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Abstract: Four pathogenic Vibrio species were isolated from three diseased black rockfish Sebastes
schlegeli in Yantai, Shandong Province, China. The strains were identified based on physiological
and biochemical characteristics and 16S rDNA sequencing and named SF-2, SF-3, SF-5, and SF-6,
respectively. SF-2 was Vibrio scophthalmi, SF-3 was V. harveyi, SF-5 was V. alginolyticus, and SF-6 was
V. parahaemolyticus. This is the first time that V. scophthalmi was isolated from black rockfish. The
present research shows that V. scophthalmi is a potential pathogen. Detection of virulence genes using
polymerase chain reaction showed that SF-3, SF-5, and SF-6 carried FlaB; SF-5 and SF-6 carried TcpA;
and SF-2, SF-5, and SF-6 carried ToxS. Tdh, Trh, Tlh, ToxR, and Zot were not detected. SF-3, SF-5, and
SF-6 all had protease, gelatinase, lipase, and lecithinase. They were all intermediately sensitive to
erythromycin, whereas SF-2, SF-5, and SF-6 were sensitive to spectinomycin, and SF-3 was sensitive to
cotrimoxazole and chloramphenicol. They were resistant to most antibiotics and multidrug resistance
was obvious.

Keywords: Sebastes schlegeli; virulence factors; Vibrio scophthalmi; opportunistic pathogen

Key Contribution: This is the first time that V. scophthalmi was isolated from S. schlegeli. Multiple
pathogenic bacteria were found in fish disease.

1. Introduction

The black rockfish Sebastes schlegeli has become an important marine aquaculture
species along the northeastern coasts of China, Japan, and South Korea [1]. Daqindao,
Changdao City, Shandong Province is the largest sea-cage fish culture area in northern
China [2]. In recent years, offshore marine fishery resources have gradually become scarce,
and the output of wild black rockfish is unable to meet consumer demand. Now, a large
proportion of black rockfish sold in the market is cultured in cages and has become one of
the most important types of fish in sea-cage culture in China.

Owing to the high density of cages and high density of cultured fish, caged fish are
prone to diseases. Nutritional levels, physiological stages, drugs, and environmental stress
can alter their intestinal flora composition to varying degrees [3]. The health status of black
rockfish is susceptible to these external factors.

Parasites and bacteria are the main pathogens isolated from black rockfish [4,5]. The
parasites in black rockfish include Microcotyle sebastis, Heteraxine spp., Opecoelusnipponicus,
and parasites from the Anisakidae family. Common pathogenic bacteria include Vibrio,
Lactococcus garvieae, β-hemolytic Streptococcus, and Aeromonas salmonicida(A. salmonicida).
The Vibrio core group consists of eight species including V. harveyi, V. alginolyticus, V. rotifer,
V. parahaemolyticus, V. campbell, V. natrigens, V. mytili, and V. azureus [6]. These are recognized
aquatic animal pathogens. Intensive farming is associated with problems such as bacterial
diseases caused by various Vibrio spp. [7]. After being infected by Vibrio spp., black rockfish
mainly exhibit symptoms such as a black body color, red and swollen epidermis, irregular
swimming, poor feeding, and muscle rot in severe cases [8].
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In the study, black rockfish were found to have died from a disease at a cage farm
in Yantai, Shandong Province, China. Different pathogenic Vibrio spp. were isolated. In
this study, the determination of bacterial morphology, identification of physiological and
biochemical characteristics, 16S rDNA sequence amplification and sequencing analysis,
identification of the virulence gene and virulence-related factors, and tests for antibiotic
resistance were performed.

2. Materials and Methods
2.1. Fish and Clinical Signs

Diseased black rockfish were obtained from a farm in Yantai City, Shandong Province,
China in September 2020. The mortality rate for diseased black rockfish was 30–40%.
Three sick fish were randomly selected for the experiment. The diseased fish had skin
ulcers and their eyes and mouth were congested. An autopsy revealed fluid accumulation
in the abdominal cavity and liver congestion.

2.2. Isolation and Purification of Pathogenic Strains

Under aseptic operation, the liver tissues of three fish were smeared on the corre-
sponding Thiosulfate–Citrate–Bile Salts–Sucrose (TCBS) medium with am inoculation
ring and cultured at 28 ◦C. Colony morphology was observed after incubation for 24 h.
Four dominant bacterial colonies were isolated and purified by repeated streaking on their
corresponding agar plates and named SF-2, SF-3, SF-5, and SF-6.

2.3. Identification of Strains
2.3.1. Biochemical Characteristics

The purified strains were obtained for biochemical identification. Single colonies of
different purified bacteria were inoculated into bacterial trace biochemical reaction tubes
and cultured at 37 ◦C for between 24–48 h. The change in the reaction tube was observed
after culturing.

2.3.2. 16S rDNA Amplification of the Isolated Strains

Purified bacteria isolated from each sample were identified using 16S rDNA gene se-
quencing and alignment. The forward primer (27F) was 5′-AGAGTTTGATCCTGGCTCAG-
3′, and the reverse primer (1492R) was 5′-GGCTACCTTGTTACGACTT-3′. The poly-
merase chain reaction (PCR) mixture consisted of 5 µL of PCR buffer (10×), 3 µL of MgCl2
(25 mmol/L), 1.25 µL of dNTP (10 mmol/L), 1 µL of Taq enzyme (5 U/µL), 1 µL of DNA
template, and 5 µL of each primer. Sterile nanopure water was added to bring the final
reaction volume to 50 µL. PCR was performed as follows: pre-denaturation at 94 ◦C for
5 min, denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s, extension at 72 ◦C for
1.5 min for a total of 35 cycles, followed by a final extension step at 72 ◦C for 10 min.

PCR products were electrophoresed in 1.0% agarose gel. The 16S rDNA purification
and sequencing of the strain were entrusted to General Biosystems (Anhui). The 16S
rDNA was analyzed and compared using the BLAST search program (http://www.ncbi.
nlm.nih.gov, accessed on 25 November 2021) of GenBank. The evolutionary tree was
constructed using Mega 7. Using the Neighbor Joining method, it is a bootstrap analysis
with 1000 repeats.

2.4. Determination of Virulence-Related Factors
2.4.1. Determination of Extracellular Enzyme Activity

Extracellular proteinases play an important role in the virulence of Vibrio spp. [9]. The
determination of extracellular proteinases detection was according to the method reported
by Bunpa et al. [10]. Extracellular enzymes were used in the agar plate assay. Four purified
strains were inoculated on the corresponding detection plate and cultured at 28 ◦C for 24 h,
and the changes around the colony were observed.

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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2.4.2. Detection of Virulence Genes

The virulence genes of four different isolates were amplified. Eight main virulence
genes, including thermostable direct hemolysin (Tdh), Tdh-related hemolysin (Trh), thermo-
labile hemolysin (Tlh), flagella-related genes toxin-coregulated pilus major subunit A (TcpA),
and flagellin B subunit (FlaB) and the virulence regulatory proteins ToxS, ToxR, and zonula
occludens toxin (Zot), were targeted. The primers for these genes are listed in Table 1. The
PCR mixture consisted of 1 µL of PCR buffer (10×), 0.6 µL of MgCl2 (25 mmol/L), 0.25 µL
of dNTP (10 mmol/L), 0.2 µL of Taq enzyme (5 U/µL), 1 µL of DNA template, and 0.5 µL
of each primer. Sterile nanopure water was added to make up the final reaction volume to
10 µL. PCR was performed as follows: pre-denaturation at 94 ◦C for 5 min, denaturation
at 94 ◦C for 1 min, annealing for 30 s, extension at 72 ◦C for 1 min for a total of 30 cycles,
followed by a final extension step at 72 ◦C for 7 min. PCR products were identified using
1.0% agarose gel electrophoresis. The annealing temperatures are shown in Table 1.

Table 1. Primer sequences for the detection of virulence genes in Vibrio spp.

virulence Gene Primer Sequence Primer
Sequence (bp)

Product
Size (◦C) Reference

Tdh GTAAAGGTCTCTGACTTTTGGAC
TGGAATAGAACCTTCATCTTCACC 269 60 [11]

Trh TTGGCTTCGATATTTTCAGTATCT
CATAACAAACATATGCCCATTTCCG 500 60 [11]

Tlh GCTACTTTCTAGCATTTTCTCTGC
AAAGCGGATTATGCAGAAGCACTG 450 60 [11]

Zot CACTGGGCGAGAAAGGAC
CGCCCATAGACCACGATA 737 58 [12]

TcpA ACCGTGGTCTAGGTAATT
CAACGCCGAATGGAGCAG 431 58 [12]

ToxS CCACTGGCGGACAAAATAACC
AACAGTACCGTAGAACCGTGA 640 52 [12]

ToxR GTCTTCTGACGCAATCGTTG
ATACGAGTGGTTGCTTCATG 368 52 [11]

FlaB AACGTATCAGCGATGACC
TTGAAACGGTTCTGGAAT 928 50 [12]

2.5. Antibiotic Resistance Tests

The strains were tested for antibiotic resistance using the disc diffusion method. The
antibiotics used in this experiment mainly included gentamicin, cotrimoxazole, ampicillin,
penicillin G, erythromycin, norfloxacin, chloramphenicol, amikacin, ciprofloxacin, pioneer
V, spectinomycin, enrofloxacin, cefotaxime, levofloxacin, cefoxitin, rifampicin, doxycycline,
imipenem, clindamycin, metronidazole, amoxicillin, and bacitracin. The concentration of
the bacterial suspension was adjusted to 107 colony-forming units/mL and spread on the
surface of a 2216 E agar medium. Up to five sheets of antibiotic-containing paper disks were
pasted per plate. The diameters of the bacteriostatic circles of each drug were measured
after 24 h of culture at 28 ◦C. The test was performed three times, and the average value
was calculated to determine the sensitivity of the strains to antibiotics.

3. Results
3.1. Isolation and Biochemical Identification of Strains

Four different bacteria were isolated, and all four isolates were Gram-negative, short,
rod-shaped bacteria. All isolates could grow on TCBS medium, forming yellow, round
colonies with neat edges. The growth cycle of SF-2 was longer than that of other bacteria,
and the colony morphology gradually emerged after 18 h of culture. SF-6 colonies were
cultured on TCBS medium, and the colonies were bluish green after about 14 h of culturing.
The physiological and biochemical results are shown in Table 2.
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Table 2. Physiological and biochemical findings.

Physiological
Identification SF-2 SF-3 SF-5 SF-6

Gram stain − − − −
Oxidase enzyme + + + +

Methyl red + + − −
VP + − + −
H2S − + − −

Citrate − + − +
Glucose gas production − − − −
Salt-free tryptone water − − − −

6% tryptone water − + + +
8% tryptone water − − + +

10% tryptone water − − + +
“+” positive; “−” negative.

3.2. 16S rDNA Amplification of the Isolated Strains

A 1448-bp fragment from all four isolates was identified using 16S rDNA PCR. Se-
quences of the isolated strains were compared using the blast search function of NCBI, and
the results showed that all four isolates belonged to the Vibrio genus. Electrophoresis results
of the isolated bacteria and the phylogenetic trees constructed with 16S rDNA sequences
are shown in Figures 1 and 2, respectively.
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relationship between isolates. The numbers at the nodes indicate the levels of bootstrap based on
1000 replicates. Sequences from related species were obtained from the GenBank database, and their
accession numbers are indicated after the species name.
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Based on the phenotypic characteristics, biochemical characteristics, and 16S rDNA
analysis of the isolated strains, isolate SF-2 was determined to be V. scopthalmi; SF-3 was
determined to be V. harveyi; SF-5 was determined to be V. alginolyticus; and SF-6 was
determined to be V. parahaemolyticus.

3.3. Determination of Extracellular Enzyme Activity

Four extracellular enzymes were detected in this experiment, including caseinase,
gelatinase, lipase, and lecithinase. The activity of extracellular enzymes was detected in
SF-3, SF-5, and SF-6, whereas no extracellular enzyme activity was detected in SF-2. The
results are shown in Table 3.

Table 3. Extracellular enzyme activity.

Enzymes SF-2 SF-3 SF-5 SF-6

Caseinase − + + +
Lecithinase − + + +

Lipase − + + +
Gelatinase − + + +

“+” extracellular enzyme activity detected, “−” extracellular enzyme activity not detected.

3.4. Detection of Virulence Genes

The flagella-related gene FlaB was found in SF-3, SF-5, and SF-6; toxic force regulatory
protein ToxS was found in SF-2, SF-5, and SF-6; and the flagellum-related gene TcpA was
found in SF-5 and SF-6. Other virulence genes such as Tdh, Trh, Tlh, ToxR, and Zot were not
detected. The results are shown in Figure 3.
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Figure 3. PCR results for virulence genes. (a) Virulence gene Flab; (b) virulence gene ToxS; (c) virulence
gene TcpA. Lane 0, negative control; Lane 1: SF-2, Lane 2: SF-3, Lane 3: SF-5, Lane 4: SF-6, and DNA
bp ladder (100–2000 bp).

3.5. Antibiotic Resistance Tests

CLSI documents are the documents of the Clinical Microbiology Laboratory of the
United States research center and reflect the regulatory requirements of the United States.
It is different from the verification method of the domestic drug sensitivity test system. The
sensitivity was determined according to the criteria for inhibition zones of the disk-method
test provided by the Hangzhou Tianhe microbial reagent Company. All Vibrio spp. showed
multidrug resistance, with SF-2, SF-5, and SF-6 being sensitive to only one antibiotic. SF-3
was sensitive to only two of the 22 antibiotics tested; SF-5 was intermediately sensitive to
two antibiotics; SF-2 and SF-6 were intermediately sensitive to three antibiotics; and SF-3
was intermediately sensitive to five antibiotics. All four Vibrio spp. showed intermediate
sensitivity to erythromycin. Test results for antibiotic resistance are shown in Table 4.
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Table 4. Disk diffusion test results for the four Vibrio isolates from black rockfish.

Antibiotic SF-2 SF-3 SF-5 SF-6

Gentamicin R I I I
Cotrimoxazole R S R R

Ampicillin R R R R
Penicillin G R R R R

Erythromycin I I I I
Norfloxacin R I R R

Chloramphenicol R S R R
Amikacin R R R R

Ciprofloxacin R R R R
Pioneer V R R R R

Spectinomycin S R S S
Enrofloxacin I I R R
Cefotaxime I R R I

Levofloxacin R I R R
Cefoxitin R R R R

Rifampicin R R R R
Doxycycline R R R R
Imipenem R R R R

Clindamycin R R R R
Metronidazole R R R R

Amoxicillin R R R R
Bacitracin R R R R

“S” sensitive, “I” intermediate sensitivity, “R” resistant.

4. Discussion

In this study, we identified V. scophthalmi, V. harveyi, V. alginolyticus, and V. para-
haemolyticus. V. alginolyticus and V. parahaemolyticus were isolated from the same diseased
fish. Various bacteria have been isolated during similar disease outbreaks. Such co-
infections often cause more serious economic losses than single infections with either
pathogen [13]. V. anguillarum and V. scophthalmi can jointly cause ascites disease in turbot
larvae (Scophthalmus maximus) [14]. In addition, the presence of two pathogens was also
found in striped mullet Mugil cephalus that died of septicemia. A. hydrophila and V. para-
haemolyticus were isolated from diseased striped mullet [15]. Co-infection is one of the
reasons for the high mortality rate of striped mullet in summer. Erythematous dermatitis,
necrotizing dermatitis, and dermal ulcers in fish have also been caused by a combination
of pathogens, including Aeromonas spp., Alcaligenes spp., Pseudomonas spp., and Vibrio
spp. However, no genus was consistently dominant in cultures obtained from any of
the lesion types [16]. Co-infections by two or more pathogens often occur in fish culture.
Experimentally infected zebrafish showed significantly higher mortality after co-infection
with A. hydrophila and A. veronii [17]. Numerous pathogenic bacteria, including Enterovibrio
nigricans, Photobacterium swingsii, V. owensii, V. harveyi, and V. rotiferianus, have also been
isolated from diseased fish with hemorrhaging and festering fins and skin and swollen
internal organs [18]. The presence of multiple pathogenic bacteria in a single diseased fish
is common and more likely to cause outbreaks.

Both extracellular protease and virulence genes are virulence factors of Vibrio. The
pathogenicity of Vibrio depends on the presence of virulence factors. The potential pathogenic-
ity of Vibrio was determined by detecting its virulence factor [19]. Various extracellular
enzymes are important factors contributing to the virulence of Vibrio. Extracellular pro-
teases including caseinase, gelatinase, lipase, and lecithinase are common in bacteria and
play an important role in bacterial virulence [10]. Caseinase and gelatinase can decom-
pose the collagen protein component to facilitate the dissemination of the hemolytic toxin
throughout the body. The hemolysis factor causes blood cells to rupture, disabling oxy-
gen transport in the body and leading to tissue necrosis; death can occur in severe cases.
Lecithinase and lipase decompose host tissue elements, such as cell membranes, causing
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widespread tissue damage [20]. The presence of these extracellular enzymes can cause
host tissue damage, leading to disease. V. fluvialis secretes extracellular enzymes such
as protease and lipase. Extracellular toxins, including protease, are the main factors of
V. fluvialis responsible for pustule disease and death in abalone [21]. Vibrio spp. that are
pathogenic to black rockfish can produce extracellular enzymes and cause hemorrhage and
ascites [11]. Similar results were observed in our study; four extracellular enzymes were
detected in V. harveyi, V. alginolyticus, and V. parahaemolyticus, but not in V. scopthalmi. Thus,
Vibrio spp. secreting these extracellular enzymes are pathogenic to black rockfish.

The pathogenicity of Vibrio depends on several virulence factors encoded by their
virulence genes [22]. The presence of virulence genes also helps judge the pathogenicity
of Vibrio. Tdh is thermostable direct hemolysin, Trh is Tdh-related hemolysin, and Tlh is
thermolabile hemolysin [11]. V. parahaemolyticus has also been found to be pathogenic in
the absence of the Tdh and Tlh genes [23]. Thus, these two genes are not the only criteria
responsible for the pathogenicity of V. parahaemolyticus. Zot can affect the tight junction
structure or bond bridge between cells, thereby enhancing the permeability of the small
intestinal mucosa [12]. FlaB-encoding flagellin regulates the ability of bacteria to attach to
the surface and enables strong adhesion of Vibrio spp. Flagella are responsible for conferring
virulence in some Vibrio spp [24]. In V. cholerae, motile isolates have been reported to be more
virulent than the nonmotile mutants [25]. TcpA toxin co-regulates the pilus-encoded protein
to regulate the main subunits of toxin-coregulated pilus (TCP). TCP helps in microcolony
formation on the epithelial surface [26]. ToxR is a transmembrane regulatory protein that
plays a key role in the virulence expression system of V. cholerae. ToxR activity is dependent
on the inner membrane protein ToxS [27,28], and ToxS has been detected in pathogenic
V. alginolyticus and V. cholera [26]. The existence and expression of virulence genes can affect
the pathogenicity of bacteria to the host. Vibrio spp. with virulence genes are more likely
to cause disease in black rockfish. While identifying virulence genes, FlaB and TcpA were
detected in V. harveyi, V. alginolyticus, and V. parahaemolyticus, whereas ToxS was detected
in V. alginolyticus and V. parahaemolyticus. These three Vibrio spp. have been found as
pathogens in black rockfish and reported to contain several extracellular virulence factors
and virulence genes. Vibrio spp. that carry FlaB genes are more likely to attach to their hosts.
The excretion of extracellular products contributes to successful bacterial colonization and
host invasion. Therefore, it is concluded that they may have certain toxicity.

The current study is the first report of V. scophthalmi in black rockfish. V. scophthalmi has
earlier been reported to be one of the main bacterial species in the diseased olive flounder
Paralichthys olivaceus [29]. V. scophthalmi isolated in our study did not secrete extracellular
enzymes. There was evidence of the pathogenicity of V. scophthalmi without the secretion
of extracellular enzymes. High-virulence V. scophthalmi strains were found to produce
lipase and gelatinase but not caseinase and lecithinase. Some strains were found to produce
extracellular enzymes, similar to those observed in the case of high-virulence strains, but
caused fewer incidences of olive flounder death. Other moderately virulent strains did not
produce these enzymes but were still pathogenic to the olive flounder. Thus, they suggest
that some toxins in V. scophthalmi were not produced during experimental conditions, or
that these extracellular enzymes were not the only virulence factors [29,30]. V. scophthalmi
may also be considered an opportunistic disease-causing pathogen in aquatic animals.
Early studies have reported that V. scophthalmi was a common microorganism present in
the intestine of turbot larvae. However, it has recently been found that V. scophthalmi can
cause diseases in marine animals and is an opportunistic pathogen in olive flounder and
turbot larvae. Hosts that are immune-suppressed or stressed because of physiological or
environmental factors are more likely to be infected and suffer from severe disease. The
stress factors here include water temperature and invasion by pathogenic bacteria [30–33].
Studies suggest that the physiological mechanisms of V. scophthalmi may be complex.
Changes in the culture environment or invasion by other bacteria can affect the virulence
expression of V. scophthalmi. The main symptom of the Japanese eel Anguilla japonica
infected with V. scophthalmi was skin and peritoneal hemorrhage [34]. This is similar to the
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symptoms exhibited by black rockfish infected with V. scophthalmi and is likely because
the medium used for laboratory culture is rich in nutrients and quite different from the
natural growth environment of bacteria. The laboratory environment weakens bacterial
competitiveness and reduces their ability to secrete extracellular proteins. In our study,
although no extracellular enzymes were detected, the complex aquaculture environment
might be stressful to fish, allowing even a low pathogenic strain of V. scophthalmi to infect
and cause disease. At the same time, virulence regulatory proteins of ToxS were also
detected. V. alginolyticus and V. parahaemolyticus, which produce extracellular enzymes,
were also found to have ToxS genes. Thus, the V. scophthalmi isolated in our study may
have had potential toxicity. Experiments showed that all four Vibrio spp. carried certain
extracellular enzymes or virulence genes, which are the virulence factors of Vibrio. Virulence
factor is closely related to the incidence of vibrio [35]. Vibrio carrying flagella genes are more
likely to attach to the host tissue and break host cells and tissues by secreting extracellular
enzymes, followed by proliferation and invasion into the internal organ systems via blood
circulation. Vibrio spp. are a group of common bacteria that are natural constituents of
freshwater, estuarine, and marine environments [36]. The presence of a variety of Vibrio
spp. in the bodies of fish indicates the presence of numerous Vibrio spp. in the aquaculture
environment. The presence of multiple Vibrio strains is more likely to cause disease than
the presence of a single pathogenic strain [12,37].

The antibiotic resistance test revealed all four Vibrio strains to be multidrug resistant.
SF-2, SF-5, and SF-6 were sensitive to spectinomycin, whereas SF-3, SF-5, and SF-6 were
intermediately sensitive to gentamicin. All four species of Vibrio were intermediately
sensitive to erythromycin. The unreasonable use of antibiotics in aquaculture has led to the
emergence of antibiotic resistance in Vibrio spp. [38,39]. The multidrug-resistant phenotype
has been found in V. scophthalmi [40]. V. alginolyticus strains were found to have multiple
antimicrobial-resistance genes [41]. Additionally, bacteria were isolated from aurus and
Penaeus indicus collected from local markets in Hail region, Saudi Arabia. Drug sensitivity
tests showed that there was multidrug resistance [42]. The use and misuse of antimicrobials
can lead to a rapid increase in the frequency of bacterial resistance; antibiotic resistance
has become a major problem in veterinary and human medicine [43–45]. The emergence of
bacterial resistance in aquaculture has led to the reduced ability of drugs to control diseases
in aquatic animals [46]. Drug susceptibility is related to the region, temperature, salinity,
and culture conditions, as well as to the use of drugs in the farm. The extensive use of
antibiotics leads to residues in the environment. This, in turn, will lead to the selection
of resistant bacteria and promote the evolution of antibiotic resistance mechanisms, such
as reduced intracellular drug concentrations, alternative or protective targets, and direct
inactivation of antibiotics, eventually leading to multidrug resistance [47]. This poses a
huge challenge in disease prevention and control in the aquaculture industry.

In our study, none of the antibiotics were active against all four Vibrio spp. New
methods to treat diseases in fish need to be designed. The immune system of fish depends
on their nutrition and diet [48], and dietary changes can affect their functional responses.
For example, adding methylmercury to the black rockfish diet promotes an active diet,
whereas uptake of methylmercury chloride in black rockfish led to higher oxidative stress,
which was reflected by significantly increased plasma SOD activity at all tested levels [49].
Some experiments have found that dietary Chlorella peruviana could improve the growth
and innate immune response of the juvenile rainbow trout Oncorhynchus mykiss, which
is beneficial in improving production efficiency and resisting bacterial infections [50].
Vaccination is also a useful approach to preventing diseases and is considered one of the
most effective tools to combat bacterial and viral diseases, thereby enhancing the survival
of fish. Vaccines protect fish from certain diseases by producing antibodies that stimulate
their immune systems. Several vaccines including inactivated vaccines, live attenuated
vaccines, subunit vaccines, DNA vaccines, and live vector vaccines against Vibrio are
available [51–53]. Vaccination of fish against vibriosis is one of the most comprehensive
and successful developments in disease prevention in modern aquaculture [54]. The
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injection or immersion of olive flounder with inactivated V. anguillarum can stimulate the
response and production of the polymeric immunoglobulin receptor [55]. A A. salmonicida-
emulsified vaccine can protect turbot larvae without severe side effects on fish growth
under field conditions and can also protect fish from chronic infections, which, in turn,
reduces infection probability by other pathogens or parasites [56]. In addition to antibiotics,
better feed or vaccination are effective approaches to prevent and treat aquatic diseases.
These techniques not only improve the survival rate of fish but also protect the environment.
Therefore, healthy breeding methods should be implemented, and appropriate farming
methods should be sought during the breeding process to reduce disease occurrence.

5. Conclusions

By isolation on agar plates, several types of pathogenic Vibrio spp. were found in
black rockfish with skin ulcer disease. This is the first study that reports V. scophthalmi
in black rockfish. After investigating the presence of virulence genes and enzymes, a
pathogenic potential was determined in all four isolates. The existence of a variety of Vibrio
spp. will lead to cross-infection and increase the incidence of disease outbreaks. In the
drug sensitivity test, four Vibrio spp. exhibited multidrug resistance. This finding makes
the prevention and control of fish diseases face greater challenges, thereby urging us to
find novel methods to solve the problem.
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