Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Vathi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2112 KB  
Article
Performance of Integrated Biofilm-Phytoremediation Process in Reclaiming Water from Domestic Wastewater
by Fairuz Afiqah Buslima, Hassimi Abu Hasan, Jahira Alias, Jaga Sahsiny Jaganathan, Junaidah Buhari, Suriya Vathi Subramanian and Siti Rozaimah Sheikh Abdullah
Water 2025, 17(2), 163; https://doi.org/10.3390/w17020163 - 9 Jan 2025
Cited by 3 | Viewed by 1976
Abstract
The rapid development of the residential and industrial sectors produces a huge amount of treated domestic wastewater. The treated wastewater is discharged and could affect the environment in the long term. Improving the quality of treated domestic wastewater for water reclamation would benefit [...] Read more.
The rapid development of the residential and industrial sectors produces a huge amount of treated domestic wastewater. The treated wastewater is discharged and could affect the environment in the long term. Improving the quality of treated domestic wastewater for water reclamation would benefit both sectors. This study aims to determine the efficiency of the biofilm-phytoremediation integration process in reclaiming domestic wastewater. A cuboid-shaped reactor was filled with 15 L of domestic wastewater, utilizing water hyacinth and a polyethylene carrier as supporting media for the process. The integrated reactor is tested in two phases: the initial adaptation of bacteria with domestic and synthetic wastewater (Phase I) and the integration process of biofilm-phytoremediation, based on the factors of NH3-N concentration and hydraulic retention time (HRT), for 24 to 48 h (Phase II). In Phase II, pollutant removal was observed at varying NH3-N concentrations: C1 (11–13 mg/L), C2 (9–11 mg/L), and C3 (3–5 mg/L). The study’s findings indicate a consistent performance in the first phase, with removal rates for COD and NH3-N ranging between 86.7–100.0% and 79.0–99.6%, respectively. The reactor effectively removed pollutants at varying concentrations of NH3-N, with average removal up to 100% (COD), 99% (NH3-N), and 80% (PO43−). This integrated reactor shows the finest treated water quality outcomes for non-potable water recovery, as well as offers an alternative to resolve water scarcity for use in various sectors. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

22 pages, 4750 KB  
Review
Fertility Indicators for Porphyry-Cu-Au+Pd±Pt Deposits: Evidence from Skouries, Chalkidiki Peninsula, Greece, and Comparison with Worldwide Mineralizations
by Maria Economou-Eliopoulos, Federica Zaccarini and Giorgio Garuti
Minerals 2023, 13(11), 1413; https://doi.org/10.3390/min13111413 - 6 Nov 2023
Cited by 2 | Viewed by 2554
Abstract
The research interest for many authors has been focused on the origin, recovery, and exploration of critical metals, including platinum-group elements (PGEs), with the aim of finding new potential sources. Many giant porphyry Cu deposits are well known around the Pacific Rim, in [...] Read more.
The research interest for many authors has been focused on the origin, recovery, and exploration of critical metals, including platinum-group elements (PGEs), with the aim of finding new potential sources. Many giant porphyry Cu deposits are well known around the Pacific Rim, in the Balkan–Carpathian system, Himalayas, China, and Malaysia. However, only certain porphyry Cu-Au deposits are characterized by the presence of significant Pd and Pt contents (up to 20 ppm). This contribution provides new analytical data on porphyry-Cu-Au±Pd±Pt deposits from the Chalkidiki Peninsula and an overview of the existing geochemical characteristics of selected porphyry-Cu deposits worldwide in order to define significant differences between PGE-fertile and PGE-poor porphyry-Cu intrusions. The larger Mg, Cr, Ni, Co, and Re contents and smaller LILE elements (Ba and Sr) in fertile porphyry-Cu-Au-(PGE) reflect the larger contribution from the mantle to the parent magmas. In contrast, the smaller Mg, Cr, Ni, Co, and Re contents and larger Ba and Sr in PGE-poor porphyry-Cu-Mo deposits from the Chalkidiki Peninsula (Vathi, Pontokerasia, and Gerakario) and Russia–Mongolia suggest the presence of parent magmas with a more crustal contribution. Although there is an overlap in the plots of those elements, probably due to the evolution of the ore-forming system, consideration of the maximum contents of Mg, Cr, Ni, and Co is proposed. Magnetite which separated from the mineralized Skouries porphyry of Greece showed small negative Eu anomalies (Eu/Eu* ≥ 0.55), reflecting a relatively high oxidation state during the cooling of the ore-forming system. The relatively high, up to 6 ppm (Pd+Pt), and low Cr content towards the transition from the porphyry to epithermal environment, coupled with the occurrence of Pd, Te, and Se minerals (merenskyite, clausthalite), and tetrahedrite–tennantite in fertile porphyry Cu deposits (Elatsite deposit, Bulgaria), reflect a highly fractionated ore-forming system. Thus, in addition to the crustal and mantle recycling, metasomatism, high oxidation state, and abundant magmatic water, other factors required for the origin of fertile porphyry-Cu deposits are the critical degree of mantle melting to release Pt and Pd in the ore-forming fluids and the degree of fractionation, as reflected in the mineral chemistry and geochemical data. Full article
Show Figures

Figure 1

5 pages, 2095 KB  
Proceeding Paper
Factors Affecting the Properties of Slag-Based Alkali-Activated Materials
by Konstantinos Komnitsas, Vasiliki Karmali, Dimitra Vathi and Eleftherios Kaklamanos
Mater. Proc. 2023, 15(1), 19; https://doi.org/10.3390/materproc2023015019 - 24 Oct 2023
Viewed by 945
Abstract
This study, carried out in the frame of the Horizon Europe ENICON project, “Sustainable processing of Europe’s low grade sulphidic and lateritic Ni/Co ores and tailings into battery grade metals”, evaluates the properties of alkali-activated materials (AAMs) produced from slag obtained from the [...] Read more.
This study, carried out in the frame of the Horizon Europe ENICON project, “Sustainable processing of Europe’s low grade sulphidic and lateritic Ni/Co ores and tailings into battery grade metals”, evaluates the properties of alkali-activated materials (AAMs) produced from slag obtained from the Euronickel ferronickel plant at Kavadarci, Republic of N. Macedonia. The activating solution comprises sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions. The effect of various operating parameters, i.e., the molarity of the activating solution (6–10 mol/L), pre-curing period (24–96 h), curing temperature (20–80 °C), and aging period (7–96 days) on the compressive strength, density, porosity and water absorption of the produced AAMs, was initially assessed. The first experimental results indicate that the produced AAMs acquired compressive strength exceeding 40 MPa after curing at 80 °C and aging for 7 days. This value increased to higher than 55 and 70 MPa when the aging period was 28 and 96 days, respectively. Full article
Show Figures

Figure 1

14 pages, 4007 KB  
Article
13C, 25Mg, and 43Ca Solid-State NMR for the Purpose of Dolomitic Marbles Provenance Elucidation
by Isabelle Pianet, Anna Gutiérrez Garcia-Moreno, Marie-Claire Savin, Nicolas Frerebeau, Julien Trebosc, Pierre Florian and M. Pilar Lapuente Mercadal
Materials 2023, 16(4), 1468; https://doi.org/10.3390/ma16041468 - 9 Feb 2023
Cited by 3 | Viewed by 1944
Abstract
The study of the provenance of dolomitic marble artefacts has become relevant since it was discovered that quarries of this marble other than that of Cape-Vathy located on the island of Thasos have been exploited since Antiquity. To improve our knowledge about the [...] Read more.
The study of the provenance of dolomitic marble artefacts has become relevant since it was discovered that quarries of this marble other than that of Cape-Vathy located on the island of Thasos have been exploited since Antiquity. To improve our knowledge about the provenance of materials and the extent of their dispersion, multiple archaeometric studies were performed in the past including isotope analyses, petrography, cathodoluminescence, and elemental analyses. In the present work, solid-state nuclear magnetic resonance (NMR) spectroscopy has been added to this panel of techniques. NMR allows the characterization of the material at a molecular level by looking at different nuclei: carbon, magnesium, and calcium. Statistical analysis of the data collected on both quarry samples and archaeologic items was also implemented and clearly demonstrates the efficiency of a holistic approach for provenance elucidation. Finally, the first 25Mg NMR tests have shown the potential of this technique to discriminate between dolomitic marbles of different provenance. The results are discussed in terms of their historical meaning and illustrate the exploitation of sources of dolomitic marbles other than the Greek Thasos source. Full article
Show Figures

Figure 1

18 pages, 13254 KB  
Article
Room-Temperature Self-Healable Blends of Waterborne Polyurethanes with 2-Hydroxyethyl Methacrylate-Based Polymers
by Ioanna Tzoumani, Zacharoula Iatridi, Athena M. Fidelli, Poppy Krassa, Joannis K. Kallitsis and Georgios Bokias
Int. J. Mol. Sci. 2023, 24(3), 2575; https://doi.org/10.3390/ijms24032575 - 29 Jan 2023
Cited by 5 | Viewed by 3501
Abstract
The design of self-healing agents is a topic of important scientific interest for the development of high-performance materials for coating applications. Herein, two series of copolymers of 2-hydroxyethyl methacrylate (HEMA) with either the hydrophilic N,N-dimethylacrylamide (DMAM) or the epoxy group-bearing [...] Read more.
The design of self-healing agents is a topic of important scientific interest for the development of high-performance materials for coating applications. Herein, two series of copolymers of 2-hydroxyethyl methacrylate (HEMA) with either the hydrophilic N,N-dimethylacrylamide (DMAM) or the epoxy group-bearing hydrophobic glycidyl methacrylate were synthesized and studied as potential self-healing agents of waterborne polyurethanes (WPU). The molar percentage of DMAM or GMA units in the P(HEMA-co-DMAMy) and P(HEMA-co-GMAy) copolymers varies from 0% up to 80%. WPU/polymer composites with a 10% w/w or 20% w/w copolymer content were prepared with the facile method of solution mixing. Thanks to the presence of P(HEMA-co-DMAMy) copolymers, WPU/P(HEMA-co-DMAMy) composite films exhibited surface hydrophilicity (water contact angle studies), and tendency for water uptake (water sorption kinetics studies). In contrast, the surfaces of the WPU/P(HEMA-co-GMAy) composites were less hydrophilic compared with the WPU/P(HEMA-co-DMAMy) ones. The room-temperature, water-mediated self-healing ability of these composites was investigated through addition of water drops on the damaged area. Both copolymer series exhibited healing abilities, with the hydrophilic P(HEMA-co-DMAMy) copolymers being more promising. This green healing procedure, in combination with the simple film fabrication process and simple healing triggering, makes these materials attractive for practical applications. Full article
(This article belongs to the Special Issue Self-Healing Polymers and Composites)
Show Figures

Figure 1

24 pages, 8722 KB  
Article
Holocene Paleoenvironmental Evolution of a Semi-Enclosed Shallow Aegean Basin: A Combination of Seismic Stratigraphy and Sediment Core Proxies
by Alexandra Noti, Lucas J. Lourens, Maria Geraga, Frank P. Wesselingh, Negar Haghipour, Nikos Georgiou, Dimitris Christodoulou, Spyros Sergiou, Xenophon Dimas, Andreas G. Vlachopoulos and George Papatheodorou
Water 2022, 14(22), 3688; https://doi.org/10.3390/w14223688 - 15 Nov 2022
Cited by 2 | Viewed by 3208
Abstract
The island of Astypalea (Greece), known for its rich and pristine archeological sites, encompasses a semi-enclosed silled basin that has been very susceptible to global sea levels and regional climate changes due to its relatively modern shallow sill of 4.7 m water deep [...] Read more.
The island of Astypalea (Greece), known for its rich and pristine archeological sites, encompasses a semi-enclosed silled basin that has been very susceptible to global sea levels and regional climate changes due to its relatively modern shallow sill of 4.7 m water deep that connects the Vathy bay with the adjacent Aegean Sea. To identify the causal relationship between regional climate, sea-level trajectories, and environmental change and their potential impact on hominine habitats on the island, we investigated a high-resolution seismic profile together with sediment, stable isotope, geochemical, and biotic proxies retrieved from a marine sediment core (ASTC1). Our results show that the basin was once isolated, and a marine inundation occurred at around 7.3 ka BP, which is older than expected, based on global sea level reconstructions. The entire transition from isolation to full marine conditions was accomplished in three major phases: (1) non-marine isolated conditions between 9–7.3 ka BP, (2) semi-isolated hypersaline marsh and lagoonal conditions between 7.3 and 4.1 ka BP, and (3) semi-isolated shallow marine conditions of today (4.1 ka BP to present). High water alkalinity, elevated organic content, and heavier isotopic signals indicate relatively arid conditions in the region that favored Sr-rich carbonate precipitation within the 7.3–6 ka BP interval. On the other hand, freshwater biota, along with a high Corg/N ratio and lighter isotopic signal, showed wetter conditions, at least for the intervals 8–7.3 ka and 6–5.4 ka BP, in contrast to the aridification trend seen as 4.1 ka to present. Finally, the hominine habitat evolution at around 6 ka BP might be attributed to the wetter conditions and the freshwater source provided by the bay at that time. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Graphical abstract

20 pages, 4930 KB  
Article
Tracing Raw Material Sources of Prehistoric Stone Artefacts by Non-Invasive Techniques: The Case of the Early Bronze Age (3rd Mill. BCE) Site of Vathy, Astypalaia, Greece
by Maria Kokkaliari, Eugenia Adam, Andreas Vlachopoulos and Ioannis Iliopoulos
Quaternary 2022, 5(4), 42; https://doi.org/10.3390/quat5040042 - 9 Oct 2022
Cited by 1 | Viewed by 3031
Abstract
Recent findings of archaeological research in the Vathy gulf area, Astypalaia Island, indicate its continuous habitation since prehistoric times, most importantly in the transitional period from the Final Neolithic to the Early Bronze Age (late 4th/early 3rd millennium BC). The evaluation of the [...] Read more.
Recent findings of archaeological research in the Vathy gulf area, Astypalaia Island, indicate its continuous habitation since prehistoric times, most importantly in the transitional period from the Final Neolithic to the Early Bronze Age (late 4th/early 3rd millennium BC). The evaluation of the prehistoric stone artefacts from Vathy using non-invasive analytical methods (Near Infrared Spectroscopy—NIR), in combination with the mineral-petrographic characterization of the main lithological formations of the island, is expected to provide important information about raw material procurement and possible exchange networks. The geological study of the island combined with the analytical methods applied to the archaeological artefacts and the geological samples led to the identification of both local and allogenic materials. The possible locations of raw material sources were established and the origin of allogenic materials was estimated. The stone artefacts made of local geo-materials consist mainly of calcitic sandstone, shale, marl, and limestone/marble, comprising the largest part of the lithological formations of the island, as well as pumice and volcanic rocks of varying chemical composition. By means of a portable microscope and NIR spectroscopy, we were further able to identify allogenic geo-materials including chalcedony, mica schist, bauxite and meta-bauxite, steatite, and paragonite. Based on the mineralogical and petrographic characterization of the stone artefacts, a first attempt is made to evaluate the possible raw material sources and to identify potential intra-island modes of stone exploitation. Full article
(This article belongs to the Special Issue Advances in Geoarchaeology and Cultural Heritage)
Show Figures

Figure 1

28 pages, 5861 KB  
Article
Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece
by Christos L. Stergiou, Vasilios Melfos, Panagiotis Voudouris, Lambrini Papadopoulou, Paul G. Spry, Irena Peytcheva, Dimitrina Dimitrova, Elitsa Stefanova and Katerina Giouri
Minerals 2021, 11(6), 630; https://doi.org/10.3390/min11060630 - 14 Jun 2021
Cited by 16 | Viewed by 7222
Abstract
The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral [...] Read more.
The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W. Full article
(This article belongs to the Special Issue Ore Mineralogy and Geochemistry of Rare Metal Deposits)
Show Figures

Figure 1

31 pages, 18283 KB  
Article
The Tsunami Caused by the 30 October 2020 Samos (Aegean Sea) Mw7.0 Earthquake: Hydrodynamic Features, Source Properties and Impact Assessment from Post-Event Field Survey and Video Records
by Ioanna Triantafyllou, Marilia Gogou, Spyridon Mavroulis, Efthymios Lekkas, Gerassimos A. Papadopoulos and Manolis Thravalos
J. Mar. Sci. Eng. 2021, 9(1), 68; https://doi.org/10.3390/jmse9010068 - 11 Jan 2021
Cited by 60 | Viewed by 15379
Abstract
The tsunami generated by the offshore Samos Island earthquake (Mw = 7.0, 30 October 2020) is the largest in the Aegean Sea since 1956 CE. Our study was based on field surveys, video records, eyewitness accounts and far-field mareograms. Sea recession was [...] Read more.
The tsunami generated by the offshore Samos Island earthquake (Mw = 7.0, 30 October 2020) is the largest in the Aegean Sea since 1956 CE. Our study was based on field surveys, video records, eyewitness accounts and far-field mareograms. Sea recession was the leading motion in most sites implying wave generation from seismic dislocation. At an epicentral distance of ~12 km (site K4, north Samos), sea recession, followed by extreme wave height (h~3.35 m), occurred 2′ and 4′ after the earthquake, respectively. In K4, the main wave moved obliquely to the coast. These features may reflect coupling of the broadside tsunami with landslide generated tsunami at offshore K4. The generation of an on-shelf edge-wave might be an alternative. A few kilometers from K4, a wave height of ~1 m was measured in several sites, except Vathy bay (east, h = 2 m) and Karlovasi port (west, h = 1.80 m) where the wave amplified. In Vathy bay, two inundations arrived with a time difference of ~19′, the second being the strongest. In Karlovasi, one inundation occurred. In both towns and in western Turkey, material damage was caused in sites with h > 1 m. In other islands, h ≤ 1 m was reported. The h > 0.5 m values follow power-law decay away from the source. We calculated a tsunami magnitude of Mt~7.0, a tsunami source area of 1960 km2 and a displacement amplitude of ~1 m in the tsunami source. A co-seismic 15–25 cm coastal uplift of Samos decreased the tsunami run-up. The early warning message perhaps contributed to decrease the tsunami impact. Full article
(This article belongs to the Special Issue Tectonics and Sea-Level Fluctuations)
Show Figures

Figure 1

39 pages, 11358 KB  
Article
The Geology, Geochemistry, and Origin of the Porphyry Cu-Au-(Mo) System at Vathi, Serbo-Macedonian Massif, Greece
by Christos L. Stergiou, Vasilios Melfos, Panagiotis Voudouris, Paul G. Spry, Lambrini Papadopoulou, Alexandros Chatzipetros, Katerina Giouri, Constantinos Mavrogonatos and Anestis Filippidis
Appl. Sci. 2021, 11(2), 479; https://doi.org/10.3390/app11020479 - 6 Jan 2021
Cited by 10 | Viewed by 6162
Abstract
The Vathi porphyry Cu-Au ± Mo mineralization is located in the Serbo-Macedonian metallogenic province of the Western Tethyan Metallogenic Belt. It is mainly hosted by a latite and is genetically associated with a quartz monzonite intrusion, which intruded the basement rocks of the [...] Read more.
The Vathi porphyry Cu-Au ± Mo mineralization is located in the Serbo-Macedonian metallogenic province of the Western Tethyan Metallogenic Belt. It is mainly hosted by a latite and is genetically associated with a quartz monzonite intrusion, which intruded the basement rocks of the Vertiskos Unit and the latite, 18 to 17 Ma ago. A phreatic breccia crosscuts the latite. The quartz monzonite was affected by potassic alteration, whereas the latite was subjected to local propylitic alteration. Both styles of alteration were subsequently overprinted by intense sericitic alteration. M-type and A-type veins are spatially associated with potassic alteration, whereas D-type veins are related to the sericitic alteration. Three ore assemblages are associated with the porphyry stage: (1) pyrite + chalcopyrite + bornite + molybdenite + magnetite associated with potassic alteration; (2) pyrite + chalcopyrite related to propylitic alteration; and (3) pyrite + chalcopyrite + native gold ± tetradymite associated with sericitic alteration. A fourth assemblage consisting of sphalerite + galena + arsenopyrite + pyrrhotite + pyrite ± stibnite ± tennantite is related to an epithermal overprint. Fluid inclusion data indicate that the A-type veins and related porphyry-style mineralization formed at 390–540 °C and pressures of up to 646 bars (<2.6 km depth) from boiling hydrothermal fluids. A later condensation of vapor-rich inclusions resulted in a moderately saline fluid (8.4–11.2 wt % NaCl equiv) at temperatures between 311 and 392 °C, which were related to sericitic alteration, D-type veins, and associated metallic mineralization. Subsequent dilution of the moderately saline fluid at lower temperatures (205–259 °C) produced a less saline (1.4–2.9 wt % NaCl equiv.) fluid, which is likely associated with the late epithermal overprint. Full article
Show Figures

Figure 1

32 pages, 1243 KB  
Review
The Future of Targeted Gene-Based Treatment Strategies and Biomarkers in Parkinson’s Disease
by Alexia Polissidis, Lilian Petropoulou-Vathi, Modestos Nakos-Bimpos and Hardy J. Rideout
Biomolecules 2020, 10(6), 912; https://doi.org/10.3390/biom10060912 - 16 Jun 2020
Cited by 35 | Viewed by 11075
Abstract
Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson’s disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order [...] Read more.
Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson’s disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order for patients to receive maximal therapeutic benefit and vice versa; disease-modifying therapies must become available for patients whose potential for disease diagnosis and prognosis can be predicted with biomarkers. This review provides an overview of the milestones achieved to date in the therapeutic strategy development of disease-modifying therapies and biomarkers for PD, with a focus on the most common and advanced genetically linked targets alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2) and glucocerebrosidase (GBA1). Furthermore, we discuss the convergence of the different pathways and the importance of patient stratification and how these advances may apply more broadly to idiopathic PD. The heterogeneity of PD poses a challenge for therapeutic and biomarker development, however, the one gene- one target approach has brought us closer than ever before to an unprecedented number of clinical trials and biomarker advancements. Full article
Show Figures

Graphical abstract

Back to TopTop