (Coleoptera: Curculionidae) Larvae Reveals Host Responses to Steinernema carpocapsae Infection. Insects, 16(5), 503. https://doi.org/10.3390/insects16050503