Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Vibrio scophthalmi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2506 KiB  
Article
Development of Multiple Real-Time Fluorescent Quantitative PCR for Vibrio Pathogen Detection in Aquaculture
by Binzhe Zhang, Yulie Qiu, Chenxi Shi and Jian Zhang
Vet. Sci. 2025, 12(4), 327; https://doi.org/10.3390/vetsci12040327 - 2 Apr 2025
Cited by 1 | Viewed by 1147
Abstract
The Vibrio genus represents a critical group of bacterial pathogens in the marine environment globally, leading to massive mortality in the aquaculture industry. Diagnosing vibriosis, an infection caused by Vibrio species, in clinical samples poses challenges due to its non-specific clinical manifestations. In [...] Read more.
The Vibrio genus represents a critical group of bacterial pathogens in the marine environment globally, leading to massive mortality in the aquaculture industry. Diagnosing vibriosis, an infection caused by Vibrio species, in clinical samples poses challenges due to its non-specific clinical manifestations. In this study, we developed a TaqMan probe-based multiplex real-time PCR method for the simultaneous detection and quantification of four Vibrio pathogens: Vibrio anguillarum (Va), Vibrio alginolyticus (Val), Vibrio harveyi (Vh), and Vibrio scophthalmi (Vsc). The assay targets conserved intra-species regions and specific inter-species regions using specific primers and TaqMan probes to ensure specificity. Sensitivity analysis demonstrated that the multiplex real-time PCR assay could simultaneously detect the four different bacteria, with detection limits of 26–60 copies per reaction, making it 100 times more sensitive than conventional PCR assays. Additionally, the assay exhibited high reproducibility, with intra- and inter-group coefficients of variation below 1.4%. A total of 63 clinical samples was analyzed using this established assay, which successfully detected both single and mixed infections. These results demonstrate that the multiplex quantitative PCR assay is a rapid, specific, and sensitive diagnostic tool for the detection of Va, Val, Vh, and Vsc, making it suitable for monitoring these bacteria in both single- and co-infected clinical samples. Full article
Show Figures

Figure 1

16 pages, 5561 KiB  
Article
Metagenomic and Metabolomic Analyses Reveal the Role of Gut Microbiome-Associated Metabolites in the Muscle Elasticity of the Large Yellow Croaker (Larimichthys crocea)
by Zhenheng Cheng, Hao Huang, Guangde Qiao, Yabing Wang, Xiaoshan Wang, Yanfeng Yue, Quanxin Gao and Shiming Peng
Animals 2024, 14(18), 2690; https://doi.org/10.3390/ani14182690 - 16 Sep 2024
Viewed by 1521
Abstract
The large yellow croaker (LYC, Larimichthys crocea) is highly regarded for its delicious taste and unique flavor. The gut microbiota has the ability to affect the host muscle performance and elasticity by regulating nutrient metabolism. The purpose of this study is to [...] Read more.
The large yellow croaker (LYC, Larimichthys crocea) is highly regarded for its delicious taste and unique flavor. The gut microbiota has the ability to affect the host muscle performance and elasticity by regulating nutrient metabolism. The purpose of this study is to establish the relationship between muscle quality and intestinal flora in order to provide reference for the improvement of the muscle elasticity of LYC. In this study, the intestinal contents of high muscle elasticity males (IEHM), females (IEHF), and low muscle elasticity males (IELM) and females (IELF) were collected and subjected to metagenomic and metabolomic analyses. Metagenomic sequencing results showed that the intestinal flora structures of LYCs with different muscle elasticities were significantly different. The abundance of Streptophyta in the IELM (24.63%) and IELF (29.68%) groups was significantly higher than that in the IEHM and IEHF groups. The abundance of Vibrio scophthalmi (66.66%) in the IEHF group was the highest. Based on metabolomic analysis by liquid chromatograph-mass spectrometry, 107 differentially abundant metabolites were identified between the IEHM and IELM groups, and 100 differentially abundant metabolites were identified between the IEHF and IELF groups. Based on these metabolites, a large number of enriched metabolic pathways related to muscle elasticity were identified. Significant differences in the intestinal metabolism between groups with different muscle elasticities were identified. Moreover, the model of the relationship between the intestinal flora and metabolites was constructed, and the molecular mechanism of intestinal flora regulation of the nutrient metabolism was further revealed. The results help to understand the molecular mechanism of different muscle elasticities of LYC and provide an important reference for the study of the mechanism of the effects of LYC intestinal symbiotic bacteria on muscle development, and the development and application of probiotics in LYC. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 15827 KiB  
Article
Genome-Wide Identification and Involvement in Response to Biotic and Abiotic Stresses of lncRNAs in Turbot (Scophthalmus maximus)
by Weiwei Zheng, Yadong Chen, Yaning Wang, Songlin Chen and Xi-wen Xu
Int. J. Mol. Sci. 2023, 24(21), 15870; https://doi.org/10.3390/ijms242115870 - 1 Nov 2023
Cited by 3 | Viewed by 1654
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in a variety of biological processes, including stress response. However, the number, characteristics and stress-related expression of lncRNAs in turbot are still largely unknown. In this study, a total of 12,999 lncRNAs were identified at the [...] Read more.
Long non-coding RNAs (lncRNAs) play crucial roles in a variety of biological processes, including stress response. However, the number, characteristics and stress-related expression of lncRNAs in turbot are still largely unknown. In this study, a total of 12,999 lncRNAs were identified at the genome-wide level of turbot for the first time using 24 RNA-seq datasets. Sequence characteristic analyses of transcripts showed that lncRNA transcripts were shorter in average length, lower in average GC content and in average expression level as compared to the coding genes. Expression pattern analyses of lncRNAs in 12 distinct tissues showed that lncRNAs, especially lincRNA, exhibited stronger tissue-specific expression than coding genes. Moreover, 612, 1351, 1060, 875, 420 and 1689 differentially expressed (DE) lncRNAs under Vibrio anguillarum, Enteromyxum scophthalmi, and Megalocytivirus infection and heat, oxygen, and salinity stress conditions were identified, respectively. Among them, 151 and 62 lncRNAs showed differential expression under various abiotic and biotic stresses, respectively, and 11 lncRNAs differentially expressed under both abiotic and biotic stresses were selected as comprehensive stress-responsive lncRNA candidates. Furthermore, expression pattern analysis and qPCR validation both verified the comprehensive stress-responsive functions of these 11 lncRNAs. In addition, 497 significantly co-expressed target genes (correlation coefficient (R) > 0.7 and q-value < 0.05) for these 11 comprehensive stress-responsive lncRNA candidates were identified. Finally, GO and KEGG enrichment analyses indicated that these target genes were enriched mainly in molecular function, such as cytokine activity and active transmembrane transporter activity, in biological processes, such as response to stimulus and immune response, and in pathways, such as protein families: signaling and cellular processes, transporters and metabolism. These findings not only provide valuable reference resources for further research on the molecular basis and function of lncRNAs in turbot but also help to accelerate the progress of molecularly selective breeding of stress-resistant turbot strains or varieties. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 809 KiB  
Article
Isolation and Identification of Pathogenic Vibrio Species in Black Rockfish Sebastes schlegeli
by Xiaoling Liu, Cuirong You and Yong Zeng
Fishes 2023, 8(5), 235; https://doi.org/10.3390/fishes8050235 - 29 Apr 2023
Cited by 2 | Viewed by 3027
Abstract
Four pathogenic Vibrio species were isolated from three diseased black rockfish Sebastes schlegeli in Yantai, Shandong Province, China. The strains were identified based on physiological and biochemical characteristics and 16S rDNA sequencing and named SF-2, SF-3, SF-5, and SF-6, respectively. SF-2 was Vibrio [...] Read more.
Four pathogenic Vibrio species were isolated from three diseased black rockfish Sebastes schlegeli in Yantai, Shandong Province, China. The strains were identified based on physiological and biochemical characteristics and 16S rDNA sequencing and named SF-2, SF-3, SF-5, and SF-6, respectively. SF-2 was Vibrio scophthalmi, SF-3 was V. harveyi, SF-5 was V. alginolyticus, and SF-6 was V. parahaemolyticus. This is the first time that V. scophthalmi was isolated from black rockfish. The present research shows that V. scophthalmi is a potential pathogen. Detection of virulence genes using polymerase chain reaction showed that SF-3, SF-5, and SF-6 carried FlaB; SF-5 and SF-6 carried TcpA; and SF-2, SF-5, and SF-6 carried ToxS. Tdh, Trh, Tlh, ToxR, and Zot were not detected. SF-3, SF-5, and SF-6 all had protease, gelatinase, lipase, and lecithinase. They were all intermediately sensitive to erythromycin, whereas SF-2, SF-5, and SF-6 were sensitive to spectinomycin, and SF-3 was sensitive to cotrimoxazole and chloramphenicol. They were resistant to most antibiotics and multidrug resistance was obvious. Full article
(This article belongs to the Special Issue Diseases in Fish and Shellfish, 2nd Edition)
Show Figures

Figure 1

19 pages, 9495 KiB  
Article
Genome-Wide Identification, Molecular Characterization, and Involvement in Response to Abiotic and Biotic Stresses of the HSP70 Gene Family in Turbot (Scophthalmus maximus)
by Weiwei Zheng, Xiwen Xu, Yadong Chen, Jing Wang, Tingting Zhang, Zechen E, Songlin Chen and Yingjie Liu
Int. J. Mol. Sci. 2023, 24(7), 6025; https://doi.org/10.3390/ijms24076025 - 23 Mar 2023
Cited by 9 | Viewed by 2730
Abstract
Heat shock proteins 70 (HSP70s) are known to play essential roles in organisms’ response mechanisms to various environmental stresses. However, no systematic identification and functional analysis has been conducted for HSP70s in the turbot (Scophthalmus maximus), a commercially important worldwide flatfish. [...] Read more.
Heat shock proteins 70 (HSP70s) are known to play essential roles in organisms’ response mechanisms to various environmental stresses. However, no systematic identification and functional analysis has been conducted for HSP70s in the turbot (Scophthalmus maximus), a commercially important worldwide flatfish. Herein, 16 HSP70 genes unevenly distributed on nine chromosomes were identified in the turbot at the genome-wide level. Analyses of gene structure, motif composition, and phylogenetic relationships provided valuable data on the HSP70s regarding their evolution, classification, and functional diversity. Expression profiles of the HSP70 genes under five different stresses were investigated by examining multiple RNA-seq datasets. Results showed that 10, 6, 8, 10, and 9 HSP70 genes showed significantly up- or downregulated expression after heat-induced, salinity-induced, and Enteromyxum scophthalmi, Vibrio anguillarum, and Megalocytivirus infection-induced stress, respectively. Among them, hsp70 (hspa1a), hspa1b, and hspa5 showed significant responses to each kind of induced stress, and qPCR analyses further validated their involvement in comprehensive anti-stress, indicating their involvement in organisms’ anti-stress mechanisms. These findings not only provide new insights into the biological function of HSP70s in turbot adapting to various environmental stresses, but also contribute to the development of molecular-based selective breeding programs for the production of stress-resistant turbot strains in the aquaculture industry. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop