Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Vero cell-derived influenza vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3358 KiB  
Article
Generation of a Porcine Cell Line Stably Expressing Pig TMPRSS2 for Efficient Isolation of Swine Influenza Virus
by Yuri L Tanaka, Maya Shofa, Erika P Butlertanaka, Ahmad Massoud Niazi, Takuya Hirai, Hirohisa Mekata and Akatsuki Saito
Pathogens 2024, 13(1), 18; https://doi.org/10.3390/pathogens13010018 - 24 Dec 2023
Cited by 1 | Viewed by 2616
Abstract
Pigs are important animals for meat production but can carry several zoonotic diseases, including the Japanese encephalitis virus, Nipah virus, and influenza viruses. Several Orthomyxoviridae and Coronavirinae respiratory viruses require cleavage of envelope proteins to acquire viral infectivity and consequently, need a host [...] Read more.
Pigs are important animals for meat production but can carry several zoonotic diseases, including the Japanese encephalitis virus, Nipah virus, and influenza viruses. Several Orthomyxoviridae and Coronavirinae respiratory viruses require cleavage of envelope proteins to acquire viral infectivity and consequently, need a host protease or the addition of exogenous trypsin for efficient propagation. Host TMPRSS2 is a key protease responsible for viral cleavage. Stable expression of human TMPRSS2 in African green monkey-derived Vero cells can enhance the porcine epidemic diarrhea virus. However, considering the narrow host tropism of viruses, a porcine cell line expressing pig TMPRSS2 could be optimal for replicating pig-derived viruses. Herein, we generated and evaluated a pig-derived PK-15 cell line stably expressing pig TMPRSS2. This cell line markedly (>1000-fold) and specifically enhanced the growth of influenza viruses. Furthermore, we demonstrated the usefulness of a PK-15 cell line lacking the Stat2 gene with a stable expression of pig TMPRSS2 for efficient virus isolation from clinical samples in the presence of type I interferons. Therefore, PK-15 cells expressing pig TMPRSS2 could be a valuable and promising tool for virus isolation, vaccine production, and virological studies of TMPRSS2-dependent viruses. Full article
(This article belongs to the Special Issue Veterinary Viral Infections and Host Immune Responses)
Show Figures

Figure 1

14 pages, 3199 KiB  
Article
Development and Evaluation of Vero Cell-Derived Master Donor Viruses for Influenza Pandemic Preparedness
by Po-Ling Chen, Tsai-Teng Tzeng, Alan Yung-Chih Hu, Lily Hui-Ching Wang and Min-Shi Lee
Vaccines 2020, 8(4), 626; https://doi.org/10.3390/vaccines8040626 - 25 Oct 2020
Cited by 7 | Viewed by 4250
Abstract
The embryonated egg-based platform currently produces the majority of seasonal influenza vaccines by employing a well-developed master donor virus (MDV, A/PR/8/34 (PR8)) to generate high-growth reassortants (HGRs) for A/H1N1 and A/H3N2 subtypes. Although the egg-based platform can supply enough seasonal influenza vaccines, it [...] Read more.
The embryonated egg-based platform currently produces the majority of seasonal influenza vaccines by employing a well-developed master donor virus (MDV, A/PR/8/34 (PR8)) to generate high-growth reassortants (HGRs) for A/H1N1 and A/H3N2 subtypes. Although the egg-based platform can supply enough seasonal influenza vaccines, it cannot meet surging demands during influenza pandemics. Therefore, multi-purpose platforms are desirable for pandemic preparedness. The Vero cell-based production platform is widely used for human vaccines and could be a potential multi-purpose platform for pandemic influenza vaccines. However, many wild-type and egg-derived influenza viruses cannot grow efficiently in Vero cells. Therefore, it is critical to develop Vero cell-derived high-growth MDVs for pandemic preparedness. In this study, we evaluated two in-house MDVs (Vero-15 and VB5) and two external MDVs (PR8 and PR8-HY) to generate Vero cell-derived HGRs for five avian influenza viruses (AIVs) with pandemic potentials (H5N1 clade 2.3.4, H5N1 clade 2.3.2.1, American-lineage H5N2, H7N9 first wave and H7N9 fifth wave). Overall, no single MDV could generate HGRs for all five AIVs, but this goal could be achieved by employing two in-house MDVs (vB5 and Vero-15). In immunization studies, mice received two doses of Vero cell-derived inactivated H5N1 and H7N9 whole virus antigens adjuvanted with alum and developed robust antibody responses. Full article
(This article belongs to the Special Issue Influenza Virus and Vaccine Development)
Show Figures

Figure 1

1 pages, 143 KiB  
Abstract
Teicoplanin Derivatives Impact on West Nile Virus Pathogenesis
by Henrietta Papp, Ilona Bereczki, Pál Herczegh, Mónika Madai, Gábor Kemenesi, Eszter Boglárka Lőrincz, Anikó Borbás and Ferenc Jakab
Proceedings 2020, 50(1), 126; https://doi.org/10.3390/proceedings2020050126 - 8 Jul 2020
Viewed by 1918
Abstract
West Nile virus (WNV) is an emerging arbovirus that causes infections worldwide. Clinical manifestations of the infection vary from asymptomatic to fatal illness when it reaches the central nervous system. To date, vaccine and specific antiviral treatments are not available. Teicoplanin is already [...] Read more.
West Nile virus (WNV) is an emerging arbovirus that causes infections worldwide. Clinical manifestations of the infection vary from asymptomatic to fatal illness when it reaches the central nervous system. To date, vaccine and specific antiviral treatments are not available. Teicoplanin is already used to treat Gram-positive bacterial infections. Furthermore, it has been reported to block the entry of pseudotyped Ebola, Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus. Moreover, teicoplanin derivatives showed anti-influenza virus, anti-human immunodeficiency virus, anti-hepatitis C virus, and anti-dengue virus activity. In total, 12 teicoplanin derivatives have been tested against our West Nile virus isolate. Vero E6 cells were simultaneously treated with 50 µM of teicoplanin derivatives and infected with WNV at the same time. Virus-induced cytopathic effect and cytotoxicity were examined 4 days post-infection. One compound completely blocked virus pathogenesis, while five compounds reduced the viral titer. Further studies will be conducted to unravel the mode of action of these promising derivatives. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
Back to TopTop